首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, we reported high hepatotoxic sensitivity of type 2 diabetic (DB) rats to three dissimilar hepatotoxicants. Additional work revealed that a normally nonlethal dose of CCl4 was lethal in DB rats due to inhibited compensatory tissue repair. The present study was conducted to investigate the importance of compensatory tissue repair in determining the final outcome of hepatotoxicity in diabetes, using another structurally and mechanistically dissimilar hepatotoxicant, thioacetamide (TA), to initiate liver injury. A normally nonlethal dose of TA (300 mg/kg, ip), caused 100% mortality in DB rats. Time course studies (0 to 96 h) showed that in the non-DB rats, liver injury initiated by TA as assessed by plasma alanine or aspartate aminotransferase and hepatic necrosis progressed up to 48 h and regressed to normal at 96 h resulting in 100% survival. In the DB rats, liver injury rapidly progressed resulting in progressively deteriorating liver due to rapidly expanding injury, hepatic failure, and 100% mortality between 24 and 48 h post-TA treatment. Covalent binding of 14C-TA-derived radiolabel to liver tissue did not differ from that observed in the non-DB rats, indicating similar bioactivation-based initiation of hepatotoxicity. S-phase DNA synthesis measured by [3H]-thymidine incorporation, and advancement of cells through the cell division cycle measured by PCNA immunohistochemistry, were substantially inhibited in the DB rats compared to the non-DB rats challenged with TA. Thus, inhibited cell division and compromised tissue repair in the DB rats resulted in progressive expansion of liver injury culminating in mortality. In conclusion, it appears that similar to type 1 diabetes, type 2 diabetes also increases sensitivity to dissimilar hepatotoxicants due to inhibited compensatory tissue repair, suggesting that sensitivity to hepatotoxicity in diabetes occurs in the absence as well as presence of insulin.  相似文献   

2.
Previously we reported that a nonlethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats because of irreversible acute liver injury owing to inhibited hepatic tissue repair, primarily due to blockage of G(0) to S phase progression of cell division cycle. On the other hand, DB rats receiving 30 mg TA/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic (NDB) rats receiving 300 mg TA/kg, resulting in a delay in recovery from liver injury and survival. The objective of the present study was to test the hypothesis that impaired cyclin-regulated progression of G(1) to S phase of the cell cycle may explain inhibited liver tissue repair, hepatic failure, and death, contrasted with delayed liver tissue repair but survival observed in the DB rats receiving 300 in contrast to 30 mg TA/kg. In the TA-treated NDB rats sustained MAPKs and cyclin expression resulted in higher phosphorylation of retinoblastoma (pRb), explaining prompt tissue repair and survival. In contrast, DB rats receiving the same dose of TA (300 mg/kg) exhibited suppressed MAPKs and cyclin expression that led to inhibition of pRb, inhibited tissue repair, and death. On the other hand, DB rats receiving 30 mg TA/kg exhibited delayed up regulation of MAPK signaling that delayed the expression of CD1 and pRb, explaining delayed stimulation of tissue repair observed in this group. In conclusion, the hepatotoxicant TA has a dose-dependent adverse effect on cyclin-regulated pRb signaling: the lower dose causes a recoverable delay, whereas the higher dose inhibits it with corresponding effect on the ultimate outcomes on hepatic tissue repair; this dose-dependent adverse effect is substantially shifted to the left of the dose response curve in diabetes.  相似文献   

3.
Previously we reported that an ordinarily nonlethal dose of thioacetamide (300 mg/kg) causes liver failure and 90% mortality in type 1 diabetic rats, primarily because of inhibited tissue repair. On the other hand, the diabetic rats receiving 30 mg thioacetamide/kg exhibited equal initial liver injury and delayed tissue repair compared to nondiabetic rats receiving 300 mg thioacetamide/kg, resulting in a delay in recovery from that liver injury and survival. These data indicate that impaired tissue repair in diabetes is a dose-dependent function of diabetes. The objective of the present study was to test the hypothesis that disrupted nuclear factor-kappaB (NF-kappaB)-regulated cyclin D1 signaling may explain dose-dependent impaired tissue repair in the thioacetamide-treated diabetic rats. Administration of 300 mg thioacetamide/kg to nondiabetic rats led to sustained NF-kappaB-regulated cyclin D1 signaling, explaining prompt compensatory tissue repair and survival. For the first time, we report that NF-kappaB-DNA binding is dependent on the dose of thioacetamide in the liver tissue of the diabetic rats. Administration of 300 mg thioacetamide/kg to diabetic rats inhibited NF-kappaB-regulated cyclin D1 signaling, explaining inhibited tissue repair, liver failure and death, whereas remarkably higher NF-kappaB-DNA binding but transient down regulation of cyclin D1 expression explains delayed tissue repair in the diabetic rats receiving 30 mg thioacetamide/kg. These data suggest that dose-dependent NF-kappaB-regulated cyclin D1 signaling explains inhibited versus delayed tissue repair observed in the diabetic rats receiving 300 and 30 mg thioacetamide/kg, respectively.  相似文献   

