首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Muscular dystrophy is characterized by muscle degeneration and insufficient regeneration and replacement of muscle fibers by connective tissue. New therapeutic strategies directed toward various forms of muscular dystrophy are needed to preserve muscle mass and promote regeneration. In this study we examined the role of the transmembrane ADAM12, a disintegrin and metalloprotease, which is normally associated with development and regeneration of skeletal muscle. We demonstrate that ADAM12 overexpression in the dystrophin-deficient mdx mice alleviated the muscle pathology in these animals, as evidenced by less muscle cell necrosis and inflammation, lower levels of serum creatine kinase, and less uptake of Evans Blue dye into muscle fibers. These studies demonstrate that ADAM12 directly or indirectly contributes to muscle cell regeneration, stability, and survival.  相似文献   

4.
L-type calcium currents ( i Ca) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of i Ca were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of i Ca was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of i Ca were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas i Ca was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation–contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin.  相似文献   

5.
Statins are prescribed to prevent and treat atherosclerotic cardiovascular and metabolic diseases but have controversial effects on skeletal muscles. While statins are a reported cause of myopathy, some studies have suggested that statins could potentially ameliorate dystrophy due to their pleiotropic effects on inflammation, myonecrosis, and autophagy. In the present study, we evaluated the potential benefit of rosuvastatin treatment on heart, limb, and diaphragm muscles in dystrophin-deficient mdx mice at an early stage (45 days of age) of disease. Mdx mice received rosuvastatin (10 mg/kg) by gavage for 30 days beginning at 15 days of age. Normal C57BL/10 mice received rosuvastatin by the same route over the same interval. In the mdx group, rosuvastatin significantly increased IgG-positive fibers (myonecrosis) and the inflammatory areas in the biceps brachii and diaphragm muscles and decreased the anterior limb muscle force (grip strength). Molecular markers of inflammation (TNF-α and NF-kB) and fibrosis (fibronectin) were not altered by rosuvastatin in mdx mice skeletal and cardiac muscles. In normal mice, rosuvastatin increased CK, TNF-α (heart), NF-kB (diaphragm), and fibronectin (heart and diaphragm). Inflammatory areas were seen in all normal muscles of rosuvastatin-treated mice. Rosuvastatin did not benefit dystrophy in the mdx mice and was associated with inflammation in normal cardiac and skeletal muscles.  相似文献   

6.
Various attempts have been made to find treatments for Duchenne muscular dystrophy (DMD) patients. Exon skipping is one of the promising technologies for DMD treatment by restoring dystropin protein, which is one of the muscle components. It is well known that losartan, an angiotensin II type1 receptor blocker, promotes muscle regeneration and differentiation by lowering the level of transforming growth factor–beta1 signaling. In this study, we illustrated the combined effects of exon skipping and losartan on skeletal muscle of mdx mice. We supplied mdx mice with losartan for 2 weeks before exon skipping treatment. The losartan with the exon skipping group showed less expression of myf5 than the losartan treated group. Also the losartan with exon skipping group recovered normal muscle architecture, in contrast to the losartan group which still showed many central nuclei. However, the exon skipping efficiency and the restoration of dystrophin protein were lower in the losartan with exon skipping group compared to the exon skipping group. We reveal that losartan promotes muscle regeneration and shortens the time taken to restore normal muscle structure when combined with exon skipping. However, combined treatment of exon skipping and losartan decreases the restoration of dystrophin protein meaning decrease of exon skipping efficiency.  相似文献   

