首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
CD14 is a 55-kD protein found as a glycosylphosphatidylinositol (GPI)- anchored protein on the surface of monocytes, macrophages, and polymorphonuclear leukocytes, and as a soluble protein in the blood. Both forms of CD14 participate in the serum-dependent responses of cells to bacterial lipopolysaccharide (LPS). While CD14 has been described as a receptor for complexes of LPS with LPS-binding protein (LBP), there has been no direct evidence showing whether a ternary complex of LPS, LBP, and CD14 is formed, or whether CD14 binds LPS directly. Using nondenaturing polyacrylamide gel electrophoresis (native PAGE), we show that recombinant soluble CD14 (rsCD14) binds LPS in the absence of LBP or other proteins. Binding of LPS to CD14 is stable and of low stoichiometry (one or two molecules of LPS per rsCD14). Recombinant LBP (rLBP) does not form detectable ternary complexes with rsCD14 and LPS, but it does accelerate the binding of LPS to rsCD14. rLBP facilitates the interaction of LPS with rsCD14 at substoichiometric concentrations, suggesting that LBP functions catalytically, as a lipid transfer protein. Complexes of LPS and rsCD14 formed in the absence of LBP or other serum proteins strongly stimulate integrin function on PMN and expression of E-selectin on endothelial cells, demonstrating that LBP is not necessary for CD14-dependent stimulation of cells. These results suggest that CD14 acts as a soluble and cell surface receptor for LPS, and that LBP may function primarily to accelerate the binding of LPS to CD14.  相似文献   

2.
Bacterial LPS induces endothelial cell (EC) injury both in vivo and in vitro. We studied the effect of Escherichia coli 0111:B4 LPS on movement of 14C-BSA across bovine pulmonary artery EC monolayers. In the presence of serum, a 6-h LPS exposure augmented (P < 0.001) transendothelial 14C-BSA flux compared with the media control at concentrations > or = 0.5 ng/ml, and LPS (10 ng/ml) exposures of > or = 2-h increased (P < 0.005) the flux. In the absence of serum, LPS concentrations of up to 10 micrograms/ml failed to increase 14C-BSA flux at 6 h. The addition of 10% serum increased EC sensitivity to the LPS stimulus by > 10,000-fold. LPS (10 ng/ml, 6 h) failed to increase 14C-BSA flux at serum concentrations < 0.5%, and maximum LPS-induced increments could be generated in the presence of > or = 2.5%. LPS-binding protein (LBP) and soluble CD14 (sCD14) could each satisfy this serum requirement; either anti-LBP or anti-CD14 antibody each totally blocked (P < 0.00005) the LPS-induced changes in endothelial barrier function. LPS-LBP had a more rapid onset than did LPS-sCD14. The LPS effect in the presence of both LBP and sCD14 exceeded the effect in the presence of either protein alone. These data suggest that LBP and sCD14 each independently functions as an accessory molecule for LPS presentation to the non-CD14-bearing endothelial surface. However, in the presence of serum both molecules are required.  相似文献   

3.
Lipopolysaccharide binding protein (LBP) is an acute-phase reactant that binds bacterial LPS. We show that LBP binds to the surface of live Salmonella and to LPS coated erythrocytes (ELPS), and strongly enhances the attachment of these particles to macrophages. LBP bridges LPS-coated particles to macrophages (MO) by first binding to the LPS, then binding to MO. Pretreatment of ELPS with LBP enabled binding to MO, but pretreatment of MO had no effect. Moreover, MO did not recognize erythrocytes coated with LBP unless LPS was also added, thus suggesting that interaction of LBP with LPS results in a conformational change in LBP that allows recognition by MO. Binding of LBP-coated particles appears to be mediated by a receptor found on blood monocytes and MO but not on other leukocytes or umbilical vein endothelium. The receptor is mobile in the plane of the membrane since binding activity on MO was downmodulated upon spreading of cells on surfaces coated with LBP-LPS complexes. The receptor appears to be distinct from other opsonic receptors since downmodulation of CR1, CR3, Fc gamma RI, Fc gamma RII, and Fc gamma RIII with mAbs did not affect binding of LBP-coated particles, and leukocytes from CD18-deficient patients bound LBP-coated particles normally. Coating of erythrocytes with LBP-LPS complexes strongly enhanced phagocytosis observed in the presence of suboptimal amounts of anti-erythrocyte IgG. However, binding mediated by LBP-LPS complexes alone caused neither phagocytosis of the LBP-coated erythrocytes nor initiation of an oxidative burst. The results of our studies define LBP as an opsonin. During the acute phase, LBP can be expected to bind gram-negative bacteria and bacterial fragments and promote the interaction of coated bacteria with phagocytes.  相似文献   