4.
Previously, we reported that an ordinarily non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic rats due to inhibited liver tissue repair, whereas 30 mg TA/kg allows 100% survival due to stimulated although delayed tissue repair. Objective of this investigation was to test whether prior administration of a low dose of TA (30 mg/kg) would lead to sustainable stimulation of liver tissue repair in type 1 diabetic rats sufficient to protect from a subsequently administered lethal dose of TA. Therefore, in the present study, the hypothesis that preplacement of tissue repair by a low dose of TA (30 mg TA/kg, ip) can reverse the hepatotoxicant sensitivity (autoprotection) in type 1 diabetic rats was tested. Preliminary studies revealed that a single intraperitoneal (ip) administration of TA causes 90% mortality in diabetic rats with as low as 75 mg/kg. To establish an autoprotection model in diabetic condition, diabetic rats were treated with 30 mg TA/kg (priming dose). Administration of priming dose stimulated tissue repair that peaked at 72h, at which time these rats were treated with a single ip dose of 75 mg TA/kg. Our results show that tissue repair stimulated by the priming dose enabled diabetic rats to overexpress, calpastatin, endogenous inhibitor of calpain, to inhibit calpain-mediated progression of liver injury induced by the subsequent administration of lethal dose, resulting in 100% survival. Further investigation revealed that protection observed in these rats is not due to decreased bioactivation. These studies underscore the importance of stimulation of tissue repair in the final outcome of liver injury (survival/death) after hepatotoxicant challenge. Furthermore, these results also suggest that it is possible to stimulate tissue repair in diabetics to overcome the enhanced sensitivity of hepatotoxicants.  相似文献   

5.
Moderate dietary or caloric restriction (DR) modulates animal physiology in a beneficial fashion. Previously, we have reported an equitoxic dose experiment where liver injury in DR male Sprague-Dawley rats exposed to a low dose of thioacetamide (TA, 50 mg/kg) was similar to that observed in ad libitum fed (AL) rats exposed to a 12-fold higher dose (600 mg/kg). Paradoxically, the AL rats experienced 90% mortality while all of the DR rats, with the same amount of initial bioactivation-mediated liver injury, survived. The protection observed in the DR rats was due to efficient compensatory liver tissue repair, which was delayed and attenuated in the AL rats, leading to progression of liver injury. The objective of the present study was to investigate the molecular mechanisms of the enhanced tissue repair in the DR rats upon equitoxic challenge with TA. Promitogenic mechanisms and mediators such as proinflammatory cytokines (TNF-alpha and IL-6), growth factors (TGF-alpha and HGF), and inducible nitric oxide synthase (iNOS) were estimated over a time course after equitoxic challenge (50 mg/kg to DR vs. 600 mg/kg to AL rats). Except for TNF-alpha, all other molecules were expressed earlier and in greater amount in the DR rats. IL-6 was 10-fold greater and peaked 12 h earlier; HGF also peaked 12 h sooner in the DR rats, when it was 2.5-fold greater than the value in the AL rats. TGF-alpha expression in livers of DR rats increased after TA administration and peaked at 24 h. In the AL rats, it was lower and peaked at 36 h. Diet restriction alone induced iNOS 2-fold in the DR rats and remained elevated until 12 h after TA administration, then declined thereafter. The lower iNOS activity in the AL rats further decreased after TA injection. DR rats exhibited higher apoptosis after thioacetamide administration, which further increased the efficiency of tissue repair. Taken together, these data indicate that even though the liver injury is near equal in AL and DR rats, sluggish signal transduction leads to delayed liver regeneration, progression of liver injury, and death in the AL rats. The equitoxic dose experiment indicates that stimulation of tissue repair is independent of the extent of initial liver injury and is governed by physiology of diet restriction. DR stimulates promitogenic signaling leading to a quick and timely response upon liver injury, arrest of progressive injury on one hand, and recovery from injury on the other, paving the way for survival of the DR rats.  相似文献   

