首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Coupling of the nucleotide P2Y4 receptor to neuronal ion channels   总被引:4,自引:0,他引:4  
1. G protein-linked P2Y nucleotide receptors are known commonly to stimulate the phosphoinositide signalling pathway. However, we have previously demonstrated that the cloned P2Y(2), P2Y(6) and P2Y(1) receptors couple to neuronal N-type Ca(2+) channels and to M-type K(+) channels. Here we investigate the coupling of recombinant, neuronally expressed rat- and human P2Y(4) receptors (rP2Y(4), hP2Y(4)) to those channels. 2. Rat sympathetic neurones were nuclear-injected with a P2Y(4) cDNA plasmid. A subsequent activation of rP2Y(4) or hP2Y(4) by UTP (100 micro M) in whole-cell (ruptured-patch) mode produced only about 12% inhibition of the N-type Ca(2+) current (I(Ca(N))). Surprisingly, in perforated patch mode, UTP produced much more inhibition of I(Ca(N)) (maximally 51%), with an IC(50) value of 273 nM. This inhibition was voltage-dependent and was blocked by co-expression of the betagamma-binding transducin Galpha-subunit. Pertussis toxin (PTX) pretreatment also suppressed I(Ca(N)) inhibition. 3. UTP inhibited the M-current, recorded in perforated patch mode, by (maximally) 52%, with IC(50) values of 21 nM for rP2Y(4) and 28 nM for hP2Y(4). This inhibition was not affected by PTX pretreatment. 4. With rP2Y(4), ATP inhibited the M-current (IC(50) 524 nM, 26 times weaker than UTP), whereas ATP had no agonist activity at hP2Y(4). This suggests a difference in agonist binding site between rP2Y(4) and hP2Y(4). 5. We conclude that, in contrast to other nucleotide receptors studied, the P2Y(4) receptor couples much more effectively to M-type K(+) channels than to Ca(2+) channels. Coupling to the Ca(2+) channels involves the betagamma-subunits of G(i/o)-proteins and requires a diffusible intracellular component that is lost in ruptured-patch recording.  相似文献   

2.
Montelukast and pranlukast are orally active leukotriene receptor antagonists selective for the CysLT1 receptor. Conversely, the hP2Y(1,2,4,6,11,12,13,14) receptors represent a large family of GPCRs responding to either adenine or uracil nucleotides, or to sugar-nucleotides. Montelukast and pranlukast were found to inhibit nucleotide-induced calcium mobilization in a human monocyte-macrophage like cell line, DMSO-differentiated U937 (dU937). Montelukast and pranlukast inhibited the effects of UTP with IC50 values of 7.7 and 4.3 microM, respectively, and inhibited the effects of UDP with IC50 values of 4.5 and 1.6 microM, respectively, in an insurmountable manner. Furthermore, ligand binding studies using [3H]LTD4 excluded the possibility of orthosteric nucleotide binding to the CysLT1 receptor. dU937 cells were shown to express P2Y2, P2Y4, P2Y6, P2Y11, P2Y13 and P2Y14 receptors. Therefore, these antagonists were studied functionally in a heterologous expression system for the human P2Y receptors. In 1321N1 astrocytoma cells stably expressing human P2Y(1,2,4,6) receptors, CysLT1 antagonists inhibited both the P2Y agonist-induced activation of phospholipase C and intracellular Ca2+ mobilization. IC50 values at P2Y1 and P2Y6 receptors were <1 microM. In control astrocytoma cells expressing an endogenous M3 muscarinic receptor, 10 microM montelukast had no effect on the carbachol-induced rise in intracellular Ca2+. These data demonstrated that CysLT1 receptor antagonists interact functionally with signaling pathways of P2Y receptors, and this should foster the study of possible implications for the clinical use of these compounds in asthma or in other inflammatory conditions.  相似文献   