7.
8.
 It is commonly accepted, that regenerative capacity of striated muscle is confined to skeletal muscle by activation of satellite cells that normally reside quiescent between the plasmalemma and the basement membrane of muscle fibers. Muscular dystrophies are characterized by repetitive cycles of de- and regeneration of skeletal muscle fibers and by the frequent involvement of the cardiac muscle. Since during the longstanding course of muscular dystrophies there is a permanent demand of myogenic progenitors we hypothesized that this may necessitate a recruitment of additional myogenic precursors from an undifferentiated, permanently renewed cell pool, such as bone marrow (BM) cells. To this end normal and dystrophic (mdx) female mice received bone marrow transplantation (BMT) from normal congenic male donor mice. After 70 days, histological sections of skeletal and cardiac muscle from BMT mice were probed for the donor-derived Y chromosomes. In normal BMT recipients, no Y chromosome-containing myonuclei were detected, either in skeletal or in cardiac muscle. However, in all samples from dystrophic mdx skeletal muscles Y chromosome-specific signals were detected within muscle fiber nuclei, which additionally were found to express the myoregulatory proteins myogenin and myf-5. Moreover, in the hearts of BMT-mdx mice single cardiomyocytes with donor derived nuclei were identified, indicating, that even cardiac muscle cells are able to regenerate by recruitment of circulating BM-derived progenitors. Our findings suggest that further characterization and identification of the BM cells capable of undergoing myogenic differentiation may have an outstanding impact on therapeutic strategies for diseases of skeletal and cardiac muscle. Accepted: 27 October 1998  相似文献   

9.
Administration of recombinant human insulin-like growth factor-I (rhIGF-I) has beneficial effects in animal models of muscle injury and muscular dystrophy. However, the results of these studies may have been confounded by interactions of rhIGF-I with endogenous IGF-binding proteins (IGFBPs). To date, no study has examined whether inhibiting IGFBP interactions with endogenous IGF-I can improve muscle fiber regeneration or muscular pathologies. We tested the hypothesis that reducing IGFBP interactions with endogenous IGF-I would enhance muscle regeneration after myotoxic injury and improve the dystrophic pathology in mdx mice. We administered an IGF-I aptamer (NBI-31772; 6 mg/kg per day, continuous infusion) to C57BL/10 mice undergoing regeneration after myotoxic injury or to mdx dystrophic mice. NBI-31772 binds all six IGFBPs with high affinity and releases "free" endogenous IGF-I. NBI-31772 treatment increased the rate of functional repair in fast-twitch tibialis anterior muscles after notexin-induced injury as evidenced by an increase in maximum force producing capacity (P(o)) at 10 days after injury. In contrast, NBI-31772 administration for 28 days did not alter P(o) of extensor digitorum longus (EDL) and soleus muscles or normalized force of diaphragm muscle strips from mdx mice. Although IGFBP inhibition reduced the susceptibility of the fast-twitch EDL and the diaphragm muscle to contraction-mediated damage, it increased muscle fatigability during repeated maximal contractions. Although the results in the myotoxic injury model suggest IGF-I signaling is important in this model, the results in the mdx model are mixed.  相似文献   

10.
背景:干细胞移植是治疗肌营养不良症的有效方法之一,但移植的干细胞在病理骨骼肌中成肌表达较低。 目的:通过比较mdx小鼠和C57小鼠的骨骼肌形态及成肌、成脂、成骨基因表达的差异,探讨mdx小鼠骨骼肌病理改变的可能机制。 方法:取mdx小鼠与C57小鼠的骨骼肌组织行冰冻切片,苏木精-伊红染色和Vonkossa染色观察两种小鼠肌肉组织的形态特征;提取mdx小鼠和C57小鼠骨骼肌组织总RNA,real-time PCR检测成肌、成脂、成骨相关基因的表达。 结果与结论:mdx小鼠骨骼肌有肌纤维坏死和再生,伴有轻度脂肪、纤维结缔组织增生,Vonkossa染色可见钙结节沉积,而C57小鼠的骨骼肌细胞形态清晰,核位于细胞周边。与C57小鼠比较,mdx小鼠肌肉组织成骨、成脂基因表达有不同程度的上调(P < 0.05),而成肌基因表达下调(P< 0.05)。dystrophin基因缺失及成肌基因表达下调、成骨和成脂基因上调是造成mdx小鼠肌肉组织变性坏死的原因。  相似文献   

