首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics of indecainide, a new antiarrhythmic agent, were studied in mice, rats, dogs, and monkeys. The drug was well absorbed in all species tested resulting in peak plasma levels of drug within 2 hr. The plasma half-life of indecainide after acute oral administration was 3-5 hr in rats, dogs, and monkeys but considerably shorter in mice. The plasma half-life of indecainide was dose-dependent in dogs and increased slightly with chronic dosing. Peak plasma levels of drug were also dose-dependent in dogs and monkeys. Fecal elimination was the primary route of excretion of the drug in rats and mice after oral dosing. Fifty per cent of the dose was excreted in the bile of rats which was then subject to enterohepatic circulation. Urinary elimination was the predominant excretory route in the dog. Tissue distribution of radioactivity in rats showed that tissues which first encounter the drug have the highest levels of radioactivity. The highest concentrations were found in the stomach, intestine, liver, and kidney, whereas very low levels were observed in the fat and brain. Except for liver and kidney, only very low levels were present after 24 hr.  相似文献   

2.
1. The disposition of AY-30,068 (I), a new tetrahydrocarbazole analgesic drug, was studied in mice, rats, dogs, rhesus monkeys, and man. 2. Oral doses of the 14C-labelled drug in aqueous solution were well absorbed in rodents, but absorption of oral doses of the crystalline drug in dogs was poor. Due to the virtual absence of serum metabolites in rats and dogs, the bioavailability of I was nearly identical to the extent of absorption. Although a small first-pass effect was observed in mice, unchanged I represented a major portion of serum radioactivity. 3. A linear increase in the serum concentrations of I occurred at doses between 0.05 and 25 mg/kg in rats, 0.1 and 50 mg/kg in dogs, and 1-160 mg in man. In rhesus monkeys given a 0.5 mg/kg oral dose, the Cmax and AUC of I were similar to values obtained following a corresponding dose in dogs. 4. After i.v. administration of a 1.0 mg/kg dose the terminal elimination half-life (t1/2 beta) of I was 4 h in mice and 9-10 h in rats and dogs. In rodents, dogs, and several human subjects, the elimination of I was interrupted by secondary peaks. Enterohepatic circulation was confirmed in bile duct cannulated rats, where the t1/2 beta of I was decreased to 2.4 h. In rodents the serum clearance and apparent volume of distribution of I were 0.04-0.2 l/kg.h and 0.5-0.8 l/kg, respectively, and 0.6 l/kg.h and 9.8 l/kg in dogs. 5. In rodents and dogs dosed with 14C-labelled I, radioactivity was excreted almost entirely in the faeces. No unchanged I was detected in rat bile, while about 70% of the radioactivity corresponded to conjugates of parent drug.  相似文献   

3.
The absorption, distribution, metabolism and excretion of 2-chloro-11-(2-dimethylaminoethoxy)dibenzo [b,f]thiepine (zotepine), a new neuroleptic agent, were investigated in rat, mouse, dog and man. Zotepine was absorbed rapidly and almost completely from the gastrointestinal tract in all species after oral dosing. The serum level of the unchanged drug in man was comparatively higher than in animals. The serum half-lives of zotepine after i.v. dosing were approximately 3.2 h in rats, 1.5 h in mice and 3.0 h in dogs. The drug and radioactive metabolites were rapidly distributed to the tissues of rats and mice, and the brain levels of the unchanged drug were about 20 to 30 times higher than the serum levels. Only small amounts of the unchanged drug were excreted in the urine in all species; faecal excretion through the bile was the main route of elimination of the drug and metabolites. Extensive biliary excretion and enterohepatic circulation of the radioactive compound were observed in rats. Zotepine was well metabolized in the body. Besides N-demethylation and oxygenation of the N and/or S atoms, hydroxylation of the aromatic ring and consecutive conjugation were important metabolic pathways of zotepine.  相似文献   

