首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
皮质酮复合异丙酚对大鼠海马 CA1区长时程抑制的影响   总被引:1,自引:1,他引:0  
目的探讨皮质酮复合异丙酚对大鼠海马CA1区锥体神经元产生的长时程抑制(LTD)的影响。方法制备Wistar大鼠400μm厚度的海马脑片,随机分为5组:对照组、脂肪乳剂组、异丙酚组、皮质酮组、皮质酮 异丙酚组。对照组不加任何药物,脂肪乳剂组、异丙酚组、皮质酮组、皮质酮 异丙酚组分别以100μmol/L脂肪乳剂、100μmol/L异丙酚、10μmol/L皮质酮、10μmol/L皮质酮复合100μmol/L异丙酚预孵脑片60min,然后给予低频刺激(LFS),记录LTD的表达情况。结果各组海马CAI区锥体神经元给予LFS后,都产生LTD,与对照组相比,脂肪乳剂组给予LPS后10-40minEPSC值没有明显变化,异丙酚组、皮质酮组和皮质酮 异丙酚组给予LPS后10-40min的EPSC值明显降低(P<0.05),且皮质酮 异丙酚组给予LPS后10-40min兴奋性突触后电流与异丙酚组和皮质酮组相比,差异有统计学意义(P<0.05)。结论100μmol/L异丙酚或10μmol/L皮质酮都使大鼠海马CA1区锥体神经元LTD表达易化,二药复合应用时则进一步增强LTD的表达。  相似文献   

2.
丙泊酚对大鼠海马CA1区长时程抑制的影响   总被引:12,自引:2,他引:10  
目的 观察丙泊酚对大鼠海马CA1区锥体神经元产生的长时程抑制 (LTD)的影响 ,并分析其可能机制。方法 断头法分离wistar大鼠 (13~ 19d)海马半脑 ,用切片机切出 4 0 0 μm厚度的海马脑片。实验分三组 :脂肪乳剂组 (I组 ) ,丙泊酚组 (P组 ) ,SR95 5 31+丙泊酚组 (GP组 )。I组和P组以 90 μL脂肪乳剂或丙泊酚 (相当于 10 0 μmol/L)预孵脑片 6 0min ,然后给予低频刺激 (LFS) ,记录LTD的表达情况 ;GP组先在循环液中加入 10 μmol/LSR95 5 31预孵脑片 30min ,再加入 10 0 μmol/L丙泊酚继续孵育 6 0min ,继而给予LFS ,记录LTD的表达情况。结果 I组给予LFS后 ,产生LTD ,LFS后 10~ 4 0min的兴奋性突触后电流 (EPSC)值为基础值的 5 7 85 % ;P组给予LFS后 10~ 4 0min的EPSC值为基础值的 4 0 82 % ,明显低于I组 (P <0 0 5 ) ;GP组给予LFS后 10~ 4 0min的EPSC值为基础值的 5 6 5 1% ,与I组比较差异无显著意义 (P >0 0 5 ) ,与P组比较差异有显著意义 (P <0 0 5 )。结论  10 0 μmol/L丙泊酚使大鼠海马CA1区锥体神经元LTD表达增强 ,这种作用与其增强GABAA 受体功能有关 ;当阻断GABAA 受体后 ,这种易化作用消失  相似文献   

3.
异丙酚对大鼠海马CA1区神经元兴奋性突触传递的影响   总被引:1,自引:1,他引:0  
目的 研究异丙酚对大鼠海马CA1区神经元兴奋性突触后电流(EPSC)和自发性兴奋性突触后电流(sEPSC)的影响。方法 Wistar大鼠断头后分离海马脑组织,制成400μm厚度的海马脑片,脑片随机分为5组(n=10)。脂肪乳剂Ⅰ组、异丙酚Ⅰ组、SR95531+异丙酚组:记录EPSC10min(基础值)后分别加入10%脂肪乳剂90μl,1%异丙酚90μl(相当于100μmol/L)、10μmol/LSR95531+100μmol/L异丙酚,继续记录EPSC40min,分析EPSC幅值的变化。脂肪乳剂Ⅱ组、异丙酚Ⅱ组:细胞破膜后稳定10.15min,分别加入10%脂肪乳剂90出和1%异丙酚90出,记录sEPSC40min,分析sEPSC频率、幅值和半衰期的变化。膜钳制电压均为-70mV。结果 与基础值比较,给药后脂肪乳剂Ⅰ组和SR95531+异丙酚组EPSC幅值差异无统计学意义,异丙酚Ⅰ组EPSC幅值降低;给药后异丙酚Ⅰ组EPSC幅值比脂肪乳剂Ⅰ组降低(P〈0.05)。与脂肪乳剂Ⅱ组比较,异丙酚Ⅱ组sEPSC的频率、幅值降低、半衰期缩短(P〈0.05)。结论 异丙酚主要通过增强大鼠海马CA1区神经元突触前膜和突触后膜的GABA.受体活性,产生突触前抑制和突触后抑制,从而抑制兴奋性突触传递。  相似文献   