11.
The disease mechanisms underlying dystrophin-deficient muscular dystrophy are complex, involving not only muscle membrane fragility, but also dysregulated calcium homeostasis. Specifically, it has been proposed that calcium channels directly initiate a cascade of pathological events by allowing calcium ions to enter the cell. The objective of this study was to investigate the effect of chronically blocking calcium channels with the aminoglycoside antibiotic streptomycin from onset of disease in the mdx mouse model of Duchenne muscular dystrophy (DMD). Treatment in utero onwards delayed onset of dystrophic symptoms in the limb muscle of young mdx mice, but did not prevent degeneration and regeneration events occurring later in the disease course. Long-term treatment had a positive effect on limb muscle pathology, reduced fibrosis, increased sarcolemmal stability, and promoted muscle regeneration in older mice. However, streptomycin treatment did not show positive effects in diaphragm or heart muscle, and heart pathology was worsened. Thus, blocking calcium channels even before disease onset does not prevent dystrophy, making this an unlikely treatment for DMD. These findings highlight the importance of analyzing several time points throughout the life of the treated mice, as well as analyzing many tissues, to get a complete picture of treatment efficacy.  相似文献   

12.
Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease resulting from lack of the sarcolemmal protein dystrophin. However, the mechanism leading to the final disease status is not fully understood. Several lines of evidence suggest a role for nuclear factor (NF)-kappaB in muscle degeneration as well as regeneration in DMD patients and mdx mice. We investigated the effects of blocking NF-kappaB by inhibition of oxidative stress/lipid peroxidation on the dystrophic process in mdx mice. Five-week-old mdx mice received three times a week for 5 weeks either IRFI-042 (20 mg/kg), a strong antioxidant and lipid peroxidation inhibitor, or its vehicle. IRFI-042 treatment increased forelimb strength (+22%, P < 0.05) and strength normalized to weight (+23%, P < 0.05) and decreased fatigue (-45%, P < 0.05). It also reduced serum creatine kinase levels (P < 0.01) and reduced muscle-conjugated diene content and augmented muscle-reduced glutathione (P < 0.01). IRFI-042 blunted NF-kappaB DNA-binding activity and tumor necrosis factor-alpha expression in the dystrophic muscles (P < 0.01), reducing muscle necrosis (P < 0.01) and enhancing regeneration (P < 0.05). Our data suggest that oxidative stress/lipid peroxidation represents one of the mechanisms activating NF-kappaB and the consequent pathogenetic cascade in mdx muscles. Most importantly, these new findings may have clinical implications for the pharmacological treatment of patients with DMD.  相似文献   

13.
14.
It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.  相似文献   

15.
Summary The pattern of spontaneous skeletal muscle degeneration and clinical recovery in hindlimb muscles of the mdx mutant mouse was examined for functional and metabolic confirmation of apparent structural regeneration. The contractile properties, histochemical staining and myosin light chain and parvalbumin contents of extensor digitorum longus (EDL) and soleus (Sol) muscles of mdx and age-matched control mice were studied at 3–4 and 32 weeks. Histochemical staining (myofibrillar ATPase and NADH-tetrazolium reductase) revealed no significant change in slow-twitch-oxidative (SO) or fast-twitch-oxidative-glycolytic (FOG) fibre type proportions in mdx Sol apart from the normal age-related increase in SO fibres. At 32 weeks mdx EDL, however, showed significantly smaller fast-twitch-glycolytic (FG) and larger FOG proportions than those in control EDL. These fibre type distributions were confirmed by differential staining with antibodies to myosin slow-twitch and fast-twitch heavy chain isozymes. Frequency distribution of cross-sectional area for each fibre type showed a wider than normal range of areas especially in FOG fibres of mdx Sol, and FG fibres of mdx EDL, supporting previous observations using autoradiography of myofibre regeneration. Isometric twitch and tetanic tensions in Sol were significantly less than in controls at 4 weeks, but by 32 weeks, values were not different from age-matched controls. In mdx EDL at 3 weeks, twitch and tetanus tensions were significantly less, and time-to-peak twitch tensions were significantly faster than in control EDL. By 32 weeks, mdx EDL twitch and tetanus tensions expressed relative to muscle weight continued to be significantly lower than in age-matched controls, despite normal absolute tensions. The maximum velocity of shortening in 32-week mdx EDL was significantly lower than in control EDL. Myosin light chain distribution in mdx Sol exhibited significantly less light chain 2-slow (LC2s) and more light chain 1b-slow(LC1bs) at 32 weeks than age-matched control Sol. Gels of EDL from 32-week-old mdx mice showed significantly less light chain 2-fast-phosphorylated (LC2f-P) and light chain 3-fast (LC3f) and significantly more light chain 1-fast (LC1f) and light chain 2-fast (LC2f), but normal parvalbumin content compared to age-matched controls. These observations suggest that mdx hindlimb muscles are differentially affected by the disease process as it occurs in murine models of dystrophy. However, the uniqueness of mdx Sol and to a lesser extent EDL is that they also undergo an important degree of functional regeneration which is able to compensate spontaneously for degenerative influences of genetic origin. The mdx mutant may therefore be an important model for the study of regeneration by skeletal muscle, and of the nerve-muscle interactions which enable or restrict that regeneration.  相似文献   