4.
We have recently shown that lipopolysaccharide (LPS)-binding protein (LBP) is a lipid transfer protein that catalyzes two distinct reactions: movement of bacterial LPS (endotoxin) from LPS micelles to soluble CD14 (sCD14) and movement of LPS from micelles to reconstituted high density lipoprotein (R-HDL) particles. Here we show that LBP facilitates a third lipid transfer reaction: movement of LPS from LPS- sCD14 complexes to R-HDL particles. This action of LBP is catalytic, with one molecule of LBP enabling the movement of multiple LPS molecules into R-HDL. LBP-catalyzed movement of LPS from LPS-sCD14 complexes to R-HDL neutralizes the capacity of LPS to stimulate polymorphonuclear leukocytes. Our findings show that LPS may be transferred to R-HDL either by the direct action of LBP or by a two- step reaction in which LPS is first transferred to sCD14 and subsequently to R-HDL. We have observed that the two-step pathway of LPS transfer to R-HDL is strongly favored over direct transfer. Neutralization of LPS by LBP and R-HDL was accelerated more than 30- fold by addition of sCD14. Several observations suggest that sCD14 accelerates this reaction by serving as a shuttle for LPS: addition of LBP and sCD14 to LPS micelles resulted in LPS-sCD14 complexes that could diffuse through a 100-kD cutoff filter; LPS-sCD14 complexes appeared transiently during movement of LPS to R-HDL facilitated by purified LBP; and sCD14 could facilitate transfer of LPS to R-HDL without becoming part of the final LPS-R-HDL complex. Complexes of LPS and sCD14 were formed transiently when LPS was incubated in plasma, suggesting that these complexes may play a role as intermediates in the neutralization of LPS under physiological conditions. These findings detail a new activity for sCD14 and suggest a novel mechanism for lipid transfer by LBP.  相似文献   

5.
Lipopolysaccharide binding protein (LBP) is a plasma protein known to facilitate the diffusion of bacterial LPS (endotoxin). LBP catalyzes movement of LPS monomers from LPS aggregates to HDL particles, to phospholipid bilayers, and to a binding site on a second plasma protein, soluble CD14 (sCD14). sCD14 can hasten transfer by receiving an LPS monomer from an LPS aggregate, and then surrendering it to an HDL particle, thus acting as a soluble "shuttle" for an insoluble lipid. Here we show that LBP and sCD14 shuttle not only LPS, but also phospholipids. Phosphatidylinositol (PI), phosphatidylcholine, and a fluorescently labeled derivative of phosphatidylethanolamine (R-PE) are each transferred by LBP from membranes to HDL particles. The transfer could be observed using recombinant LBP and sCD14 or whole human plasma, and the plasma-mediated transfer of PI could be blocked by anti-LBP and partially inhibited by anti-CD14. sCD14 appears to act as a soluble shuttle for phospholipids since direct binding of PI and R-PE to sCD14 was observed and because addition of sCD14 accelerated transfer of these lipids. These studies define a new function for LBP and sCD14 and describe a novel mechanism for the transfer of phospholipids in blood. In further studies, we show evidence suggesting that LBP transfers LPS and phospholipids by reciprocal exchange: LBP-catalyzed binding of R-PE to LPS x sCD14 complexes was accompanied by the exit of LPS from sCD14, and LBP-catalyzed binding of R-PE to sCD14 was accelerated by prior binding of LPS to sCD14. Binding of one lipid is thus functionally coupled with the release of a second. These results suggest that LBP acts as a lipid exchange protein.  相似文献   