3.
The recently cloned canine P2Y11 receptor (cP2Y11) and its human homolog (hP2Y11) were stably expressed in Chinese hamster ovary cells (CHO-K1) and 1321N1 human astrocytoma cells, and their agonist selectivities and coupling efficiencies to phospholipase C and adenylyl cyclase were assessed. Adenosine triphosphate nucleotides were much more potent and efficacious at the hP2Y11 receptor than their corresponding diphosphates in promoting both inositol phosphate and cyclic AMP accumulation. In contrast, adenosine diphosphate nucleotides were considerably more potent at the cP2Y11 receptor than their corresponding triphosphate analogs. The tri- versus diphosphate specificity of the two receptors was further confirmed in studies using Ca(2+) mobilization as a measure of receptor activation under conditions that minimized nucleotide degradation. Moreover, 2-methylthioadenosine-5'-triphosphate and 2-methylthioadenosine-5'-diphosphate were 58- and 75-fold more potent than ATP and ADP, respectively, at the cP2Y11 receptor compared with only 2- to 3-fold more potent at the hP2Y11 receptor. Mutational analysis revealed that the change of Arg-265, which is located at the juxtaposition of transmembrane domain 6 and the third extracellular loop in the hP2Y11 receptor, to glutamine in the cP2Y11 receptor is at least partly responsible for the diphosphate selectivity but not the increased sensitivity to 2-thioether-substituted adenine nucleotides at the canine receptor. These results imply a key role for a positively charged arginine residue in contributing to the recognition of extracellular nucleotides by the P2Y11 receptor and perhaps other P2Y receptors.  相似文献   

4.
Molecular and functional characterization of human P2X(2) receptors   总被引:3,自引:0,他引:3  
P2X receptors are a family of ATP-gated ion channels. Four cDNAs with a high degree of homology to the rat P2X(2) receptor were isolated from human pituitary and pancreas RNA. Genomic sequence indicated that these cDNAs represent alternatively spliced messages. Northern analysis revealed high levels of human P2X(2) (hP2X(2)) message in the pancreas, and splice variants could be detected in a variety of tissues. Two cDNAs encoded functional ion channels when expressed in Xenopus oocytes, a receptor structurally homologous to the prototype rat P2X(2) receptor (called hP2X(2a)) and a variant containing a deletion within its cytoplasmic C terminus (called hP2X(2b)). Pharmacologically, these functional human P2X(2) receptors were virtually indistinguishable, with the P2X receptor agonists ATP, 2-methylthio-ATP, 2' and 3'-O-(4-benzoylbenzoyl)-ATP, and ATP5'-O-(3-thiotriphosphate) being approximately equipotent (EC(50) = 1 microM) in eliciting extracellular Ca(2+) influx. The P2 receptor agonists alpha,beta-methylene ATP, adenosine, adenosine 5'-O-(2-thiodiphosphate), and UTP were inactive at concentrations up to 100 microM. Both hP2X(2a) and hP2X(2b) receptors were sensitive to the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (IC(50) = 3 microM). In contrast to the analogous rat P2X(2) and P2X(2b) receptors, the desensitization rates of the hP2X(2a) and hP2X(2b) receptors were equivalent. Both functional forms of the human P2X(2) receptors formed heteromeric channels with the human P2X(3) receptor. These data demonstrate that the gene structure and mRNA heterogeneity of the P2X(2) receptor subtype are evolutionarily conserved between rat and human, but also suggest that alternative splicing serves a function other than regulating the desensitization rate of the human receptor.  相似文献   