6.
It is well known that diabetes imparts high sensitivity to numerous hepatotoxicants. Previously, we have shown that a normally non-lethal dose of thioacetamide (TA, 300 mg/kg) causes 90% mortality in type 1 diabetic (DB) rats due to inhibited tissue repair allowing progression of liver injury. On the other hand, DB rats exposed to 30 mg TA/kg exhibit delayed tissue repair and delayed recovery from injury. The objective of this study was to investigate the mechanism of impaired tissue repair and progression of liver injury in TA-treated DB rats by using cDNA microarray. Gene expression pattern was examined at 0, 6, and 12 h after TA challenge, and selected mechanistic leads from microarray experiments were confirmed by real-time RT-PCR and further investigated at protein level over the time course of 0 to 36 h after TA treatment. Diabetic condition itself increased gene expression of proteases and decreased gene expression of protease inhibitors. Administration of 300 mg TA/kg to DB rats further elevated gene expression of proteases and suppressed gene expression of protease inhibitors, explaining progression of liver injury in DB rats after TA treatment. Inhibited expression of genes involved in cell division cycle (cyclin D1, IGFBP-1, ras, E2F) was observed after exposure of DB rats to 300 mg TA/kg, explaining inhibited tissue repair in these rats. On the other hand, DB rats receiving 30 mg TA/kg exhibit delayed expression of genes involved in cell division cycle, explaining delayed tissue repair in these rats. In conclusion, impaired cyclin D1 signaling along with increased proteases and decreased protease inhibitors may explain impaired tissue repair that leads to progression of liver injury initiated by TA in DB rats.  相似文献   

7.
Although, diet restriction (DR) has been shown to substantiallyincrease longevity while reducing or delaying the onset of agerelateddiseases, little is known about the mechanisms underlying thebeneficial effects of DR on acute toxic outcomes. An earlierstudy (S. K. Ramaiah et al., 1998, Toxicol. Appl. Pharmacol.150, 12–21) revealed that a 35% DR compared to ad libitum(AL) feeding leads to a substantial increase in liver injuryof thioacetamide (TA) at a low dose (50 mg/kg, ip). Higher liverinjury was accompanied by enhanced survival. A prompt and enhancedtissue repair response in DR rats at the low dose (sixfold higherliver injury) occurred, whereas at equitoxic doses (50 mg/kgin DR and 600 mg/kg in AL rats) tissue repair in AL rats wassubstantially diminished and delayed. The extent of liver injurydid not appear to be closely related to the extent of stimulatedtissue repair response. The purpose of the present study wasto investigate the time course (0–120 h) of liver injuryand liver tissue repair at the high dose (600 mg TA/kg, ip,lethal in AL rats) in AL and DR rats. Male Sprague-Dawley rats(225–275 g) were 35% diet restricted compared to theirAL cohorts for 21 days and on day 22 they received a singledose of TA (600 mg/kg, ip). Liver injury was assessed by plasmaALT and by histopathological examination of liver sections.Tissue repair was assessed by [3H]thymidine incorporation intohepatonuclear DNA and proliferating cell nuclear antigen (PCNA)immunohistochemistry during 0–120 h after TA injection.In AL-fed rats hepatic necrosis was evident at 12 h, peakedat 60 h, and persisted thereafter until mortality (3 to 6 days).Peak liver injury was approximately twofold higher in DR ratscompared to that seen in AL rats. Hepatic necrosis was evidentat 36 h, peaked at 48 h, persisted until 96 h, and returnedto normal by 120 h. Light microscopy of liver sections revealedprogression of hepatic injury in AL rats whereas injury regressedcompletely leading to recovery of DR rats by 120 h. Progressionof injury led to 90% mortality in AL rats vs 30% mortality inDR group. In the surviving AL rats, S-phase DNA synthesis wasevident at 60 h, peaked at 72 h, and declined to base levelby 120 h, whereas in DR rats S-phase DNA synthesis was evidentat 36 h and was consistently higher until 96 h reaching controllevels by 120 h. PCNA studies showed a corresponding increasein cells in S and M phase in the AL and DR groups. DR resultedin abolition of the delay in tissue repair associated with thelethal dose of TA in ad libitum rats. Temporal changes and highertissue repair response in DR rats (earlier and prolonged) arethe conduits that allow a significant number of diet restrictedrats to escape lethal consequence.  相似文献   