6.
Lipopolysaccharides (LPS) that lack acyloxyacyl groups can antagonize responses to LPS in human cells. Although the site and mechanism of inhibition are not known, it has been proposed that these inhibitory molecules compete with LPS for a common cellular target such as a cell-surface binding receptor. In the present study, we used an in vitro model system to test this hypothesis and to evaluate the role of CD14 in cellular responses to LPS. Cells of the THP-1 human monocyte-macrophage cell line were exposed to 1,25 dihydroxyvitamin D3 to induce adherence to plastic and expression of CD14, a binding receptor for LPS complexed with LPS-binding protein (LBP). The uptake of picograms of [3H]LPS (agonist) and enzymatically deacylated LPS [3H]dLPS (antagonist) was measured by exposing the cells to the radiolabeled ligands for short incubation periods. The amounts of cell-associated LPS and dLPS were then correlated with cellular responses by measuring the induction of nuclear NF-kappa B binding activity and the production of cell-associated interleukin (IL)-1 beta. We found that similar amounts of [3H]LPS or [3H]dLPS were taken up by the cells. The rate of cellular accumulation of the ligands was greatly enhanced by LBP and blocked by a monoclonal antibody to CD14 (mAb 60b), yet no cellular responses were induced by dLPS or dLPS-LBP complexes. In contrast, LPS stimulated marked increases of NF-kappa B binding activity and IL-1 beta. These responses were enhanced by LBP and inhibited by mAb 60b. dLPS and its synthetic lipid A counterpart, LA-14-PP (also known as lipid Ia, lipid IVa, or compound 406) strongly inhibited LPS-induced NF-kappa B and IL-1 beta, yet neither antagonist inhibited the uptake of LPS via CD14. dLPS did not inhibit NF-kappa B responses to tumor necrosis factor (TNF) alpha or phorbol ester. Our results indicate that (a) both stimulatory and nonstimulatory ligands can bind to CD14 in the presence of LBP; (b) the mechanism of inhibition by dLPS is LPS-specific, yet does not involve blockade of LPS binding to CD14; and (c) in keeping with previous results of others, large concentrations of LPS can stimulate the cells in the absence of detectable binding to CD14. The findings indicate that the site of dLPS inhibition is distal to CD14 binding in the LPS signal pathway in THP-1 cells, and suggest that molecules other than CD14 are important in LPS signaling.  相似文献   

7.
Lipoproteins isolated from normal human plasma can bind and neutralize bacterial lipopolysaccharide (LPS) and may represent an important mechanism in host defense against gram-negative septic shock. Recent studies have shown that experimentally elevating the levels of circulating high-density lipoproteins (HDL) provides protection against death in animal models of endotoxic shock. We sought to define the components of HDL that are required for neutralization of LPS. To accomplish this we have studied the functional neutralization of LPS by native and reconstituted HDL using a rapid assay that measures the CD14- dependent activation of leukocyte integrins on human neutrophils. We report here that reconstituted HDL particles (R-HDL), prepared from purified apolipoprotein A-I (apoA-I) combined with phospholipid and free cholesterol, are not sufficient to neutralize the biologic activity of LPS. However, addition of recombinant LPS binding protein (LBP), a protein known to transfer LPS to CD14 and enhance responses of cells to LPS, enabled prompt binding and neutralization of LPS by R- HDL. Thus, LBP appears capable of transferring LPS not only to CD14 but also to lipoprotein particles. In contrast with R-HDL, apoA-I containing lipoproteins (LpA-I) isolated from plasma by selected affinity immunosorption (SAIS) on an anti-apoA-I column, neutralized LPS without addition of exogenous LBP. Several lines of evidence demonstrated that LBP is a constituent of LpA-I in plasma. Passage of plasma over an anti-apoA-I column removed more than 99% of the LBP detectable by ELISA, whereas 31% of the LBP was recovered by elution of the column. Similarly, the ability of plasma to enable activation of neutrophils by LPS (LBP/Septin activity) was depleted and recovered by the same process. Furthermore, an immobilized anti-LBP monoclonal antibody coprecipitated apoA-I. The results described here suggest that in addition to its ability to transfer LPS to CD14, LBP may also transfer LPS to lipoproteins. Since LBP appears to be physically associated with lipoproteins in plasma, it is positioned to play an important role in the neutralization of LPS.  相似文献   