4.
丙泊酚对大鼠海马CA1区兴奋性突触传递的影响   总被引:2,自引:2,他引:0  
目的观察500μmol/L丙泊酚对大鼠海马CA1区电刺激诱发的兴奋性突触后电流(EPSC)的影响,分析丙泊酚的可能作用机制。方法断头法分离Wistar大鼠(13~19d)海马半脑,用切片机切出400μm厚度的海马脑片,全细胞膜片钳技术记录CA1区锥体神经元EPSC。实验分两组:脂肪乳剂组(n=6)和丙泊酚组(n=10)。先以50μmol/L印防己毒素预孵脑片30min后,记录基础EPSC10min,然后加入450μl脂肪乳剂或丙泊酚(相当于500μmol/L),继续记录EPSC40min;继而以配对刺激代替单刺激,观察EPSC2/EPSC1比率的变化;改变膜钳制电压(-80~+60mV),观察电流-电压(I-V)曲线的变化。结果脂肪乳剂对EPSC无影响,500μmol/L丙泊酚降低大鼠海马CA1区EPSC值,25~30min左右达最大抑制效果,EPSC幅值下降至基础值的67·5%,明显低于脂肪乳剂组(P<0·05);而且500μmol/L丙泊酚明显降低EPSC2/EPSC1比率,也使I-V曲线左移,降低反转电位至-35mV左右。结论500μmol/L丙泊酚对大鼠海马CA1区兴奋性突触传递产生抑制作用,这可能与其增强突触前膜、突触后膜GABAA受体活性有关。  相似文献   

5.
目的研究丙泊酚对大鼠海马CA1区电刺激诱发兴奋性突触后电流(EPSC)的影响,分析γ-氨基丁酸(GABA)受体和甘氨酸受体在丙泊酚麻醉中的作用。方法断头法分离wistar大鼠(13~19d)海马半脑,切出400μm厚度的海马脑片,全细胞膜片钳技术记录CA1区锥体神经元EPSC。80张脑片分为八组:脂肪乳剂组,50μmol/L丙泊酚组,100μmol/L丙泊酚组,200μmol/L丙泊酚组,SR95531组,士的宁组,SR95531 100μmol/L丙泊酚组,士的宁 100μmol/L丙泊酚组,每组10张。SR95531 100μmol/L丙泊酚组和士的宁 100μmol/L丙泊酚组先在循环液中加入10μmol/LSR95531或4μmol/L士的宁预孵脑片30min。八组均记录基础EPSC10min,然后加入不同药物,继续记录EPSC40min。膜钳制电压为-70mV。结果脂肪乳剂、SR95531和士的宁对EP-SC幅值无影响;丙泊酚呈剂量依赖性的抑制EPSC幅值,50、100、200μmol/L丙泊酚最大抑制EPSC幅值为14.4%、52.3%、67.8%;SR95531 100μmol/L丙泊酚组加入丙泊酚后,EPSC幅值基本无改变;士的宁 100μmol/L丙泊酚组加入丙泊酚后,EPSC幅值仍然下降,最大抑制程度为34.7%。结论丙泊酚主要通过增强GABAA受体功能使兴奋性突触活动降低,甘氨酸受体在其中起到协同和调节作用。  相似文献   