16.
Matrix metalloproteinases (MMPs) are a group of extracellular proteases involved in tissue remodeling in several physiological and pathophysiological conditions. While increased expression of MMPs (especially MMP-9) has been observed in skeletal muscle in numerous conditions, their physiological significance remains less-well understood. By generating novel skeletal muscle-specific transgenic (Tg) mice expressing constitutively active mutant of MMP-9 (i.e. MMP-9G100L), in this study, we have investigated the effects of elevated levels of MMP-9 on skeletal muscle structure and function in vivo. Tg expression of enzymatically active MMP-9 protein significantly increased skeletal muscle fiber cross-section area, levels of contractile proteins and force production in isometric contractions. MMP-9 stimulated the activation of the Akt signaling pathway in Tg mice. Moreover, expression of active MMP-9 increased the proportion of fast-type fiber in soleus muscle of mice. Overexpression of MMP-9 also considerably reduced the deposition of collagens I and IV in skeletal muscle in vivo. In one-year-old mdx mice (a model for Duchenne muscular dystrophy, DMD), deletion of the Mmp9 gene reduced fiber hypertrophy and phosphorylation of Akt and p38 mitogen-activated protein kinase. Collectively, our study suggests that elevated levels of active MMP-9 protein cause hypertrophy in skeletal muscle and that the modulation of MMP-9 levels may have therapeutic value in various muscular disorders including DMD.  相似文献   

17.
目的:观察过量运动对肌营养不良症模型鼠(mdx鼠)骨骼肌的损害作用,以及成肌细胞移植对运动诱导损害肌纤维的保护作用。方法: 采用分离消化法对C57新生鼠的成肌细胞进行体外培养、纯化鉴定后,肌肉注射到mdx鼠左后肢,右后肢肌注DMEM作对照。成肌细胞移植后1个月,让mdx鼠作运动试验3 d后,静脉注射Evans蓝,次日取骨骼肌作冰冻切片,行dystrophin免疫荧光检测。荧光显微镜下,观察Evans蓝和dystrophin阳性纤维数,图像分析比较。 结果: 未移植肢体有26.82%±14.85%的肌纤维显示Evans蓝染色,而移植侧骨骼肌只有10.37%±2.87%的肌纤维显示Evans蓝染色。两者相比有显著差异(P<0.05)。移植侧肢体有48.32%±6.54%的肌纤维dystrophin阳性,对照侧几乎没有dystrophin阳性肌纤维。Evans蓝染部分没有dystrophin表达。结论: 成肌细胞移植对运动诱导损害的肌纤维具有防护作用。  相似文献   