8.
Thioacetamide (TA) undergoes saturation toxicokinetics in ad libitum (AL) fed rats. Diet restriction (DR) protects rats from lethal dose of TA despite increased bioactivation-mediated liver injury via CYP2E1 induction. While a low dose (50 mg TA/kg) produces 6-fold higher initial injury, a 12-fold higher dose produces delayed and mere 2.5-fold higher injury. The primary objective was to determine if this less-than-expected increase in injury is due to saturation toxicokinetics. Rats on AL and DR for 21 days received either 50 or 600 mg TA/kg i.p. T(1/2) and AUCs for TA and TA-S-oxide were consistent with saturable kinetics. Covalent binding of (14)C-TA-derived-radiolabel to liver macromolecules after low dose was 2-fold higher in DR than AL rats. However, following lethal dose, no differences were found between AL and DR. This lack of dose-dependent response appears to be due to saturation of bioactivation at the higher dose. The second objective was to investigate the effect of phenobarbital pretreatment (PB) on TA-initiated injury following a sub-lethal dose (500 mg/kg). PB induced CYP2B1/2 approximately 350-fold, but did not increase covalent binding of (14)C-TA, TA-induced liver injury and mortality, suggesting that CYP2B1/2 has no major role in TA bioactivation. The third objective was to investigate the role of CYP2E1 using cyp2e1 knockout mice (KO). Injury was assessed over time (0-48 h) in wild type (WT) and KO mice after LD(100) dose (500 mg/kg) in WT. While WT mice exhibited robust injury which progressed to death, KO mice exhibited neither initiation nor progression of injury. These findings confirm that CYP2E1 is responsible for TA bioactivation.  相似文献   

9.
The effect of Type 1 diabetes on the toxicity of thioacetamide was investigated in a murine model. In streptozotocin-induced diabetic C57BL6 mice a LD90 dose of thioacetamide (1000 mg/kg, ip in saline) caused only 10% mortality. Alanine aminotransferase activity revealed approximately 2.7-fold less liver injury in the diabetic (DB) mice compared to the non-DB controls, at 36 h after thioacetamide (TA) administration, which was confirmed via histopathological analysis. HPLC analyses revealed lower plasma t(1/2) of TA in the DB mice. Covalent binding of [(14)C]TA to liver tissue was lower in the DB mice, suggesting lower bioactivation of TA. Compensatory hepatic S-phase stimulation as assessed by [(3)H]thymidine incorporation occurred much earlier and was substantially higher in the DB mice compared to the non-DB cohorts. Morphometric analysis of cells in various phases of cell division assessed via immunohistochemical staining for proliferating cell nuclear antigen revealed more cells in G(1), S, G(2), and M phases in the DB mice, indicating robust tissue repair in concordance with the findings of [(3)H]thymidine pulse labeling studies. The importance of tissue repair in the resistance of DB mice was further investigated by blocking cell division in the DB mice by colchicine (1 mg/kg, ip) at 40 h after TA administration, well after the bioactivation of TA. Antimitotic action of colchicine, confirmed by decreased S-phase stimulation, led to progression of liver injury and increased mortality in DB mice. These findings suggest that lower bioactivation of TA and early onset of liver tissue repair are the pivotal underpinnings for the resistance of DB mice.  相似文献   

10.
Previously we reported that moderate calorie restriction or diet restriction (DR, calories reduced by 35% for 21 days) in male Sprague-Dawley rats protects from a lethal dose of thioacetamide (TA). DR rats had 70% survival compared with 10% in rats fed ad libitum (AL) because of timely and adequate compensatory liver cell division and tissue repair in the DR rats. Further investigation of the mechanisms indicate that enhanced promitogenic signaling plays a critical role in this stimulated tissue repair. Expression of stimulators of promitogenic signaling interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), hepatocyte growth factor (HGF), transforming growth factor-alpha (TGF-alpha), and epidermal growth factor receptor (EGFR) were studied during liver tissue repair after TA-induced liver injury. Plasma IL-6 was significantly higher in the DR rats, with 6-fold higher expression at 48 h after TA administration. Immunohistochemical localization revealed significantly higher expression of IL-6 in the hepatic sinusoidal endothelium of DR rats. Expression of TGF-alpha and HGF was consistently higher in the livers of DR rats from 36 to 72 h. EGFR, which serves as a receptor for TGF-alpha, was higher in DR rats before TA administration and remained higher till 48 h after TA intoxication. DR-induced 2-fold increase in hepatic iNOS activity is consistent with early cell division in DR rats after TA challenge. These data suggest that the reason behind the higher liver tissue repair after TA-induced hepatotoxicity in DR rats is timely and higher expression of the growth stimulatory cytokines and growth factors. It appears that the physiological effects of DR make the liver cells vigilant and prime the liver tissue promptly for liver regeneration through promitogenic signaling upon toxic challenge.  相似文献   