6.
目的 评价海马神经元N受体α4β2亚型在异氟醚抑制大鼠海马突触长时程增强(LTP)中的作用.方法 健康成年雄性SD大鼠,取海马组织,制备海马脑片.取70张脑片,随机分为10组(n=7):各组用正常人工脑脊液(aCSF)灌流海马脑片,记录稳定正常的细胞外群峰电位(PS)30 min,LTP组继续给予正常的aCSF灌流,其余各组分别用含异氟醚0.125 mmol/L(I1组)、0.25 mmol/L(I2组)、0.5 mmol/L(I3组)、地棘蛙素0.1 mmol/L(E1组)、1.0 μmol/L(E2组)、地棘蛙素0.1 μmol/L+异氟醚0.25 mmol/L(E1+I2组)、地棘蛙素1.0 μmol/L+异氟醚0.25 mmol/L(E2+I2组)、双氢β-刺酮碱(DHβE)0.1μmol/L(D组)、DHβE0.1μmol/L+异氟醚0.125 mmol/L(D+I1组)的aCSF灌流.采用细胞外微电极记录技术,记录海马脑片CA1区细胞外PS 30 min后,施以高频强直刺激(HFS)15 min,诱发LTP,记录各组HFS结束后5、10、15、20、25、30、40、50、60 min时的PS幅值.结果 与LTP组比较,I1.2.3组、D组、D+I1组、E1+I2组HFS后PS幅值降低,E1.2组HFS后PS幅值升高(P<0.05),E2+I2组HFS后PS幅值差异无统计学意义(P>0.05).与I1组比较,D+I1组HFS后PS幅值降低(P<0.05).与I2组比较,E1+I2组、E2+I2组HFS后PS幅值升高(P<0.01).结论 异氟醚通过拮抗海马神经元N受体α4β2亚型从而抑制了突触LTP的形成.  相似文献   

7.
异氟醚对大鼠海马脑片突触长时程增强的影响   总被引:2,自引:0,他引:2  
目的 评价异氟醚对大鼠海马脑片突触长时程增强(LTP)的影响.方法 雄性SD大鼠,断头后取出海马组织,制备厚400 μm的海马脑片.采用细胞外微电极记录技术,记录海马脑片CA1区细胞外群体峰电位(PS).取28张脑片,随机分为4组(n=7):用正常的人工脑脊液(ACSF)灌流海马脑片,记录正常的PS,待其稳定后,对照组继续灌流ACSF,不同浓度异氟醚组分别用含异氟醚0.125 mmol/L(异氟醚0.125组)、0.25 mmol/L(异氟醚0.25组)、0.5 mmol/L(异氟醚0.5组)的ACSF灌流,记录PS幅值.另取70张脑片,随机分为10组(n=7):用正常ACSF灌流海马脑片,记录稳定正常的PS 30 min,LTP组继续灌流ACSF,其余各组分别用含异氟醚0.125 mmol/L(异氟醚LTP 0.125组)、0.25 mmol/L(异氟醚LTP 0.25组)、0.5 mmol/L(异氟醚LTP 0.5组)、印防己毒素0 μmol/L(印防己毒素组)、荷包牡丹碱10 μmol/L(荷包牡丹碱组)、CGP353485 μmol/L(CGP35348组)、印防己毒素50 μmol/L+异氟醚0.25 mmol/L(印防己毒素+异氟醚组)、荷包牡丹碱10 μmol/L+异氟醚0.25 mmol/L(荷包牡丹碱+异氟醚组)、CGP353485 μmol/L+异氟醚0.25 mmol/L(CGP353485+异氟醚组)的ACSF灌流,记录PS 30 min后,施以100 Hz的高频强直刺激(HFS),记录PS幅值.结果 与对照组比较,异氟醚0.125组给药后10~45 min PS幅值降低,异氟醚0.25组和异氟醚0.5组给药后5~45 min PS幅值降低(P<0.05或0.01).LTP组HFS后5~60 min PS幅值增高,较刺激前增加了(52±12)%(P<0.01).与HFS前比较,异氟醚LTP 0.125组、异氟醚LTP 0.25组和异氟醚LTP 0.5组给予HFS后PS幅值差异无统计学意义(P>0.05);与LTP组比较,3组PS幅值降低(P<0.01).与HFS前比较,印防己毒素组、荷包牡丹碱组和CGP 35348组HFS后PS幅值增加(P<0.01);与LTP组比较,3组PS幅值差异无统计学意义(P>0.05).与HFS前比较,印防己毒素+异氟醚组和荷包牡丹碱+异氟醚组HFS后PS幅值增加(P<0.01),CGP 353485+异氟醚组HFS后PS幅值差异无统计学意义(P>0.05);与LTP组比较,印防己毒素+异氟醚组和荷包牡丹碱+异氟醚组HFS后PS幅值差异无统计学意义(P>0.05),CGP353485+异氟醚组HFS后PS幅值降低(P<0.01);与异氟醚LTP 0.25组比较,印防己毒素+异氟醚组和荷包牡丹碱+异氟醚组HFS后PS幅值增加(P<0.01),CGP 353485+异氟醚组HFS后PS幅值差异无统计学意义(P>0.05).结论 异氟醚可通过激活大鼠海马GABAA受体,抑制LTP的形成,从而影响记忆功能.  相似文献   