18.
Gene therapy holds great promise for curing Duchenne muscular dystrophy (DMD), the most common fatal inherited childhood muscle disease. Success of DMD gene therapy depends upon functional improvement in both skeletal and cardiac muscle. Numerous gene transfer studies have been performed to correct skeletal muscle pathology, yet little is known about cardiomyopathy gene therapy. Since complete transduction of the entire heart is an impractical goal, it becomes critical to determine the minimal level of correction needed for successful DMD cardiomyopathy gene therapy. To address this question, we generated heterozygous mice that persistently expressed the full-length dystrophin gene in 50% of the cardiomyocytes of mdx mice, a model for DMD. We questioned whether dystrophin expression in half of the heart cells was sufficient to prevent stress-induced cardiomyopathy. Heart function of mdx mouse is normal in the absence of external stress. To determine the therapeutic effect, we challenged 3-month-old mice with beta-isoproterenol. Cardiomyocyte sarcolemma integrity was significantly impaired in mdx but not in heterozygous and C57Bl/10 mice. Importantly, in vivo closed-chest hemodynamic assays revealed normal left ventricular function in beta-isoproterenol-stimulated heterozygous mice. Since the expression profile in the heterozygous mice mimicked viral transduction, we conclude that gene therapy correction in 50% of the heart cells may be sufficient to treat cardiomyopathy in mdx mice. This finding may also apply to the gene therapy of other inherited cardiomyopathies.  相似文献   

19.
The aim of the present study was to establish whether alterations in sarcoplasmic reticulum function are involved in the abnormal Ca(2+) homeostasis of skeletal muscle in mice with muscular dystrophy ( mdx). The properties of the sarcoplasmic reticulum and contractile proteins of fast- and slow-twitch muscles were therefore investigated in chemically skinned fibres isolated from the extensor digitorum longus (EDL) and soleus muscles of normal (C57BL/10) and mdx mice at 4 and 11 weeks of development. Sarcoplasmic reticulum Ca(2+) uptake, estimated by the Ca(2+) release following exposure to caffeine, was significantly slower in mdx mice, while the maximal Ca(2+) quantity did not differ in either type of skeletal muscle at either stage of development. In 4-week-old mice spontaneous sarcoplasmic reticulum Ca(2+) leakage was observed in EDL and soleus fibres and this was more pronounced in mdx mice. In addition, the maximal Ca(2+)-activated tension was smaller in mdx than in normal fibres, while the Ca(2+) sensitivity of the contractile apparatus was not significantly different. These results indicate that mdx hindlimb muscles are affected differently by the disease process and suggest that a reduced ability of the Ca(2+)-ATPase to load Ca(2+) and a leaky sarcoplasmic reticulum membrane may be involved in the altered intracellular Ca(2+) homeostasis.  相似文献   

20.
In mdx mice, the dystrophin gene of the X chromosome is defective and, as a result, immunoreactive dystrophin is undetectable in all muscle fibers of all animals of this highly inbred strain. This study showed that implantation of suspensions of clonal cultures of normal human myoblasts into different regions of quadriceps muscles of 6-to-10-day-old mdx mice or 60-day-old mdx mice (whose muscles have been crushed 4 days before implantation) results in the appearance of scattered fiber segments containing microscopically demonstrable immunoreactive dystrophin. In the animals that received the normal myoblast implantation in the prenecrotic stage of the disease (6 to 10 days of age), the dystrophin-positive fiber segments (demonstrated at ages 35, 45, and 60 days) escaped necrosis. This was determined by the absence of the characteristic chains of central nuclei, a reliable marker of prior necrosis in mdx muscle fibers. By heavy labeling of the nuclear DNA of the transplantable human myoblasts with H3-thymidine during culturing, and by sequential performance of an immunocytochemical staining for dystrophin and autoradiography on the same sections, some dystrophin-positive fiber segments were shown to contain radiolabeled myonuclei. It was concluded that nondystrophic myoblasts fused with host muscle fibers to form mosaic muscle fibers in which the normal dystrophin gene of the implanted myoblasts was expressed. This approach may be employed for the mitigation of the deleterious consequences of a gene defect in recessively inherited human muscle diseases such as Duchenne dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号