8.
Bacterial endotoxin (lipopolysaccharide [LPS]) causes fatal shock in humans and experimental animals. The shock is mediated by cytokines released by direct LPS stimulation of cells of monocytic origin (monocyte/macrophage [MO]). Recent studies have supported the concept that the plasma protein, LPS binding protein (LBP), plays an important role in controlling MO responses to LPS. Specifically, evidence has been presented to suggest that CD14, a membrane protein present in MO, serves as a receptor for complexes of LPS and the plasma protein LPS binding protein (LBP). In this function CD14 mediates attachment of LPS-bearing particles opsonized with LBP and appears to play an important role in regulating cytokine production induced by complexes of LPS and LBP. The CD14-, murine pre-B cell line 70Z/3 responds to LPS by synthesis of kappa light chains and consequent expression of surface IgM. To better understand the role of CD14 in controlling cellular responses to LPS, we investigated the effect of transfection of CD14 into 70Z/3 cells on LPS responsiveness. We report here that transfection of human or rabbit CD14 cDNA into 70Z/3 cells results in membrane expression of a glycosyl-phosphatidylinositol-anchored CD14. When LPS is complexed with LBP, CD14-bearing 70Z/3 cells bind more LPS than do the parental or 70Z/3 cells transfected with vector only. Remarkably, the expression of CD14 lowers the amount of LPS required to stimulate surface IgM expression by up to 10,000-fold when LPS dose-response curves in the CD14-, parental and CD14-bearing, transfected 70Z/3 cells are compared. In contrast, the response of CD14-bearing 70Z/3 cells and the parental 70Z/3 cell line (CD14-) to interferon gamma is indistinguishable. LPS stimulation of the parental and CD14-bearing 70Z/3 cells results in activation of NF-kB. These data provide evidence to support the concept that the LPS receptor in cells that constitutively express CD14 may be a multiprotein complex containing CD14 and membrane protein(s) common to a diverse group of LPS-responsive cells.  相似文献   

9.
We have recently shown that monomeric bacterial LPS is rapidly delivered from the plasma membrane to an intracellular site and that agents that block vesicular transport block responses of neutrophils to lipopolysaccharide (LPS) (Detmers, P.A., N. Thiéblemont, T. Vasselon, R. Pironkova, D.S. Miller, and S.D. Wright. 1996. J. Immunol. 157:5589–5596). To examine further the connection between intracellular transport of LPS and signaling, we observed internalization of fluorescently labeled LPS in cells from LPS-hyporesponsive (Lpsd) mice. Binding of fluorescent LPS from LPS–soluble CD14 (sCD14) complexes by peritoneal macrophages from Lpsd and control (Lpsn) mice was quantitatively similar, and confocal images obtained from these cells exhibited an identical appearance immediately after labeling. Incubation of labeled Lpsn macrophages at 37°C caused movement of the fluorescence from the cell perimeter in one or two spots in the perinuclear region. However, in Lpsd cells the fluorescence remained dispersed, suggesting a defect in vesicular transport. LPS resembles ceramide, and Lpsd mice fail to respond to ceramide. As with LPS, we found that binding of fluorescent ceramide by Lpsd and Lpsn macrophages was quantitatively similar, and the label moved rapidly to one to two spots in the perinuclear region in Lpsn mice. However, in Lpsd macrophages the fluorescence remained dispersed. These results show that cells deficient in responses to LPS exhibit defective vesicular transport of LPS and ceramide and point to a role for vesicular transport in responses to these mediators.  相似文献   

10.
A series of 700 blood donor sera were screened for IgG antibodies to the core of Gram-negative bacterial endotoxin with a quantitative enzyme-linked immunosorbent-assay (ELISA), based on a cocktail of incomplete-core R-LPS from four different Gram-negative bacterial species, and further serum samples were obtained from donors exhibiting a range of different reactivity for isolation of serum IgG. Analysis of the different IgG samples by ELISA employing a panel of individual LPS from 31 different Gram-negative bacteria covering a range of species, serotypes and R-LPS chemotyes showed that high-titer sera from the screening ELISA expressed IgG with multiple reactivity to LPS in the complex ELISA. We investigated this multiple reactivity in three serum IgGs by inhibition and absorption of isolated serum IgG ELISA reactivity to R-LPS, employing purified LPS and whole bacteria respectively. In two cases the ELISA reactivity appeared to be predominantly attributable to a single antibody component directed to the inner LPS core structure in the lipid A to KDO region. For the third serum IgG, the results suggested that the cross-reactivity may be attributable to more than one specificity-group of cross-reactive antibodies, although still restricted to the LPS inner core structures.  相似文献   

