首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the effects of the overexpression of sarcoplasmic reticulum (SR) CaATPase on function of the SR and Ca2+homeostasis, we measured [Ca2+]itransients (fluo-3), and L-type Ca2+currents (ICa,L), Na/Ca exchanger currents (INa/Ca), and SR Ca2+content with voltage clamp in ventricular myocytes isolated from wild type (WT) mice and transgenic (SRTG) mice. The amplitude of [Ca2+]itransients was insignificantly increased in SRTG myocytes, while the diastolic [Ca2+]itended to be lower. The initial and terminal declines of [Ca2+]itransients were significantly accelerated in SRTG myocytes, implying a functional upregulation of the SR CaATPase. We examined the functional contribution of only the SR CaATPase to the initial and the terminal phase of the decline of [Ca2+]i, by abruptly inhibiting Na/Ca exchange with a rapid switcher device. The rate of [Ca2+] decline mediated by the SR CaATPase was increased by 40% in SRTG compared with WT myocytes. The function of the L-type Ca2+channel was unchanged in SRTG myocytes, while INa/Ca density was slightly (10%) decreased. Measured SR Ca2+content was significantly increased by 29% in SRTG myocytes. Thus, overexpression of SR CaATPase markedly accelerates the decline of [Ca2+]itransients, and induces an increase in SR Ca2+content, with some downregulation of the Na/Ca exchanger.  相似文献   

2.
Aims/Hypothesis To assess the effects of diabetes-induced activation of protein kinase C (PKC) on voltage-dependent and voltage-independent Ca2+ influx pathways in retinal microvascular smooth muscle cells.Methods Cytosolic Ca2+ was estimated in freshly isolated rat retinal arterioles from streptozotocin-induced diabetic and non-diabetic rats using fura-2 microfluorimetry. Voltage-dependent Ca2+ influx was tested by measuring rises in [Ca2+]i with KCl (100 mmol/l) and store-operated Ca2+ influx was assessed by depleting [Ca2+]i stores with Ca2+ free medium containing 5 µmol/l cyclopiazonic acid over 10 min and subsequently measuring the rate of rise in Ca2+ on adding 2 mmol/l or 10 mmol/l Ca2+solution.Results Ca2+ entry through voltage-dependent L-type Ca2+ channels was unaffected by diabetes. In contrast, store-operated Ca2+ influx was attenuated. In microvessels from non-diabetic rats 20 mmol/l D-mannitol had no effect on store-operated Ca2+ influx. Diabetic rats injected daily with insulin had store-operated Ca2+ influx rates similar to non-diabetic control rats. The reduced Ca2+ entry in diabetic microvessels was reversed by 2-h exposure to 100 nmol/l staurosporine, a non-specific PKC antagonist and was mimicked in microvessels from non-diabetic rats by 10-min exposure to the PKC activator phorbol myristate acetate (100 nmol/l). The specific PKC antagonist LY379196 (100 nmol/l) also reversed the poor Ca2+ influx although its action was less efficacious than staurosporine.Conclusion/interpretation These results show that store-operated Ca2+ influx is inhibited in retinal arterioles from rats having sustained increased blood glucose and that PKC seems to play a role in mediating this effect.Abbreviations DAG Diacylglycerol - PKC protein kinase C - [Ca2+]i intracellular calcium concentration - STZ streptozotocin - SPP staurosporine - SR sarcoplasmic reticulum - MVSM microvascular smooth muscle - CPA cyclopiazonic acid - PMA phorbol myristate acetate - VDCC voltage-dependent Ca2+ channels  相似文献   