8.
丙泊酚对大鼠海马脑片CA1区长时程增强的影响   总被引:6,自引:0,他引:6  
目的观察不同浓度丙泊酚对离体大鼠海马脑片CA1区长时程增强(LTP)的影响。方法30张海马脑片分为五组,Ⅰ、Ⅱ和Ⅲ组分别应用浓度为30、10和3μmolo/L的丙泊酚,Ⅳ组用脂肪乳,Ⅴ组不用药物作为对照。利用细胞外记录方式,以海马脑片CA1区群峰电位(PS)为观察指标,首先观察丙泊酚对CA1区基础传递的影响,待基线稳定后,记录高频刺激(HFS)后海马脑片CA1区PS的变化情况。结果Ⅰ、Ⅱ、Ⅲ组应用丙泊酚后PS降低,在持续给药后30min恢复至基线。实施HFS后,Ⅲ、Ⅳ和Ⅴ组的PS较HFS前显著升高(P<0.05,P<0.01);而Ⅰ、Ⅱ组PS与HFS前相比差异无显著意义(P>0.05)。HFS后,Ⅰ组PS显著低于Ⅱ、Ⅲ、Ⅳ和Ⅴ组(P<0.01),Ⅱ组PS也低于Ⅲ、Ⅳ和Ⅴ组(P<0.05)。结论丙泊酚可以抑制大鼠离体海马脑片CA1区LTP的形成。  相似文献   

9.
目的:研究异丙酚对新生大鼠海马CAI区兴奋性突触反应的影响。方法:取1周龄Wistar大鼠,快速断头取脑,用振动切片机切取400μm厚的海马脑片,电刺激靠近海马CA1区的Schaffer纤维,用全细胞膜片钳技术记录CA1区锥体细胞的兴奋性突触后电流(excitatory post—synaptic current,EPSC)。循环液中加入不同浓度的异丙酚,观察其对EPSC的影响。然后给与低频刺激(900pulse,3Hz)诱导长时程抑制(10ng—term depression,LTD),并观察异丙酚对LTD诱导的影响。结果:异丙酚呈剂量依赖性地抑制EPSC,其怍用可被印防己毒素(picrotoxin,pic)阻断;异丙酚可易化由N-甲基-D-门冬氨酸(N—methvl—D—aspartate,NMDA)受体介导的LTD的诱导。结论:异丙酚可影响新生大鼠海马CA1区的兴奋性突触传递和突触可塑性,从而对大鼠的学习和记忆产生影响。  相似文献   

10.
目的探讨氯胺酮对神经病理性痛大鼠海马CA1区突触长时程增强(LTP)维持的影响。方法成年雄性Wistar大鼠15只,随机均分为三组:神经病理性痛模型组(NP组)、氯胺酮1组(K1组)、氯胺酮2组(K2组)。采用结扎L4,5左侧脊神经的方法制备大鼠模型,于术前、术后1、2和3周观察大鼠痛行为学及足部形态;于术前、术后1、2和3周测定痛阈;于最后一次痛阈测定结束后3 d记录海马CA1区兴奋性突触后电位(EPSP),以高频刺激(HFS)诱发LTP。K1组于HFS前20 min经腹腔注射氯胺酮25 mg/kg,K2组HFS后60 min腹腔注射氯胺酮25 mg/kg。结果与术前比较,术后三组各时点痛阈降低(P<0.05);与基础值比较,NP组与K2组HFS后各时段EPSP幅值升高(P<0.05),与NP组和K2组比较,K1组HFS后各时段降低(P<0.05)。结论氯胺酮可阻滞神经病理性痛大鼠海马CA1区突触LTP的诱导,但不干扰维持。  相似文献   

11.
12.
Nerve cells (neurones) are ‘excitable’ cells that can transduce a variety of stimuli into electrical signals, continuously sending information about the external and internal environment (in the form of sequences of action potentials) to the central nervous system (CNS). Interneurones in the CNS integrate this information and send signals along output (efferent) neurones to various parts of the body for the appropriate actions to be taken in response to environmental changes. Networks of neurones have been arbitrarily classified into various nervous systems that gather and transmit sensory information and control skeletal muscle function and autonomic function, etc. The junctions between neurones (synapses) are either electrical or chemical. The former permit the direct transfer of electrical current between cells, whereas the latter utilize chemical signalling molecules (neurotransmitters) to transfer information between cells. Neurotransmitters are mainly amino acids, amines or peptides (although other molecules such as purines and nitric oxide are utilized by some cells), and can be excitatory or inhibitory. Individual neurones within the CNS may receive synaptic inputs from thousands of other neurones. Therefore, each neurone ‘integrates’ this vast complexity of inputs and responds accordingly (either by remaining silent or firing action potentials to other neurones). Adaptations in the function and structure of chemical synapses in particular (synaptic plasticity) are thought to underlie the mechanisms mediating cognitive functions (learning and memory).  相似文献   