5.
BACKGROUND AND PURPOSE: Emerging evidence suggests that activation of G-protein-coupled receptors (GPCRs) can be directly regulated by membrane voltage. However, the physiological and pharmacological relevance of this effect remains unclear. We have further examined this phenomenon for P2Y1 receptors in the non-excitable megakaryocyte using a range of agonists and antagonists. EXPERIMENTAL APPROACH: Simultaneous whole-cell patch clamp and fura-2 fluorescence recordings of rat megakaryocytes, which lack voltage-gated Ca2+ influx, were used to examine the voltage-dependence of P2Y1 receptor-evoked IP3-dependent Ca2+ mobilization. RESULTS: Depolarization transiently and repeatedly enhanced P2Y1 receptor-evoked Ca2+ mobilization across a wide concentration range of both weak, partial and full, potent agonists. Moreover, the amplitude of the depolarization-evoked [Ca2+]i increase displayed an inverse relationship with agonist concentration, such that the greatest potentiating effect of voltage was observed at near-threshold levels of agonist. Unexpectedly, depolarization also stimulated an [Ca2+]i increase in the absence of agonist during exposure to the competitive antagonists A3P5PS and MRS2179, or the allosteric enhancer 2,2'-pyridylisatogen tosylate. A further effect of some antagonists, particularly suramin, was to enhance the depolarization-evoked Ca2+ responses during co-application of an agonist. Of several P2Y1 receptor inhibitors, only SCH202676, which has a proposed allosteric mechanism of action, could block ADP-induced voltage-dependent Ca2+ release. CONCLUSIONS AND IMPLICATIONS: The ability of depolarization to potentiate GPCRs at near-threshold agonist concentrations represents a novel mechanism for coincidence detection. Furthermore, the induction and enhancement of voltage-dependent GPCR responses by antagonists has implications for the design of therapeutic compounds.  相似文献   

6.
G-protein-coupled receptors (GPCRs) are, and will probably remain, the most tractable class of targets for the development of small-molecule therapeutic medicines. Currently, all approved GPCR-directed medicines are agonists or antagonists at orthosteric binding sites - except for the calcimimetic cinacalcet, which is a positive allosteric modulator of Ca(2+)-sensing receptors, and maraviroc, an allosteric inhibitor of CC-chemokine receptor (CCR) 5. It is now widely accepted that GPCRs exist and might function as dimers, and there is growing evidence for the physiological presence and relevance of GPCR heterodimers. Molecules that can regulate a GPCR within a heterodimer, through allosteric effects between the two protomers of the dimer or between a protomer or protomers and the associated G protein, offer the potential to function in a highly selective and tissue-specific way. Despite the conceptual attraction of such allosteric regulators of GPCR heterodimers as drugs, they cannot be identified by screening approaches that routinely use a 'one GPCR target at a time' strategy. In our opinion, this will require the development of new approaches for screening and a return to the use of physiologically relevant cell systems at an early stage in compound identification.  相似文献   

7.
1. The human P2Y(11) (hP2Y(11)) receptor was stably expressed in two cell lines, 1321N1 human astrocytoma cells (1321N1-hP2Y(11)) and Chinese hamster ovary cells (CHO-hP2Y(11)), and its coupling to phospholipase C and adenylyl cyclase was assessed. 2. In 1321N1-hP2Y(11) cells, ATP promoted inositol phosphate (IP) accumulation with low microM potency (EC(50)=8.5+/-0.1 microM), whereas it was 15 fold less potent (130+/-10 microM) in evoking cyclic AMP production. 3. In CHO-hP2Y(11) cells, ATP promoted IP accumulation with slightly higher potency (EC(50)=3.6+/-1.3 microM) than in 1321N1-hP2Y(11) cells, but it was still 15 fold less potent in promoting cyclic AMP accumulation (EC(50)=62.4+/-15.6 microM) than for IP accumulation. Comparable differences in potencies for promoting the two second messenger responses were observed with other adenosine nucleotide analogues. 4. In 1321N1-hP2Y(11) and CHO-hP2Y(11) cells, down regulation of PKC by chronic treatment with phorbol ester decreased ATP-promoted cyclic AMP accumulation by 60--80% (P<0.001) with no change in its potency. Likewise, chelation of intracellular Ca(2+) decreased ATP-promoted cyclic AMP accumulation by approximately 45% in 1321N1-hP2Y(11) cells, whereas chelation had no effect on either the efficacy or potency of ATP in CHO-hP2Y(11) cells. 5. We conclude that coupling of hP2Y(11) receptors to adenylyl cyclase in these cell lines is much weaker than coupling to phospholipase C, and that activation of PKC and intracellular Ca(2+) mobilization as consequences of inositol lipid hydrolysis potentiates the capacity of ATP to increase cyclic AMP accumulation in both 1321N1-hP2Y(11) and CHO-hP2Y(11) cells.  相似文献   