3.
The effects of gonadotropin-releasing hormone (GnRH) and GnRH-associated peptide (GAP) on cytosolic free calcium concentration ([Ca2+]i) were investigated in 20 human nonfunctioning pituitary adenomas. We divided these tumors into three classes according to their response pattern to hypothalamic peptides. In type I adenomas (8 out of 20 adenomas), GnRH and GAP mobilized intracellular calcium ions stored in a thapsigargin (TG)-sensitive store. For the same concentration of agonist, two distinct patterns of GnRH-GAP-induced Ca2+ mobilization were observed (1) sinusoidal oscillations, and (2) monophasic transient. The latter is followed by a protein kinase C (PKC)-dependent increase in calcium influx through L-type channels. In type II adenomas (7 out of 20 adenomas), GnRH and GAP only stimulate calcium influx through dihydropyridine-sensitive Ca2+ channels by a PKC-dependent mechanism. TG (1 μM) did not affect [Ca2+]i in these cells, suggesting that they do not possess TG-sensitive Ca2+ pools. All the effects of GnRH and GAP were blocked by an inhibitor of phospholipase C (PLC), suggesting that they were owing to the activation of the phosphoinositide turnover. Type I and type II adenoma cells showed spontaneous Ca2+ oscillations that were blocked by dihydropyridines and inhibition of PKC activity. GnRH and GAP had no effect on the [Ca2+]i of type III adenoma cells that were also characterized by a low resting [Ca2+]i and by the absence of spontaneous Ca2+ fluctuations. K+-induced depolarization provoked a reduced Ca2+ influx, whereas TG had no effect on the [Ca2+]i of type III adenoma cells. The variety of [Ca2+]i response patterns makes these cells a good cell model for studying calcium homeostasis in pituitary cells.  相似文献   

4.
5.
The present study was conducted to investigate the effects of the diabetic condition on the Ca2+ mobilization and glutamate release in cerebral nerve terminals (synaptosomes). Diabetes was induced in male mice by intraperitoneal injection of streptozotocin. Cytosolic free Ca2+ concentration ([Ca2+]i) and glutamate release in synaptosomes were determined using fura-2 and enzyme-linked fluorometric assay, respectively. Diabetes significantly enhanced the ability of the depolarizing agents K+ and 4-aminopyridine (4-AP) to increase [Ca2+]i. In addition, diabetes significantly enhanced K+- and 4-AP-evoked Ca2+-dependent glutamate release. The pretreatment of synaptosomes with a combination of ω-agatoxin IVA (a P-type Ca2+ channel blocker) and ω-conotoxin GVIA (an N-type Ca2+ channel blocker) inhibited K+- or 4-AP-induced increases in [Ca2+]i and Ca2+-dependent glutamate release in synaptosomes from the control and diabetic mice to a similar extent, respectively. These results indicate that diabetes enhances a K+- or 4-AP-evoked Ca2+-dependent glutamate release by increasing [Ca2+]i via stimulation of Ca2+ entry through both P- and N-type Ca2+ channels.  相似文献   

6.
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca2+ concentration inside pancreatic acinar cells ([Ca2+]i), due to excessive release of Ca2+ stored inside the cells followed by Ca2+ entry from the interstitial fluid. The sustained [Ca2+]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca2+ release-activated Ca2+ channels (CRAC) would prevent sustained elevation of [Ca2+]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca2+ ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca2+. Ca2+ entry then occurred upon admission of Ca2+ to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca2+ entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca2+ spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca2+]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca2+]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.  相似文献   

7.
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required.  相似文献   

8.

BACKGROUND:

Previous research reported that transgenic rats overexpressing the sarco(endo)plasmic reticulum Ca2+-ATPase SERCA2a exhibit improved contractile function of the myocardium. Furthermore, impaired Ca2+ uptake and reduced relaxation rates in rats with diabetic cardiomyopathy were partially rescued by transgenic expression of SERCA2a in the heart.

OBJECTIVE:

To explore whether enhanced Ca2+ cycling in the cardiomyocytes of SERCA2a transgenic rats is associated with changes in L-type Ca2+ (ICa-L) currents.