4.
The metabolic disposition of the antihyperlipidemic agent acifran (AY-25, 712) was determined in rats and dogs. The synthesis of 14C-labelled acifran is described. Serum levels of 14C and acifran were measured in rats and dogs after p.o. and i.v. administration of 14C-acifran at a dose of 10 mg/kg. Over 80% of the 14C in serum was due to acifran. The drug was rapidly absorbed and the pharmacokinetics, unaffected by increasing the dose or by daily multiple doses, were characterized by a two-compartment open model. Food reduced the bioavailability of acifran by 27% in the dog. About 65% of the dose was absorbed in rats, and at least 88% in dogs. The elimination t 1/2 of acifran from serum was 1.5 h in the rat and 3 h in the dog. Acifran was partially bound to serum proteins, man greater than rat greater than dog; the drug was found to displace protein-bound warfarin in rat and dog, but not in human serum. Radioactivity did not tend to accumulate in tissues, except for the kidney, where the 14C concentration was five times higher than in the serum; elimination of 14C from all the tissues was similar to that from serum. Most of the absorbed dose was excreted in the urine. Acifran did not undergo enterohepatic circulation in the rat. Virtually all the urinary 14C in both species was due to the unchanged compound. In conclusion, the disposition of acifran was similar in rats and dogs. The drug was rapidly absorbed and eliminated, and underwent no detectable biotransformation. There was no tissue retention and excretion was mainly in the urine.  相似文献   

5.
DL-2-(4-(2-Thienylcarbonyl)phenyl)propionic acid (suprofen, S) was rapidly absorbed in rats after oral administration. Blood levels after a single oral dose of 2, 10, 50, or 100 mg/kg of 3H-S reached maxima within 30 min and were dose-dependent. The major portion of the drug was shown to be absorbed from the upper part of the small intestine and a portion from the stomach. The radioactivity in rat plasma was extensively bound to the plasma protein in vivo; this was found to be unchanged S and four metabolites. Elimination of S and its metabolites from blood was rapid; 3H was mostly excreted in the urine and feces within 24 hr after oral administration of 3H-S. No significant amounts of 14CO2 were excreted in expired air after administration of 14C-S. Rat urine contained S and four metabolites found in rat plasma, accounting for about 60% of the urinary radioactivity. After rats with biliary fistulas were given an oral dose of 2 mg/kg of 3H-S, 41% of the dose was excreted in the bile during 48 hr; there was significant enterohepatic circulation. When single or 21 consecutive daily doses of 3H-S were administered to rats, the blood levels after the multiple doses were higher than those after a single dose but no significant difference was found in excretion of 3H.  相似文献   

6.
The excretion and biotransformation of alfentanil (ALF) and sufentanil (SUF), two recent analogues of the synthetic opioid fentanyl, were studied after single iv administration of the tritium-labeled drugs in male rats and dogs. The drugs were almost completely metabolized in the two species, which resulted in a large number of metabolites. The excretion of the metabolites was rapid and exceeded 95% within 4 days, except for that of ALF metabolites in dogs (about 85%). For ALF, excretion of the radioactivity with the urine (73% in rats, about 76% in dogs) exceeded that with the feces. For SUF, excretion of the radioactivity with the urine amounted to 38 and 60% and that with the feces to 62 and 40%, in rats and dogs, respectively. Bile-cannulated rats excreted 68% with the bile within 24 hr after SUF dosing, and about 22% of this biliary radioactivity was subjected to enterohepatic circulation. After an ALF dose, the biliary excretion amounted to 24%, and the enterohepatic circulation was minimal. The main metabolic pathways of the two drugs were the oxidative N-dealkylation at the piperidine nitrogen and at the amide nitrogen, oxidative O-demethylation, aromatic hydroxylation, and the formation of ether glucuronides. N-[4-(Hydroxymethyl)-4-piperidinyl]-N-phenylpropanamide (M6) was the main metabolite of both ALF and SUF in rats. In dogs, the glucuronide of N-(4-hydroxyphenyl)propanamide (M5) was the main metabolite of ALF. After SUF dosing in dogs, N-[4-(methoxymethyl)-4-piperidinyl]-N-phenylpropanamide was more abundant than M5.  相似文献   