11.
Thioacetamide (TA), a potent centrilobular hepatotoxicant, undergoes a two-step bioactivation mediated by microsomal CYP2E1 to TA sulfoxide (TASO), and further to TA-S,S-dioxide (TASO2), a reactive metabolite that initiates cellular necrosis. Our earlier studies showed that bioactivation-mediated liver injury of TA is not dose-proportional. The objective of this study was to examine whether increasing doses of TA lead to enzyme saturation, thereby resulting in lack of dose-response for injury: bioactivation of TA --> TASO --> TASO2 may follow zero-order kinetics. A 12-fold dose range of TA (50, 300, and 600 mg/kg i.p.) was injected into male Sprague-Dawley rats. TA and TASO were quantified in plasma, liver, and urine by high-performance liquid chromatography. With increasing doses, the apparent elimination half-lives of TA and TASO increased linearly, indicating that TA bioactivation exhibits saturation kinetics. Increasing TA dose resulted in greater-than-proportional increases in plasma TA and TASO levels. The TASO/TA ratio was inversely proportional to the dose of TA. Covalent binding of 14C-TA-derived radiolabel to liver macromolecules showed a less-than-dose-proportionate increase with a 12-fold higher dose. Less than dose-proportional covalent binding was confirmed in liver microsomal incubations with 14C-TA. Three-fold higher excretion of TASO was seen in urine at the highest dose (600 mg/kg) compared with the lowest dose (50 mg TA/kg). Incubation of TA with rat liver microsomes and purified baculovirus-expressed rat and human CYP2E1 Supersomes, over a concentration range of 0.01 to 10 mM, revealed saturation of TA conversion to TASO at and above 0.05 mM TA concentration, comparable to in vivo plasma and liver levels achieved upon administration of higher doses. Calculated K(m) values for TA (0.1 mM) and TASO (0.6 mM) suggest that the second step of TA bioactivation is 6-fold less efficient. Collectively, the findings indicate saturation of CYP2E1 at the first (TA to TASO) and second (TASO to TASO2) steps of TA bioactivation.  相似文献   

12.
Earlier studies have shown highly exaggerated mechanism-based liver injury of thioacetamide (TA) in rats following moderate diet restriction (DR) and in diabetes. The objective of the present study was to investigate the mechanism of higher liver injury of TA in DR rats. Since both DR and diabetes induce CYP2E1, we hypothesized that hepatic CYP2E1 plays a major role in the bioactivation-based liver injury of TA. When male Sprague-Dawley rats (250-275 g) were maintained on diet restriction (DR, 35% of ad libitum fed rats, 21 days) the total hepatic microsomal cytochrome P450 (CYP450) was increased 2-fold along with a 4.6-fold increase in CYP2E1 protein, which corresponded with a 3-fold increase in CYP2E1 activity as measured by chlorzoxazone hydroxylation. To further test the involvement of CYP2E1, 24 and 18 h after pretreatment with pyridine (PYR) and isoniazid (INZ), specific inducers of CYP2E1, male Sprague-Dawley rats received a single administration of 50 mg of TA/kg (i.p.). TA liver injury was >2.5- and >3-fold higher at 24 h in PYR + TA and INZ + TA groups, respectively, compared with the rats receiving TA alone. Pyridine pretreatment resulted in significantly increased total CYP450 content accompanied by a 2.2-fold increase in CYP2E1 protein and 2-fold increase in enzyme activity concordant with increased liver injury of TA, suggesting mechanism-based bioactivation of TA by CYP2E1. Hepatic injury of TA in DR rats pretreated with diallyl sulfide (DAS), a well known irreversible in vivo inhibitor of CYP2E1, was significantly decreased (60%) at 24 h. CCl(4) (4 ml/kg i.p.), a known substrate of CYP2E1, caused lower liver injury and higher animal survival confirming inhibition of CYP2E1 by DAS pretreatment. The role of flavin-containing monooxygenase (FMO) in TA bioactivation implicated by previous in vitro studies, and consequent increased TA-induced liver injury in DR rats was tested in vivo with a relatively selective inhibitor of FMO, indole-3-carbinol, and then treated with 50 mg of TA/kg. FMO activity and alanine aminotransferase levels measured at different time points revealed that TA liver injury was not decreased although FMO activity was significantly decreased, suggesting that hepatic FMO is unlikely to bioactivate TA. These findings suggest induction of CYP2E1 as the primary mechanism of increased bioactivation-based liver injury of TA in DR rats.  相似文献   