8.
The nucleotide selectivities of the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor stably expressed in 1321N1 human astrocytoma cells were determined by measuring increases in intracellular [Ca(2+)] under conditions that minimized metabolism, bioconversion, and endogenous nucleotide release. In cells expressing the hP2Y(4) receptor, UTP, GTP, and ITP all increased intracellular [Ca(2+)] with a rank order of potency of UTP (0.55) > GTP (6.59) = ITP (7.38), (EC(50), microM). ATP, CTP, xanthine 5'-triphosphate (XTP), and diadenosine 5',5"'-P(1), P(4)-tetraphosphate (Ap(4)A), all at 100 microM, were inactive at the hP2Y(4) receptor. In cells expressing the rP2Y(4) receptor, all seven nucleotides increased intracellular [Ca(2+)] with similar maximal effects and a rank order of potency of UTP (0.20) > ATP (0. 51) > Ap(4)A (1.24) approximately ITP (1.82) approximately GTP (2. 28) > CTP (7.24) > XTP (22.9). Because ATP is inactive at the hP2Y(4) receptor, we assessed whether ATP displayed antagonist activity. When coapplied, ATP shifted the concentration-response curve to UTP rightward in a concentration-dependent manner, with no change in the maximal response. A Schild plot derived from these data gave a pA(2) value of 6.15 (K(B) = 708 nM) and a slope near unity. Additionally, CTP and Ap(4)A (each at 100 microM) inhibited the response to an EC(50) concentration of UTP by approximately 40 and approximately 50%, respectively, whereas XTP had no effect. The inhibitory effects of ATP, CTP, and Ap(4)A were reversible on washout. Thus, ATP is a potent agonist at the rP2Y(4) receptor but is a competitive antagonist with moderate potency at the hP2Y(4) receptor.  相似文献   

9.
1. Human embryonic kidney (HEK)-293 cells expressing recombinant G alpha(i)-coupled, human CXC chemokine receptor 2 (CXCR2) were used to study the elevation of the intracellular [Ca(2+)] ([Ca(2+)](i)) in response to interleukin-8 (IL-8) following pre-stimulation of endogenously expressed P2Y1 or P2Y2 nucleotide receptors. 2. Pre-stimulation of cells with adenosine 5'-triphosphate (ATP) revealed a substantial Ca(2+) signalling component mediated by IL-8 (E(max)=83 +/- 8% of maximal ATP response, pEC(50) of IL-8 response=9.7 +/- 0.1). 3. 1 microM 2-methylthioadenosine 5'-diphosphate (2MeSADP; P2Y1 selective) and 100 microM uridine 5'-triphosphate (UTP; P2Y2 selective) stimulated equivalent maximal increases in [Ca(2+)](i) elevation. However, UTP caused a sustained elevation, whilst following 2MeSADP [Ca(2+)](i) rapidly returned to basal levels. 4. Both UTP and 2MeSADP increased the potency and magnitude of IL-8-mediated [Ca(2+)](i) elevation but the effects of UTP (E(max) of IL-8 response increased to 50 +/- 1% of the maximal response to ATP, pEC(50) increased to 9.8 +/- 0.1) were greater than those of 2MeSADP (E(max) increased to 36 +/- 2%, pEC(50) increased to 8.7 +/- 0.2). 5. 5. The potentiation of IL-8-mediated Ca(2+) signalling by UTP was not dependent upon the time of IL-8 addition following UTP but was dependent on the continued presence of UTP. Potentiated IL-8 Ca(2+) signalling was apparent in the absence of extracellular Ca(2+), demonstrating the release of Ca(2+) from intracellular stores. 6. Activation of P2Y1 and P2Y2 receptors also revealed Ca(2+) signalling by an endogenously expressed, G alpha(s)-coupled beta-adrenoceptor. 7. In conclusion, pre-stimulation of P2Y nucleotide receptors, particularly P2Y2, facilitates Ca(2+) signalling by either recombinant CXCR2 or endogenous beta-adrenoceptors.  相似文献   