13.
Nerve cells (neurones) are ‘excitable’ cells that can transduce a variety of stimuli into electrical signals, continuously sending information about the external and internal environment (in the form of sequences of action potentials) to the central nervous system (CNS). Interneurones in the CNS integrate this information and send signals along output (efferent) neurones to various parts of the body for the appropriate actions to be taken in response to environmental changes. Networks of neurones have been arbitrarily classified into various nervous systems that gather and transmit sensory information and control skeletal muscle function and autonomic function, etc. The junctions between neurones (synapses) are either electrical or chemical. The former permit the direct transfer of electrical current between cells, whereas the latter utilize chemical signalling molecules (neurotransmitters) to transfer information between cells. Neurotransmitters are mainly amino acids, amines or peptides (although other molecules such as purines and nitric oxide are utilized by some cells), and can be excitatory or inhibitory. Individual neurones within the CNS may receive synaptic inputs from thousands of other neurones. Therefore, each neurone ‘integrates’ this vast complexity of inputs and responds accordingly (either by remaining silent or firing action potentials to other neurones). Adaptations in the function and structure of chemical synapses in particular (synaptic plasticity) are thought to underlie the mechanisms mediating cognitive functions (learning and memory).  相似文献   

14.
Synaptic depression is essential for controlling the balance between excitation and inhibition in cortical networks. Several studies have shown that the depression of intracortical synapses is asymmetric, that is, inhibitory synapses depress less than excitatory ones. Whether this asymmetry has any impact on cortical function is unknown. Here we show that the differential depression of intracortical synapses provides a mechanism through which the gain and sensitivity of cortical circuits shifts over time to improve stimulus coding. We examined the functional consequences of asymmetric synaptic depression by modeling recurrent interactions between orientation-selective neurons in primary visual cortex (V1) that adapt to feedforward inputs. We demonstrate analytically that despite the fact that excitatory synapses depress more than inhibitory synapses, excitatory responses are reduced less than inhibitory ones to increase the overall response gain. These changes play an active role in generating selective gain control in visual cortical circuits. Specifically, asymmetric synaptic depression regulates network selectivity by amplifying responses and sensitivity of V1 neurons to infrequent stimuli and attenuating responses and sensitivity to frequent stimuli, as is indeed observed experimentally.  相似文献   

15.
Nerve cells (neurones) are ‘excitable’ cells that can transduce a variety of stimuli into electrical signals, continuously sending information about the external and internal environment (in the form of sequences of action potentials) to the central nervous system (CNS). Interneurones in the CNS integrate this information and send signals along output (efferent) neurones to various parts of the body for the appropriate actions to be taken in response to environmental changes. Networks of neurones have been arbitrarily classified into various nervous systems that gather and transmit sensory information and control skeletal muscle function and autonomic function, etc. The junctions between neurones (synapses) are either electrical or chemical. The former permit the direct transfer of electrical current between cells, whereas the latter utilize chemical signalling molecules (neurotransmitters) to transfer information between cells. Neurotransmitters are mainly amino acids, amines or peptides (although other molecules such as purines and nitric oxide are utilized by some cells), and can be excitatory or inhibitory. Individual neurones within the CNS may receive synaptic inputs from thousands of other neurones. Therefore, each neurone ‘integrates’ this vast complexity of inputs and responds accordingly (either by remaining silent or firing action potentials to other neurones). Adaptations in the function and structure of chemical synapses in particular (synaptic plasticity) are thought to underlie the mechanisms mediating cognitive functions (learning and memory).  相似文献   