13.
We previously reported that rutin administration to streptozotocin (STZ)-induced diabetic rats decreased plasma glucose and increased plasma insulin levels. In this study, we have examined the role of rutin on matrix remodelling in the kidney of STZ-induced diabetic rats. STZ was administered intraperitoneally (50 mg kg(-1)) to male albino Wistar rats to induce experimental diabetes. Rutin (100 mg kg(-1)) was orally administered to normal and STZ-induced diabetic rats for a period of 45 days and its influence on the content of hydroxyproline and collagen and on the activity of matrix metalloproteinases (MMPs) were studied. We have also studied the levels of tissue inhibitors of metalloproteinases (TIMPs) in the kidney. STZ-induced diabetic control rats showed increased content of hydroxyproline and collagen, decreased activity of MMPs and increased levels of TIMPs in the kidney. These changes were positively modulated by rutin treatment in STZ-induced diabetic rats, thereby protecting the kidney. In normal rats treated with rutin, none of the parameters studied were significantly altered. From the results obtained, we could conclude that rutin influences MMPs and effectively protects kidney against STZ-induced damage in rats. The effects observed are due to the reduction of plasma glucose levels by rutin.  相似文献   

14.
Diabetes mellitus is characterized by hyperglycemia, which induces oxidative stress and perturbs a number of pathways, leading to tissue injury. One of the pathological responses to tissue injury is the development of fibrosis and cell death. Enalapril is a non-thiol angiotensin-converting enzyme inhibitor that is commonly used in the treatment of diabetes-associated hypertension. The present study examines the possible beneficial effects of enalapril on the development of diabetes associated fibrosis and DNA damage in rats. Sprague-Dawley rats (250 ± 10 g) were used in the study. Enalapril (10 mg kg(-1) per oral) was administered for four consecutive weeks to the streptozotocin (STZ)-induced diabetic rats. After 4 weeks, all the animals were sacrificed and comet assay (normal and modified) was performed to detect the normal as well as oxidative DNA damage. Expression of profibrotic marker CCN2 and fibrosis was examined in the heart, kidney and liver of diabetic rats. Enalapril treatment significantly restored the malondialdehyde and glutathione content as well as the DNA damage in the heart, kidney and liver of diabetic rat. Significant decrease in the expression of CCN2 was observed in the heart, kidney and liver of diabetic rat receiving enalapril treatment as compared with the diabetic group. Further, the enalapril treatment led to significant decrease in the fibrosis and CCN2 expression in the diabetic group as compared with control. The results of the present study clearly demonstrate that enalapril ameliorates the DNA damage, cell death and expression of CCN2 in the heart, kidney and liver of the STZ-induced diabetic rat.  相似文献   

15.
The present study investigated the preventive effect of eugenol, a naturally occurring food flavouring agent on thioacetamide (TA)-induced hepatic injury in rats. Adult male Wistar rats of body weight 150–180 g were used for the study. Eugenol (10.7 mg/kg b.w./day) was administered to rats by oral intubation for 15 days. TA was administered (300 mg/kg b.w., i.p.) for the last 2 days at 24 h interval and the rats were sacrificed on the 16th day. Markers of liver injury (aspartate transaminase, alanine transaminase, alkaline phosphatase, γ-glutamyl transferase and bilirubin), inflammation (myeloperoxidase, tumor necrosis factor-α and interleukin-6), oxidative stress (lipid peroxidation indices, protein carbonyl and antioxidant status) and cytochrome P4502E1 activity were assessed. Expression of cyclooxygenase-2 (COX-2) and the extent of DNA damage were analyzed using immunoblotting and comet assay, respectively. Liver injury and collagen accumulation were assessed using histological studies by hematoxylin and eosin and Masson trichrome staining. Rats exposed to TA alone showed increased activities of hepatocellular enzymes in plasma, lipid peroxidation indices, inflammatory markers and pro-inflammatory cytokines and decreased antioxidant status in circulation and liver. Hepatic injury and necrosis were also evidenced by histology. Eugenol pretreatment prevented liver injury by decreasing CYP2E1 activity, lipid peroxidation indices, protein oxidation and inflammatory markers and by improving the antioxidant status. Single-cell gel electrophoresis revealed that eugenol pretreatment prevented DNA strand break induced by TA. Increased expression of COX-2 gene induced by TA was also abolished by eugenol. These findings suggest that eugenol curtails the toxic effects of TA in liver.  相似文献   