11.
To what extent the host defense role of granule-associated antibacterial proteins and peptides of PMN includes extracellular action has not been established. To address this question, we have analyzed the antibacterial activity of cell-free (ascitic) fluid (AF) obtained from glycogen-induced sterile inflammatory rabbit peritoneal exudates in which > 95% of the accumulating cells are PMN. AF, but not plasma collected in parallel, exhibits potent activity toward serum-resistant Gram-negative and Gram-positive bacteria. Total and specific antibacterial activity of AF increases during the first 12 h after injection of glycogen in parallel with the influx of PMN. At maximum, > 99% of 10(7) encapsulated Escherichia coli and Staphylococcus aureus are killed in 30 min/ml of AF. Neutralizing antibodies against the bactericidal/permeability-increasing protein (BPI) of PMN abolishes activity of AF toward encapsulated E. coli but has no effect on activity vs staphylococci. However, BPI alone (approximately 1 microgram/ml in AF) can only account for < or = 20% of AF activity toward E. coli. AF also contains 15 kD PMN proteins (p15s) that act in synergy with BPI. Purified BPI and p15s, in amounts present in AF, reconstitute the growth-inhibitory activity of AF toward encapsulated E. coli. These findings show for the first time an extracellular function of endogenous BPI, providing, together with the p15s, a potent microbicidal system toward Gram-negative bacteria resistant to plasma-derived proteins and phagocytes in inflammatory exudates.  相似文献   

12.
目的:探讨维拉帕米对严重烧伤小鼠早期腹腔巨噬细胞(MХ)内毒素(LPS)后信号转导途径的影响。方法:BALB/C小鼠随机分成烫伤组和假烫组,将收集到的腹腔MХ加入不同浓度维拉帕米(10、100和1000nmol/L)培养。用细胞免疫组化、逆转录聚合酶链反应(RT-PCR)和酶联免疫方法,观察维拉帕米对小鼠MХ表达磷酸化酪氨酸(Tyr-P)、CD14mRNA的产生肿瘤坏死因子-α(TNF-α)、白介  相似文献   

13.
It has been suggested that the antibiotic-induced release of lipopolysaccharide (LPS) is an important cause of the development of septic shock in patients treated for severe infections caused by gram-negative bacteria. β-Lactam antibiotics change the integrity of the bacterial cell envelope by binding to penicillin-binding proteins (PBP) in the membrane and thus may affect the amount of LPS that is released and the kinetics of that release. In this respect, ceftazidime at intermediate concentrations binds with a high affinity to PBP 3 and PBP 1a and thus can induce filament formation in addition to killing, whereas imipenem preferentially binds to PBP 2 and PBP 1b, leading to spheroplast formation and rapid cell lysis. We investigated the effects of these antibiotics on the killing and the release of the radioactively labelled LPS of Salmonella typhi Ty 21A. A mathematical model was developed to calculate the delay between bacterial killing and LPS release, designated the lag time. At antibiotic concentrations inducing equal killing, the amount of LPS released was the same for both antibiotics. Only after 6 h of incubation at antibiotic concentrations above 0.5 μg/ml, the amount of 3H-LPS released was slightly higher (~1.2-fold) in incubations with ceftazidime than in those with imipenem, and the maximum releases of the total label were 33.2% ± 0.89% and 27.1% ± 0.45%, respectively. Despite the clear concentration-dependent effect on the bacterial killing and subsequent LPS release, the lag time was independent of the antibiotic concentration. For ceftazidime as well as imipenem the lag time amounted to approximately 60 min. In conclusion, our findings imply that the mechanism of antibiotic-induced LPS release is independent of the PBP affinities for these β-lactam antibiotics. Furthermore, once the organism is killed by either imipenem or ceftazidime, the rate of LPS release from S. typhi does not differ according to the antibiotic with which the organism is killed, and there is little difference in the relative amount of LPS released.  相似文献   