METHODS:

The patch-clamp technique was used to measure whole-cell currents in cardiomyocytes from transgenic rats overexpressing SERCA2a and from wild-type (nontransgenic) animals.

RESULTS:

The amplitudes of ICa-L currents at depolarizing pulses ranging from −45 mV to 0 mV (350 ms duration, 1 Hz) were significantly higher in cardiomyocytes of SERCA2a transgenic rats than in nontransgenic rats (1985±48 pA [n=32] versus 1612±55 pA [n=28], respectively). The inactivation kinetics of ICa-L showed subtle differences with increased tau fast and tau slow decay constants in cardiomyocytes of SERCA2a transgenic animals. Beta-adrenergic stimulation with 50 nM isoproterenol reduced tau fast and tau slow decay constants in cardiomyocytes of transgenic rats to values that were not significantly different from those in normal cardiomyocytes. Furthermore, isoproterenol enhanced ICa-L currents 3.2-fold and 2.3-fold in cardiomyocytes with and without the SERCA2a transgene, respectively, and this effect was abolished by buffering intracellular Ca2+ with BAPTA.

CONCLUSIONS:

These findings indicate that enhanced Ca2+ cycling in the hearts of SERCA2a transgenic rats, both under normal conditions and during beta-adrenergic stimulation, involves changes in ICa-L currents. Modified ICa-L kinetics may contribute, to some extent, to the improved contractile function of the myocardium of transgenic rats.  相似文献   

9.
Growth hormone release in goldfish is partly dependent on voltage-sensitive Ca2+ channels but somatotrope electrophysiological events affecting such channel activities have not been elucidated in this system. The electrophysiological properties of goldfish somatotropes in primary culture were studied using the whole-cell and amphotericin B-perforated patch-clamp techniques. Intracellular Ca2+ concentration ([Ca2+]i) of identified somatotropes was measured using Fura-2/AM dye. Goldfish somatotropes had an average resting membrane potential of −78.4 ± 4.6 mV and membrane input resistance of 6.2 ± 0.2 GΩ. Voltage steps from a holding potential of −90 mV elicited a non-inactivating outward current and transient inward currents at potentials more positive than 0 and −30 mV, respectively. Isolated current recordings indicate the presence of 4-aminopyridine- and tetraethylammonium (TEA)-sensitive K+, tetrodotoxin (TTX)-sensitive Na+, and nifedipine (L-type)- and ω-conotoxin GVIA (N-type)-sensitive Ca2+ channels. Goldfish somatotropes rarely fire action potentials (APs) spontaneously, but single APs can be induced at the start of a depolarizing current step; this single AP was abolished by TTX and significantly reduced by nifedipine and ω-conotoxin GVIA. TEA increased AP duration and triggered repetitive AP firing resulting in an increase in [Ca2+]i, whereas TTX, nifedipine and ω-conotoxin GVIA inhibited TEA-induced [Ca2+]i pulses. These results indicate that in goldfish somatotropes, TEA-sensitive K+ channels regulate excitability while TTX-sensitive Na+ channels together with N- and L-type Ca channels mediates the depolarization phase of APs. Opening of voltage-sensitive Ca2+ channels during AP firing leads to increases in [Ca2+]i.  相似文献   