16.
The role of oxidative stress in streptozotocin (STZ)-induced toxicity and its prevention by a xanthone glucoside, mangiferin was investigated. To induce diabetes mellitus, adult male Wistar rats were injected STZ intravenously at 55 mg/kg body weight. The effect of mangiferin (10 and 20 mg/kg, i.p., 28 days) was investigated in STZ-induced diabetic male rats. Insulin-treated rats (6 U/kg, i.p., 28 days) served as positive control. Diabetic rats given normal saline served as negative control. Normal rats that neither received STZ nor drugs served as normal control. On day 28, the diabetic rats showed significant increase in serum creatine phosphokinase (CPK) and total glycosylated haemoglobin. Kidney revealed tubular degeneration and decreased levels of superoxide dismutase (SOD) and catalase (CAT) with an elevation of malonaldehyde (MDA). Cardiac SOD, CAT and lipid peroxidation were significantly increased. Histopathological findings revealed cardiac hypertrophy with haemorrhages. Analysis of erythrocyte revealed significantly elevated levels of MDA with insignificant decrease in CAT and SOD. Repeated intraperitoneal injections of mangiferin (10 and 20 mg/kg) and insulin (6 U/kg) controlled STZ-induced lipid peroxidation and significantly protected the animals against cardiac as well as renal damage. From the study, it may be concluded that oxidative stress appears to play a major role in STZ-induced cardiac and renal toxicity as is evident from significant inhibition of antioxidant defence mechanism in renal tissue or a compensatory increase in antioxidant defence mechanism in cardiac tissue. Intraperitoneal administration of mangiferin exhibited significant decrease in glycosylated haemoglobin and CPK levels along with the amelioration of oxidative stress that was comparable to insulin treatment.  相似文献   

17.
The objective of this study was to evaluate the interaction profile of chloroform (CHCl(3))+allyl alcohol (AA) binary mixture (BM)-induced acute hepatotoxic response. Plasma alanine aminotransferase (ALT) was measured to assess liver injury, and 3H-thymidine (3H-T) incorporation into hepatonuclear DNA was measured as an index of liver regeneration over a time course of 0-72 h. Male Sprague-Dawley (S-D) rats received single ip injection of 5-fold dose range of CHCl(3) (74, 185 and 370 mg/kg) in corn oil (maximum 0.5 ml/kg) and 7-fold dose range of AA (5, 20 and 35 mg/kg) in distilled water simultaneously. The doses for BM were selected from individual toxicity studies of CHCl(3) alone [Int. J. Toxicol. 22 (2003) 25], and AA alone [Reg. Pharmacol. Toxicol. 19 (1999) 165]. Since the highest dose of each treatment (CHCl(3)- 740 and AA- 50 mg/kg) yielded mortality due to the suppressed tissue repair followed by liver failure, this dose was omitted for BM. The levels of CHCl(3) (30-360 min) and AA (5-60 min) were quantified in blood and liver by gas chromatography (GC). The liver injury was more than additive after BM compared to CHCl(3) alone or AA alone at highest dose combination (370+35 mg/kg), which peaked at 24 h. The augmented liver injury observed with BM was consistent with the quantitation data. Though the liver injury was higher, the greater stimulation of tissue repair kept injury from progressing, and rescued the rats from hepatic failure and death. At lower dose combinations, the liver injury was no more than additive. Results of the present study suggest that liver tissue repair, in which liver tissue lost to injury is promptly replaced, plays a pivotal role in the final outcome of liver injury after exposure to BM of CHCl(3) and AA.  相似文献   

18.
The present study was designed to examine the hypothesis that liver tissue repair induced after exposure to chloroform (CF) + trichloroethylene (TCE) + allyl alcohol (AA) ternary mixture (TM) is dose-dependent similar to that elicited by exposure to these compounds individually. Male Sprague Dawley (S-D) rats (250–300 g) were administered with fivefold dose range of CF (74–370 mg/kg, ip), and TCE (250–1250 mg/kg, ip) in corn oil and sevenfold dose range of AA (5–35 mg/kg, ip) in distilled water. Liver injury was assessed by plasma alanine amino transferase (ALT) activity and liver tissue repair was measured by 3 H-thymidine incorporation into hepatonuclear DNA. Blood and liver levels of parent compounds and two major metabolites of TCE [trichloroacetic acid (TCA) and trichloroethanol (TCOH)] were quantified by gas chromatography. Blood and liver CF and AA levels after TM were similar to CF alone or AA alone, respectively. However, the TCE levels in blood and liver were substantially decreased after TM in a dose-dependent fashion compared to TCE alone. Decreased plasma and liver TCE levels were consistent with decreased production of metabolites and elevated urinary excretion of TCE. The antagonistic interaction resulted in lower liver injury than the summation of injury caused by the individual components at all three-dose levels. On the other hand, tissue repair showed a dose-response leading to regression of injury. Although the liver injury was lower and progression was contained by timely tissue repair, 50% mortality occurred only with the high dose combination, which is several fold higher than environmental levels. The mortality could be due to the central nervous system toxicity. These findings suggest that exposure to TM results in lower initial liver injury owing to higher elimination of TCE, and the compensatory liver tissue repair stimulated in a dose-dependent manner mitigates progression of injury after exposure to TM.  相似文献   