10.
Nucleotides are emerging as an ubiquitous family of extracellular signaling molecules. These effects are mediated through a specific class of plasma membrane receptors called P2 receptors that, according to the molecular structure, are further subdivided into two subfamilies: P2Y and P2X. Specifically, P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors. In this review, we focus our attention to GPCRs molecular architecture, with the special emphasis on our work on the human P2Y(1) receptor. In fact, despite an enormous amount of research on the structure and function of these receptors, fundamental understanding of the molecular details of ligand/GPCR interactions remains very rudimentary. How agonist binding transforms a resting GPCR into its active form and the microscopic basis of binding site blockade by an antagonist are generally still unclear. In the absence of high-resolution structural knowledge of GPCRs, such questions only can be addressed by building models, which are tested through pharmacological and biochemical studies. In this review, we underline how different molecular modeling approaches can help the investigation of both receptor architecture and ligand/receptor molecular recognition.  相似文献   

11.
Preference for the Northern (N) ring conformation of the ribose moiety of nucleotide 5'-triphosphate agonists at P2Y(1), P2Y(2), P2Y(4), and P2Y(11) receptors, but not P2Y(6) receptors, was established using a ring-constrained methanocarba (a 3.1.0-bicyclohexane) ring as a ribose substitute (Kim et al. J. Med. Chem. 2002, 45, 208-218.). We have now combined the ring-constrained (N)-methanocarba modification of adenine nucleotides with other functionalities known to enhance potency at P2 receptors. The potency of the newly synthesized analogues was determined in the stimulation of phospholipase C through activation of turkey erythrocyte P2Y(1) or human P2Y(1) and P2Y(2) receptors stably expressed in astrocytoma cells. An (N)-methanocarba-2-methylthio-ADP analogue displayed an EC(50) at the hP2Y(1) receptor of 0.40 nM and was 55-fold more potent than the corresponding triphosphate and 16-fold more potent than the riboside 5'-diphosphate. 2-Cl-(N)-methanocarba-ATP and its N(6)-Me analogue were also highly selective, full agonists at P2Y(1) receptors. The (N)-methanocarba-2-methylthio and 2-chloromonophosphate analogues were full agonists exhibiting micromolar potency at P2Y(1) receptors, while the corresponding ribosides were inactive. Although beta,gamma-methylene-ATP was inactive at P2Y receptors, beta,gamma-methylene-(N)-methanocarba-ATP was a potent hP2Y(1) receptor agonist with an EC(50) of 160 nM and was selective versus hP2Y(2) and hP2Y(4) receptors. The rates of hydrolysis of Northern (N) and Southern (S) methanocarba analogues of AMP by rat 5'-ectonucleotidase were negligible. The rates of hydrolysis of the corresponding triphosphates by recombinant rat NTPDase1 and 2 were studied. Both isomers were hydrolyzed by NTPDase 1 at about half the rate of ATP hydrolysis. The (N) isomer was hardly hydrolyzed by NTPDase 2, while the (S) isomer was hydrolyzed at one-third of the rate of ATP hydrolysis. This suggests that new, more stable and selective nucleotide agonists may be designed on the basis of the (N)-conformation, which greatly enhanced potency at P2Y(1) receptors.  相似文献   