10.
Melastatin-related transient receptor potential channel 2 (TRPM2) is a Ca2+-permeable, nonselective cation channel that is involved in oxidative stress-induced cell death and inflammation processes. Although TRPM2 can be activated by ADP-ribose (ADPR) in vitro, it was unknown how TRPM2 is gated in vivo. Moreover, several alternative spliced isoforms of TRPM2 identified recently are insensitive to ADPR, and their gating mechanisms remain unclear. Here, we report that intracellular Ca2+ ([Ca2+]i) can activate TRPM2 as well as its spliced isoforms. We demonstrate that TRPM2 mutants with disrupted ADPR-binding sites can be activated readily by [Ca2+]i, indicating that [Ca2+]i gating of TRPM2 is independent of ADPR. The mechanism by which [Ca2+]i activates TRPM2 is via a calmodulin (CaM)-binding domain in the N terminus of TRPM2. Whereas Ca2+-mediated TRPM2 activation is independent of ADPR and ADPR-binding sites, both [Ca2+]i and the CaM-binding motif are required for ADPR-mediated TRPM2 gating. Importantly, we demonstrate that intracellular Ca2+ release activates both recombinant and endogenous TRPM2 in intact cells. Moreover, receptor activation-induced Ca2+ release is capable of activating TRPM2. These results indicate that [Ca2+]i is a key activator of TRPM2 and the only known activator of the spliced isoforms of TRPM2. Our findings suggest that [Ca2+]i-mediated activation of TRPM2 and its alternative spliced isoforms may represent a major gating mechanism in vivo, therefore conferring important physiological and pathological functions of TRPM2 and its spliced isoforms in response to elevation of [Ca2+]i.  相似文献   

11.
The vasodilating mechanisms of the K+ channel openers—cromakalim, pinacidil, nicorandil, KRN2391, and Ki4032—were examined by measurement of the cytoplasmic Ca2+ concentration ([Ca2+]i) using the fura-2 method in canine or porcine coronary arterial smooth muscle. The five K+ channel openers all produced a reduction of [Ca2+]i in 5 and 30 mM KCl physiological salt solution (PSS), the effects of which were antagonized by tetrabutylammonium (TBA) or glibenclamide, but failed to affect [Ca2+]i in 45 and 90 mM MCl-PSS. Cromakalim and Ki4032 only partially inhibited the 30 mM KCl-induced contractures, whereas pinacidil, nicorandil, and KRN2391 nearly abolished contractions produced by high KCl-PSS. The increased [Ca2+]i and force produced by a thromboxane A2 analogue, U46619, were inhibited by K+ channel openers and verapamil. In the absence of extracellular Ca2+, U46619 induced a transient increase in [Ca2+]i with a contraction, which is effectively inhibited by cromakalim and Ki4032. Their inhibitory effects were blocked by TBA and counteracted by 20 mM KCl-induced depolarization. Cromakalim and Ki4032 did not affect caffeine-induced Ca2+ release. Cromakalim reduced U46619-induced IP3 production and TBA blocked this inhibitory effect. Thus, cromakalim and Ki4032 are more specific K+ channel openers than pinacidil, nicorandil, and KRN2391. The vasodilation related with a reduction of [Ca2+]i produced by K+ channel openers is due to the hyperpolarization of the plasma membrane resulting in not only the closure of voltage-dependent Ca2+ channels but also inhibition of the production of IP3 and Ca2+ release from intracellular stores related to stimulation of the thromboxane A2 receptor.  相似文献   

12.
This article describes studies on the glucose-induced responses of intracellular Ca2+ concentration ([Ca2+]i), insulin release, and redistribution of calbindin-D28k, a calcium-binding regulatory protein, in β-cells of pancreatic islets of calbindin-D28k knockout (KO) and wild-type mice (C57BL6) as well as in βHC-13 control cells and βHC-13 CaBP40 cells (β-cell line overexpressing calbindin-D28k). Upon increasing the glucose concentration from 2.8 to 30 mM, islets of KO mice showed a significantly greater increase in [Ca2+]i (mean increase in [Ca2+]i, i.e., Δ[Ca2+], was 296 nM) compared with wild-type mice (Δ[Ca2+]i=97 nM). βHC-13 CaBP40 cells showed little change in [Ca2+]i upon elevation of glucose from 5.5 to 32.7 mM, whereas βHC-13 control cells exhibited significant increases in [Ca2+]i (Δ[Ca2+]i=510 nM). Similarly, upon addition of 30 mM glucose, the rate of insulin release increased from 25.2 (basal rate) to 145.2 pg/mL/min in βHC-13 control cells, whereas in βHC-13 CaBP40 cells the rate of insulin release was only 27.5 pg/mL/min in high glucose. Thus, levels of calbindin-D28k in β-cells affect both [Ca2+]i and insulin secretion in response to glucose. The three-dimensional reconstruct of confocal immunofluorescent images showed that glucose caused redistribution of calbindin-D28k resulting in co-localization in the region of L-type voltage-dependent calcium channels (VDCC). This colocalization may be an important regulatory function concerning Ca2+ influx via L-type VDCC and exocytosis of insulin granules.  相似文献   