19.
Diet and nutrition have substantial impact on reducing the incidence of diabetes mellitus, where oxidative stress is an important etiopathological factor. The combined protective role of low dose of naringin (15 mg kg(-1)) and vitamin C (25 mg kg(-1)) and high dose of naringin (30 mg kg(-1)) and vitamin C (50 mg kg(-1)) on streptozotocin (STZ)-induced toxicity was studied in male Wistar rats. To induce type II diabetes mellitus, rats were injected with STZ intraperitoneally at a dose of 45 mg kg(-1) body weight. STZ-induced diabetic rats showed significant increase in blood glucose, water intake, food intake and glycated hemoglobin and significant decrease in plasma insulin, total hemoglobin, body weight and liver glycogen. Diabetic rats also showed significant decrease in the activity of hexokinase and significant increase in the activities of glucose-6-phosphatase and fructose-1,6-bisphosphatase in liver and kidney. The levels of plasma thiobarbituric acid reactive substances, lipid hydroperoxides and vitamin E were elevated while the level of reduced glutathione was decreased in diabetic rats. Glycoprotein components such as hexose, hexosamine, fucose and sialic acid were increased in plasma, liver and kidney of diabetic rats. Oral administration of high doses of naringin (30 mg kg(-1)) and vitamin C (50 mg kg(-1)) to diabetic rats for a period of 21 days normalized all the above-mentioned biochemical parameters. The effect exerted by naringin (30 mg kg(-1)) and vitamin C (50 mg kg(-1)) was similar to the effect exerted by insulin (6 units kg(-1)). Thus, our study shows the antihyperglycemic and antioxidant effects of naringin and vitamin C in STZ-induced type II diabetes mellitus in rats.  相似文献   

20.
Trichloroethylene (TCE), a widely used organic solvent and degreasingagent, is regarded as a hepatotoxicant. The objective of thepresent studies was to investigate whether the extent and timelinessof tissue repair has a determining influence on the ultimateoutcome of hepatotoxicity. Male Sprague-Dawley rats (200–250g) were injected with a 10-fold dose range of TCE and hepatotoxicityand tissue repair were studied during a time course of 0 to96 h. Light microscopic changes as evaluated by H&E-stainedliver sections revealed a dose-dependent necrosis of hepaticcells. Maximum liver cell necrosis was observed at 48 h afterthe TCE administration. However, liver injury as assessed byplasma sorbitol dehydrogenase (SDH) showed a dose response overa 10-fold dose range only at 6 h, whereas alanine aminotrans-ferase(ALT) did not show a dose response at any of the time pointsstudied. A low dose of TCE (250 mg/kg) showed an increase inSDH at all time points up to 96 h without peak levels, whereashigher doses showed peak only at 6 h. At later time points SDHdeclined but remained above normal. In vitro addition of trichloroaceticacid, a metabolite of TCE to plasma, decreased the activitiesof SDH and ALT indicating that metabolites formed during TCEtoxicity may interfere with plasma enzyme activities in vivo.This indicates that the lack of dose-related increase in SDHand ALT activities may be because of interference by the TCEmetabolite. Tissue regeneration response as measured by [3H]thymidineincorporation into hepatocellular nuclear DNA was stimulatedmaximally at 24 h after 500 mg/kg TCE administration. A higherdose of TCE led to a delay and diminishment in [3H]thymidineincorporation. At a low dose of TCE (250 mg/kg) [3H]thymidineincorporation peaked at 48 h and this could be attributed tovery low or minimal injury caused by this dose. With higherdoses tissue repair was delayed and attenuated allowing forunrestrained progression of liver injury. These results supportthe concept that the toxicity and repair are opposing responsesand that a dose-related increase in tissue repair representsa dynamic, quantifiable compensatory mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号