12.
G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor.  相似文献   

13.
ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.  相似文献   

14.
We report here that human Ntera-2/D1 (NT-2) cells, an undifferentiated committed neuronal progenitor cell line, endogenously express a functional P2Y(1) receptor, while other P2Y subtypes, except perhaps P2Y(4), are not functionally expressed. Quantitative RT-PCR analysis showed that NT-2 cells abundantly express mRNA for P2Y(1) and P2Y(11) receptors, while P2Y(2) and P2Y(4) receptors were detected at considerably lower levels. Western blot analysis also demonstrated expression of P2Y(1) receptors and Galpha(q/11) subunits. Various nucleotides induced intracellular Ca(2+) mobilisation in NT-2 cells in a concentration-dependent manner with a rank order potency of 2-MeSADP > 2-MeSATP > ADP > ATP > UTP > ATPgammaS, a profile resembling that of human P2Y(1) receptors. Furthermore, P2Y(1) receptor-specific (A3P5P) and P2Y-selective (PPADS, suramin) antagonists inhibited adenine nucleotide-induced Ca(2+) responses in a concentration-dependent manner, consistent with expression of a P2Y(1) receptor. Moreover, of seven adenine nucleotides tested, only Bz-ATP and ATPgammaS elicited small increases in cAMP formation suggesting that few, if any, functional P2Y(11) receptors were expressed. P2Y(1) receptor-selective adenine nucleotides, including 2-MeSADP and ADP, also induced concentration-dependent phosphorylation and hence, activation of the extracellular-signal regulated protein kinases (ERK1/2). NT-2 cells, therefore, provide a useful neuronal-like cellular model for studying the precise signalling pathways and physiological responses mediated by a native P2Y(1) receptor.  相似文献   

15.
P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-alpha-B) were synthesized by substitution of a nonbridging O at P(alpha) with a BH(3) group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y(1) and rat P2Y(2) receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y(1)-GFP, rP2Y(2)-GFP). We investigated agonist-induced receptor endocytosis, [Ca(2+)](i) rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y(1)-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-alpha-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca(2+) release by these compounds in HEK 293 cells stably transfected with rP2Y(1). In case of rP2Y(2)-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca(2+) release, AA release and in inducing receptor endocytosis. The different ATP-alpha-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y(1) receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes.  相似文献   

16.
In this study, the receptor desensitizing effects of diadenosine polyphosphates at recombinant human P2X3 (hP2X3) receptors were examined. Administration of Ap3A, Ap4A, Ap5A or Ap6A inhibited the hP2X3 receptor-mediated response to a subsequent application of 3 muM alphabeta-methyleneATP (alphabeta-meATP), in a concentration-dependent manner, with IC50 values 2707, 42, 59 and 46 nM, respectively. These agonists did not desensitize alphabeta-meATP responses mediated by the slowly desensitizing heteromeric human P2X2/3 receptor. hP2X3 receptor desensitization was reversible and was not observed following the increase in intracellular Ca2+ levels produced by carbachol. A similar pattern of desensitization evoked by Ap5A was also observed using electrophysiological recordings of Xenopus oocytes expressing hP2X3 receptors. These data demonstrate that diadenosine polyphosphates, found endogenously in the central nervous system, can readily desensitize hP2X3 receptors at nanomolar concentrations that are 10-fold lower than are required to produce agonist-induced receptor activation. Thus, P2X3 receptor desensitization by diadenosine polyphosphates may provide an important modulatory mechanism of P2X3 receptor activation in vivo.  相似文献   

17.
1. Previous studies suggest that the thiadiazole compound SCH-202676 (N-(2,3-diphenyl-1,2,4-thiadiazol-5-(2H)-ylidene)methanamine) acts as an allosteric modulator of a variety of structurally distinct G protein-coupled receptors (GPCRs). It was postulated that SCH-202676 would directly bind a structural motif in the receptor molecule common to divergent members of the GPCR family. The molecular mechanisms of such a promiscuous action, however, remain obscure. 2. To clarify the mechanism of SCH-202676 action, we used the functional approach of [35S]GTPgammaS autoradiography with rat brain cryostat sections together with classical membrane [35S]GTPgammaS binding assays to evaluate how the thiadiazole affects G protein activity mediated by various receptors linked to the Gi-family of G proteins. 3. We found that in the absence of dithiotreitol (DTT), SCH-202676 (10(-7)-10(-5) M) elicits nonspecific effects in the [35S]GTPgammaS-based G protein activation assays, thereby severely compromising interpretations on the compounds ability to allosterically inhibit receptor-mediated G protein activity. Such a nonspecific behaviour was fully reversed upon addition of DTT (1 mM), revealing thiol-based mechanism of action. 4. In routine incubations containing DTT, SCH-202676 had no effect on receptor-driven G protein activity, as assessed for adenosine A1, alpha2-adrenergic, cannabinoid CB1, lysophosphatidic acid LPA1, muscarinic M2/M4, purinergic P2Y12 or sphingosine 1-phosphate receptors, suggesting that the thiadiazole does not act as an allosteric modulator of GPCR function. 5. 1H NMR analysis indicated that SCH-202676 underwent structural changes after incubation with the reducing agent DTT or with brain tissue. 6. We conclude that SCH-202676 modulates GPCRs via thiol modification rather than via true allosteric mechanisms.  相似文献   