13.
Aims/hypothesis Islets or beta cells from Sur1–/– mice were used to determine whether changes in plasma membrane potential (Vm) remain coupled to changes in cytosolic Ca2+ ([Ca2+]i) in the absence of KATP channels and thus provide a triggering signal for insulin secretion. The study also sought to elucidate whether [Ca2+]i influences oscillations in Vm in sur1–/– beta cells.Methods Plasma membrane potential and ion currents were measured with microelectrodes and the patch–clamp technique. [Ca2+]i was monitored with the fluorescent dye fura-2. Insulin secretion from isolated islets was determined by static incubations.Results Membrane depolarisation of Sur1–/– islets by arginine or increased extracellular K+, elevated [Ca2+]i and augmented insulin secretion. Oligomycin completely abolished glucose-stimulated insulin release from Sur1–/– islets. Oscillations in Vm were influenced by [Ca2+]i as follows: (1) elevation of extracellular Ca2+ lengthened phases of membrane hyperpolarisation; (2) simulating a burst of action potentials induced a Ca2+-dependent outward current that was augmented by increased Ca2+ influx through L-type Ca2+ channels; (3) Ca2+ depletion of intracellular stores by cyclopiazonic acid increased the burst frequency in Sur1–/– islets, elevating [Ca2+]i and insulin secretion; (4) store depletion activated a Ca2+ influx that was not inhibitable by the L-type Ca2+ channel blocker D600.Conclusions/interpretation Although Vm is largely uncoupled from glucose metabolism in the absence of KATP channels, increased electrical activity leads to elevations of [Ca2+]i that are sufficient to stimulate insulin secretion. In Sur1–/– beta cells, [Ca2+]i exerts feedback mechanisms on Vm by activating a hyperpolarising outward current and by depolarising Vm via store-operated ion channels.  相似文献   

14.
Lysophosphatidylcholine (LPC) accumulation in intracellular and/or interstitial space in cardiomyocytes may underlie as a mechanism for tachycardia and various arrhythmias during cardiac ischemia, which is usually accompanied by elevation of intracellular Ca2+ concentration ([Ca2+]i). The present study was therefore designed to investigate possible mechanisms responsible for [Ca2+]i elevation by LPC focusing on T-type Ca2+ channel current (ICa.T). LPC as well as phorbol 12-myristate 13-acetate (PMA) significantly accelerated the beating rates of neonatal rat cardiomyocytes. Augmentation of ICa.T by LPC was dependent on the intracellular Ca2+ concentration: an increase of ICa.T was significantly larger in high [Ca2+]i condition (pCa = 7) than those in low [Ca2+]i condition (pCa = 11). In heterologous expression system by use of human cardiac CaV3.1 and CaV3.2 channels expressed in HEK293 cells, LPC augmented CaV3.2 channel current (ICav3.2) in a concentration-dependent manner but not CaV3.1 channel current (ICav3.1). Augmentation of ICav3.2 by LPC was highly [Ca2+]i dependent: ICav3.2 was unchanged when pCa was 11 but was markedly increased when [Ca2+]i was higher than 10−10 M (pCa ≤ 10) by LPC application (10-50 μM). A specific inhibitor of protein kinase Cα (Ro-32-0432) attenuated the increase of ICav3.2 by LPC. LPC stimulates ICa.T in a [Ca2+]i-dependent manner via PKCα activation, which may play a role in triggering arrhythmias in pathophysiological conditions of the heart.  相似文献   

15.