14.
15.
We and others have previously demonstrated that human alveolar macrophages produce more PGE2 in response to lipopolysaccharide (LPS) than do blood monocytes. We hypothesized that this observation was due to a greater increase in prostaglandin H synthase-2 (PGHS-2) enzyme mass in the macrophage compared to the monocyte. To evaluate this hypothesis, alveolar macrophages and blood monocytes were obtained from healthy nonsmoking volunteers. The cells were cultured in the presence of 0 to 10 micrograms/ml LPS. LPS induced the synthesis of large amounts of a new 75-kD protein in human alveolar macrophages, and a lesser amount in monocytes. Synthesis of this protein required more than 6 h and peaked in 24 to 48 h; the protein reacted with an anti-PGHS-2 antibody prepared against mouse PGHS-2. Associated with synthesis of the protein was a marked increase in LPS-stimulated and arachidonic acid-stimulated synthesis of PGE2 by alveolar macrophages compared to monocytes. Cells not exposed to LPS contained only PGHS-1 and synthesized very little PGE2 during culture or in response to exogenous arachidonic acid. An LPS-induced mRNA, which hybridized to a human cDNA probe for PGHS-2 mRNA, was produced in parallel with production of this new protein and was produced in much greater amounts by alveolar macrophages compared to blood monocytes. This mRNA was not detectable in cells not exposed to LPS. In contrast, both types of cells contain mRNA, which hybridizes to a cDNA probe for PGHS-1. This mRNA did not increase in response to LPS. LPS also had no effect on PGHS-1 protein. These data demonstrate that PGE2 synthesis in human alveolar macrophages and blood monocytes correlates to the mass of PGHS-2 in the cell. We conclude that the greater ability of the macrophage to synthesize PGE2 in response to LPS is due to greater synthesis of PGHS-2 by the macrophage.  相似文献   

16.
We investigated whether pretreatment with geranylgeranylacetone (GGA), a potent heat shock protein (HSP) inducer, could inhibit proinflammatory cytokine liberation and nitric oxide (NO) production in lipopolysaccharide (LPS)-treated murine macrophages. The levels of NO and tumor necrosis factor-alpha (TNF-alpha) released from murine macrophage RAW 264 cells were increased dose- and time-dependently following treatment with LPS (1 microg/ml). GGA (80 microM) treatment 2 h before LPS addition significantly suppressed TNF-alpha and NO productions at 12 h and 24 h after LPS, respectively, indicating that GGA inhibits activation of macrophages. However, replacement by fresh culture medium before LPS treatment abolished the inhibitory effect of GGA on NO production in LPS-treated cells. Furthermore, GGA inhibited both HSP70 and inducible NO synthase expressions induced by LPS treatment despite an HSP inducer. When it was examined whether GGA interacts with LPS and/or affects expression of Toll-like receptor 4 (TLR4) and CD14 on the cell surface, GGA inhibited the binding of LPS to the cell surface, while GGA did not affect TLR4 and CD14 expressions. These results indicate that GGA suppresses the binding of LPS to the cell surface of macrophages, resulting in inhibiting signal transduction downstream of TLR4.  相似文献   

17.
Cathepsin B and prolyl endopeptidase activity was determined in purified rat pulmonary and peritoneal macrophages and cathepsin B was determined in blood monocytes. The activity of cathepsin B in pulmonary macrophages was more than two times higher than in resident peritoneal macrophages and about eight times higher than in circulating monocytes. The simple process of peritoneal lavage with PBS induced an increase in cathepsin B activity in peritoneal macrophages that by 96 and 144 hr reached those levels observed in pulmonary macrophages. Both pulmonary and peritoneal macrophages contain prolyl endopeptidase activity. Repeated peritoneal lavage induced a significant increase in the activity of the enzyme, but not of the magnitude observed for cathepsin B. The data suggest that the transformation of monocytes into macrophages is associated with a significant increase in cathepsin B activity and that this increase is much greater in pulmonary than in peritoneal macrophages.  相似文献   

18.
Two-core LPS antibodies, the rabbit J5 polyclonal antiserum and the human anti-lipid A IgM mAb HA-1A, did not improve the survival of mice challenged with E. coli O111 or P. aeruginosa 3, or with the LPS extracted from them, and did not decrease the incidence of Shwartzman reactions in rabbits challenged with O111 LPS. In contrast, O side chain-specific rabbit antisera were protective in these models. The protection afforded by O side chain-specific antisera against endotoxin lethality was associated with decreased LPS-induced serum TNF and IL-6 levels, whereas core LPS antibodies had no effect on TNF or IL-6 levels. The absence of reduction of LPS-induced cytokines levels by core LPS antibodies suggests that these antibodies are not able to prevent the interactions between LPS and target cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号