18.
G protein-coupled receptors (GPCRs) are important therapeutic targets for drug discovery. The identification and characterization of new ligands ideally requires the use of high throughput assays that are applicable to all GPCR subtypes. To circumvent the problem of different GPCRs coupling to distinct intracellular second messenger pathways, we describe a new method that uses the chimeric Galpha protein 16z25 to facilitate this process. Stably expressed in Chinese hamster ovary cells, 16z25 allows G(i/o)- and G(s)-coupled receptors to mobilize intracellular Ca(2+) upon agonist stimulation. We have generated nine cell lines each stably expressing 16z25 and a GPCR. All cell lines respond to appropriate agonist stimulation in fluorometric imaging plate reader (FLIPR) assays with robust and potent Ca(2+) mobilization. Several of these lines have been pharmacologically characterized using agonists and antagonists. We also demonstrate that the coexpression of GPCR and 16z25 does not interfere with the receptors' ability to activate endogenous signaling pathways. The ability of 16z25 to functionally mediate the agonist stimulation of a broad spectrum of GPCRs indicates that the use of cell lines stably coexpressing this chimera and GPCRs will simplify the drug screening process and aid in the deorphanization of new receptors.  相似文献   

19.
A cellular membrane affinity chromatography (CMAC) column has been created using cellular membrane fragments from a 1321N1 cell line stably transfected with the P2Y1 receptor. The CMAC(1321N1P2Y1) column contained functional P2Y1 and histamine 1 receptors, which independently bound receptor-specific ligands. The data obtained with the CMAC(1321N1P2Y1) column demonstrate that multiple-G-protein coupled receptor (GPCR) columns can be developed and used to probe interactions with the immobilized receptors and that endogenously expressed GPCRs can be used to create CMAC columns. The results also establish that the histamine 1 receptor can be immobilized with retention of ligand-specific binding.  相似文献   

20.
Numerous genes encode G protein-coupled receptors (GPCRs)-a main molecular target for drug therapy. Estimates indicate that the human genome contains approximately 600 GPCR genes. This article addresses therapeutic implications of sequence variations in GPCR genes. A number of inactivating and activating receptor mutations have been shown to cause a variety of (mostly rare) genetic disorders. However, pharmacogenetic and pharmacogenomic studies on GPCRs are scarce, and therapeutic relevance of variant receptor alleles often remains unclear. Confounding factors in assessing the therapeutic relevance of variant GPCR alleles include 1) interaction of a single drug with multiple closely related receptors, 2) poorly defined binding pockets that can accommodate drug ligands in different orientations or at alternative receptor domains, 3) possibility of multiple receptor conformations with distinct functions, and 4) multiple signaling pathways engaged by a single receptor. For example, antischizophrenic drugs bind to numerous receptors, several of which might be relevant to therapeutic outcome. Without knowing accurately what role a given receptor subtype plays in clinical outcome and how a sequence variation affects drug-induced signal transduction, we cannot predict the therapeutic relevance of a receptor variant. Genome-wide association studies with single nucleotide polymorphisms could identify critical target receptors for disease susceptibility and drug efficacy or toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号