7.
The metabolism and disposition of tri-p-cresyl phosphate (TPCP) were studied in the rat after a single oral administration of [methyl-14C] TPCP. At a dosage of 7.8 mg/kg, most of the administered radioactivity was excreted in the urine (41%) and feces (44%) in 7 days. For 3 days, the expiratory excretion as 14CO2 amounted to 18% of the radioactivity, but was reduced to 3% by treatment of the animal with neomycin. In separate rats, the biliary excretion amounted to 28% of the dose in 24 hr. At a dose of 89.6 mg/kg, the radioactivity was excreted in urine (12%) and feces (77%) in 7 days, and the expired air (6%) in 3 days. At 24, 72, and 168 hr after oral administration, the concentration of radioactivity was relatively high in adipose tissue, liver, and kidney. The major urinary metabolites were p-hydroxybenzoic acid, di-p-cresyl phosphate (DCP), and p-cresyl p-carboxyphenyl phosphate (1coDCP). The biliary metabolites were DCP, 1coDCP, and the oxidized triesters, di-p-cresyl p-carboxyphenyl phosphate (1coTPCP), and p-cresyl di-p-carboxyphenyl phosphate (2coTPCP). The main fecal metabolite was TPCP, and the others were similar to those of bile. Following oral administration, TPCP was absorbed from the intestine, distributed to the fatty tissues, and moderately metabolized to a variety of products of oxidation and dearylation of TPCP, which were then excreted in the urine, feces, bile, and expired air. The intestinal microflora appeared to play an important role in degrading biliary metabolites to 14CO2 through the enterohepatic circulation in rats.  相似文献   

8.
1. The disposition of AY-30,068 (I), a new tetrahydrocarbazole analgesic drug, was studied in mice, rats, dogs, rhesus monkeys, and man.

2. Oral doses of the 14C-labelled drug in aqueous solution were well absorbed in rodents, but absorption of oral doses of the crystalline drug in dogs was poor. Due to the virtual absence of serum metabolites in rats and dogs, the bioavailability of I was nearly identical to the extent of absorption. Although a small first-pass effect was observed in mice, unchanged I represented a major portion of serum radioactivity.

3. A linear increase in the serum concentrations of I occurred at doses between 0.05 and 25?mg/kg in rats, 0.1 and 50?mg/kg in dogs, and 1–160?mg in man. In rhesus monkeys given a 0.5?mg/kg oral dose, the Cmax and AUC of I were similar to values obtained following a corresponding dose in dogs.

4. After i.v. administration of a 1.0?mg/kg dose the terminal elimination half-life (t1/2β) of I was 4?h in mice and 9–10h in rats and dogs. In rodents, dogs, and several human subjects, the elimination of I was interrupted by secondary peaks. Enterohepatic circulation was confirmed in bile duct cannulated rats, where the t1/2β of I was decreased to 2.4?h. In rodents the serum clearance and apparent volume of distribution of I were 0.04–0.21/kg.?h and 0.5–0.81/kg, respectively, and 0.61/kg.h and 9.81/kg in dogs.

5. In rodents and dogs dosed with 14C-labelled I, radioactivity was excreted almost entirely in the faeces. No unchanged I was detected in rat bile, while about 70% of the radioactivity corresponded to conjugates of parent drug.  相似文献   