Objectives

Relaxation of vascular smooth muscle (VSM) requires re-uptake of cytosolic Ca2+ into the sarcoplasmic reticulum (SR) via the Sarco/Endoplasmic Reticulum Ca2+ ATPase (SERCA), or extrusion via the Plasma Membrane Ca2+ ATPase (PMCA) or sodium Ca2+ exchanger (NCX). Peroxynitrite, a reactive species formed in vascular inflammatory diseases, upregulates SERCA activity to induce relaxation but, chronically, can contribute to atherogenesis and altered vascular function by escalating endoplasmic reticulum stress. Our objectives were to determine if peroxynitrite-induced relaxation and Ca2+ handling processes within vascular smooth muscle cells were altered as atherosclerosis develops.

Methods

Aortae from control and ApoE−/− mice were studied histologically, functionally and for protein expression levels of SERCA and PMCA. Ca2+ responses were assessed in dissociated aortic smooth muscle cells in the presence and absence of extracellular Ca2+.

Results

Relaxation to peroxynitrite was concentration-dependent and endothelium-independent. The abilities of the SERCA blocker thapsigargin and the PMCA inhibitor carboxyeosin to block this relaxation were altered during fat feeding and plaque progression. SERCA levels were progressively reduced, while PMCA expression was upregulated. In ApoE−/− VSM cells, increases in cytosolic Ca2+ [Ca2+]c in response to SERCA blockade were reduced, while SERCA-independent Ca2+ clearance was faster compared to control.

Conclusion

As atherosclerosis develops in the ApoE−/− mouse, expression and function of Ca2+ handling proteins are altered. Up-regulation of Ca2+ removal via PMCA may offer a potential compensatory mechanism to help normalise the dysfunctional relaxation observed during disease progression.  相似文献   

16.
《Islets》2013,5(1):56-63
We have studied whether functional TRPV1 channels exist in the INS-1E cells, a cell type used as a model for β-cells, and in primary β-cells from rat and human. The effects of the TRPV1 agonists capsaicin and AM404 on the intracellular free Ca2+ concentration ([Ca2+]i) in the INS-1E cells were studied by fura-2 based microfluorometry. Capsaicin increased [Ca2+]i in a concentration-dependent manner, and the [Ca2+]i increase was dependent on extracellular Ca2+. AM404 also increased [Ca2+]i in the INS-1E cells. Capsazepine, a specific antagonist of TRPV1, completely blocked the capsaicin- and AM404-induced [Ca2+]i increases. Capsaicin did not increase [Ca2+]i in the primary β-cells from rat and human. Whole cell patch clamp configuration was used to record currents across the plasma membrane in the INS-1E cells. Capsaicin elicited inward currents that were inhibited by capsazepine. Western blot analysis detected TRPV1 proteins in the INS-1E cells and the human islets. Immunohistochemistry was used to study the expression of TRPV1, but no TRPV1 protein immunoreactivity was detected in the human islet cells and the human insulinoma cells. We conclude that the INS-1E cells, but not the primary β-cells, express functional TRPV1 channels.  相似文献   