16.
Nerve cells (neurones) are ‘excitable’ cells which can transduce a variety of stimuli into electrical signals, continuously sending information about the external and internal environment (in the form of sequences of action potentials) to the central nervous system (CNS). Interneurones in the CNS integrate this information and send signals along output (efferent) neurones to various parts of the body for the appropriate actions to be taken in response to environmental changes. Networks of neurones have been arbitrarily classified into various nervous systems which gather and transmit sensory information and control skeletal muscle function and autonomic function, etc. The junctions between neurones (synapses) are either electrical or chemical. The former permit the direct transfer of electrical current between cells, whereas the latter utilize chemical signalling molecules (neurotransmitters) to transfer information between cells. Neurotransmitters are mainly amino acids, amines or peptides (although other molecules such as purines and nitric oxide are utilized by some cells), and can be excitatory or inhibitory. Individual neurones within the CNS may receive synaptic inputs from thousands of other neurones. Therefore, each neurone ‘integrates’ this vast complexity of inputs and responds accordingly (either by remaining silent or firing action potentials to other neurones). Adaptations in the function and structure of chemical synapses in particular (synaptic plasticity) are thought to underlie the mechanisms mediating cognitive functions (learning and memory).  相似文献   

17.
We investigated rapid protection effect by estradiol on corticosterone (CORT)-induced suppression of synaptic transmission. Rapid suppression by 1 μM CORT of long-term potentiation (LTP) at CA3-CA1 synapses was abolished via coperfusion of 1 nM estradiol. N-methyl-D-aspartate (NMDA) receptor-derived field excitatory postsynaptic potential (NMDA-R-fEPSP) was used to analyze the mechanisms of these events. Estradiol abolished CORT-induced suppression of NMDA-R-fEPSP slope. This CORT-induced suppression was abolished by calcineurin inhibitor, and the rescue effect by estradiol on the CORT-induced suppression was inhibited by mitogen-activated protein (MAP) kinase inhibitor. The CORT-induced suppressions of LTP and NMDA-R-fEPSP slope were abolished by glucocorticoid receptor (GR) antagonist, and the restorative effects by estradiol on these processes were mimicked by estrogen receptor α (ERα) and ERβ agonists. Taken together, estradiol rapidly rescued LTP and NMDA-R-fEPSP slope from CORT-induced suppressions. A GR→calcineurin pathway is involved in these suppressive effects. The rescue effects by estradiol are driven via ERα or ERβ→MAP kinase pathway. Synaptic/extranuclear GR, ERα, and ERβ probably participate in these rapid events. Mass-spectrometric analysis determined that acute hippocampal slices used for electrophysiological measurements contained 0.48 nM estradiol less than exogenously applied 1 nM. In vivo physiological level of 8 nM estradiol could protect the intact hippocampus against acute stress-induced neural suppression.  相似文献   

18.
AMPA受体介导的突触可塑性与药物依赖   总被引:1,自引:0,他引:1  
突触可塑性改变是形成药物依赖长期效应的病理基础,兴奋性氨基酸受体在其中起十分重要的作用。近年来的研究表明,多种药物依赖过程与AMPA受体有关。联系药物依赖所致的AMPA受体的变化与神经元的可塑性改变,探讨AMPA受体介导药物依赖的形成机制,可为进一步理解AMPA受体在药物依赖中的作用提供帮助。  相似文献   

19.
BACKGROUND: Volatile general anesthetics (VAs) have a number of synaptic actions, one of which is to inhibit excitatory neurotransmitter release; however, no presynaptic VA binding proteins have been identified. Genetic data in Caenorhabditis elegans have led to the hypothesis that a protein that interacts with the presynaptic protein syntaxin 1A is a VA target. Motivated by this hypothesis, the authors measured the ability of syntaxin 1A and proteins that interact with syntaxin to bind to halothane and isoflurane. METHODS: Recombinant rat syntaxin 1A, SNAP-25B, VAMP2, and the ternary SNARE complex that they form were tested. Binding of VAs to these proteins was detected by F-nuclear magnetic resonance relaxation measurements. Structural alterations in the proteins were examined by circular dichroism and ability to form complexes. RESULTS: Volatile anesthetics did not bind to VAMP2. At concentrations in the clinical range, VAs did bind to SNAP-25B; however, binding was detected only in preparations containing SNAP-25B homomultimers. VAs also bound at clinical concentrations to both syntaxin and the SNARE complex. Addition of an N-terminal His6 tag to syntaxin abolished its ability to bind VAs despite normal secondary structure and ability to form SNARE complexes; thrombin cleavage of the tag restored VA binding. Thus, the VA binding site(s) has structural requirements and is not simply any alpha-helical bundle. VAs at supraclinical concentrations produced an increase in helicity of the SNARE complex; otherwise, VA binding produced no gross alteration in the stability or secondary structure of the SNARE complex. CONCLUSION: SNARE proteins are potential synaptic targets of volatile anesthetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号