17.
Goldfish brain somatostatin-28 (gbSS-28) is present in brain and pituitary tissues of goldfish. We assessed whether gbSS-28 targets Ca2+ and/or protein kinase C (PKC)-dependent signaling cascades in inhibiting growth hormone (GH) release. gbSS-28 decreased basal GH release from primary cultures of dispersed goldfish pituitary cells and intracellular free calcium levels ([Ca2+]i) in goldfish somatotropes. gbSS-28 partially reduced [Ca2+]i and GH responses induced by two endogeneous gonadotropin-releasing hormones (GnRHs), salmon (s)GnRH and chicken (c)GnRH-II. Furthermore, gbSS-28 reduced GH increases and abolished [Ca2+]i elevations elicited by two PKC activators, tetradecanoyl 4β-phorbol-13-acetate and dioctanyl glycerol. The PKC inhibitors Gö6976 and Bis II abolished [Ca2+]i responses to PKC activators, but only attenuated GnRH-induced increases in [Ca2+]i and did not alter basal [Ca2+]i. In cells pretreated with Bis II, gbSS-28 further reduced basal [Ca2+]i. Our results suggest that gbSS-28 inhibits GnRH-induced GH release in part by attenuating PKC-mediated GnRH [Ca2+]i signals. gbSS-28 reduces basal GH release also via reduction in [Ca2+]i but PKC is not involved in this regard.  相似文献   

18.
Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca2+ concentration ([Ca2+]i). Because the [Ca2+]i itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca2+]i and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.  相似文献   

19.
    
The cytoplasmic Ca2+ concentration ([Ca2+]i) was measured with dual wavelength fluorometry in glucagon-producing mouse pancreatic α-cells loaded with the indicator fura-2. Spontaneous rhythmic activity in terms of slow oscillations from a basal level was observed at 3 mM glucose. Like in the insulin-secreting β-cells the generation of [Ca2+]i oscillations in the α-cells was affected by the activity of the Na/K pump. Blocking the pump with ouabain resulted in an initial rise of [Ca2+]i followed by gradual return to the basal level. The oscillations were transformed into sustained elevation of [Ca2+]i by 10 mM l-glycine, which is cotransported with Na+. A similar but less pronounced effect was obtained when Na+ was cotransported with 10 mM of the nonmetabolizable amino acid α-amino-isobutyric acid.l-glycine induced sustained increase of [Ca2+]i also when the oscillatory activity was suppressed by exposing the α-cells to 20 mM glucose in the presence of insulin. The observation that carbachol induces a [Ca2+]i response in isolated α-cells calls for reconsideration of current ideas that muscarinic stimulation of glucagon release is an indirect effect mediated by adjacent β-cells.  相似文献   

20.
Summary Plasma insulin levels in healthy subjects oscillate and non-insulin-dependent diabetic patients display an irregular pattern of such oscillations. Since an increase in cytoplasmic free Ca2+ concentration ([Ca2+]i) in the pancreatic beta cell is the major stimulus for insulin release, this study was undertaken to investigate the dynamics of electrical activity, [Ca2+]i-changes and insulin release, in stimulated islets from subjects of varying glucose tolerance. In four patients it was possible to investigate more than one of these three parameters. Stimulation of pancreatic islets with glucose and tolbutamide sometimes resulted in the appearance of oscillations in [Ca2+]i, lasting 2–3 min. Such oscillations were observed even in some islets from patients with impaired glucose tolerance. In one islet from a diabetic patient there was no response to glucose, whereas that islet displayed [Ca2+]i-oscillations in response to tolbutamide, suggesting that sulphonylurea treatment can mimic the complex pattern of glucose-induced [Ca2+]i-oscillations. We also, for the first time, made patch-clamp recordings of membrane currents in beta-cells in situ in the islet. Stimulation with glucose and tolbutamide resulted in depolarization and appearance of action potentials. The islet preparations responded to stimulation with a number of different secretagogues with release of insulin. The present study shows that human islets can respond to stimulation with glucose and sulphonylurea with oscillations in [Ca2+]i, which is the signal probably underlying the oscillations in plasma insulin levels observed in healthy subjects. Interestingly, even subjects with impaired glucose tolerance had islets that responded with oscillations in [Ca2+]i upon glucose stimulation, although it is not known to what extent the response of these islets was representative of most islets in these patients.Abbreviations [Ca2+]i Cytoplasmic free Ca2+ - NIDDM non-insulin-dependent diabetes mellitus - DMSO dimethylsulphoxide - PC pancreatic cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号