9.
Ifetroban is a potent and selective thromboxane receptor antagonist. This study was conducted to characterize the pharmacokinetics, absolute bioavailability, and disposition of ifetroban after i.v. and oral administrations of [14C]ifetroban or [3H]ifetroban in rats (3 mg/kg), dogs (1 mg/kg), monkeys (1 mg/kg), and humans (50 mg). The drug was rapidly absorbed after oral administration, with peak plasma concentrations occurring between 5 and 20 min across species. Plasma terminal elimination half-life was approximately 8 h in rats, approximately 20 h in dogs, approximately 27 h in monkeys, and approximately 22 h in humans. Based on the steady-state volume of distribution, the drug was extensively distributed in tissues. Absolute bioavailability was 25, 35, 23, and 48% in rats, dogs, monkeys, and humans, respectively. Renal excretion was a minor route of elimination in all species, with the majority of the dose being excreted into the feces. After a single oral dose, urinary excretion accounted for 3% of the administered dose in rats and dogs, 14% in monkeys, and 27% in humans, with the remainder excreted in the feces. Extensive biliary excretion was observed in rats with the hydroxylated metabolite at the C-14 position being the major metabolite observed in rat bile. Ifetroban was extensively metabolized after oral administration. Approximately 40 to 50% of the radioactivity in rat and dog plasma was accounted for by parent drug whereas, in humans, approximately 60% of the plasma radioactivity was accounted for by ifetroban acylglucuronide.  相似文献   

10.
The excretion and biotransformation of cisapride, a novel gastrokinetic drug, were studied after single (10, 40, and 160 mg/kg) and repeated (10 mg/kg/day) po administration to rats, using three different radiolabels. In fasted rats, cisapride was absorbed almost completely, except for the 160 mg/kg dose. Cisapride was metabolized extensively to at least 30 metabolites. The excretion of the metabolites amounted to more than 80% of the dose at 24 hr and was almost complete at 96 hr after dosing. In bile duct-cannulated rats, 60% was excreted in the bile within 24 hr, 45% of which underwent enterohepatic circulation. The main urinary metabolites, 4-fluorophenyl sulfate and norcisapride, primarily resulted from the N-dealkylation at the piperidine. Another major metabolic pathway was aromatic hydroxylation, occurring on either the 4-fluorophenoxy or the benzamide rings. The resulting phenolic metabolites were eliminated as conjugates in the bile; a large portion of them were subjected to a rapid enterohepatic circulation before their final excretion in the feces. Minor metabolic pathways included piperidine oxidation, O-dealkylation, O-demethylation of the methoxy substituent at the benzamide, and amine glucuronidation. Only minor quantitative dose- and sex-dependent differences could be observed for the mass balance of the metabolites. Upon repeated po dosing, steady state excretion rates were already attained after two to three doses, and excretion and metabolite patterns were very similar to those after single dose administration.  相似文献   

11.
The absorption, metabolism, and excretion of [14C]aprepitant, a potent and selective human substance P receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting, was evaluated in rats and dogs. Aprepitant was metabolized extensively and no parent drug was detected in the urine of either species. The elimination of drug-related radioactivity, after i.v. or p.o. administration of [14C]aprepitant, was mainly via biliary excretion in rats and by way of both biliary and urinary excretion in dogs. Aprepitant was the major component in the plasma at the early time points (up to 8 h), and plasma metabolite profiles of aprepitant were qualitatively similar in rats and dogs. Several oxidative metabolites of aprepitant, derived from N-dealkylation, oxidation, and opening of the morpholine ring, were detected in the plasma. Glucuronidation represented an important pathway in the metabolism and excretion of aprepitant in rats and dogs. An acid-labile glucuronide of [14C]aprepitant accounted for approximately 18% of the oral dose in rat bile. The instability of this glucuronide, coupled with its presence in bile but absence in feces, suggested the potential for enterohepatic circulation of aprepitant via this conjugate. In dogs, the glucuronide of [14C]aprepitant, together with four glucuronides derived from phase I metabolites, were present as major metabolites in the bile, accounting collectively for approximately 14% of the radioactive dose over a 4- to 24-h period after i.v. dosing. Two very polar carboxylic acids, namely, 4-fluoro-alpha-hydroxybenzeneacetic acid and 4-fluoro-alpha-oxobenzeneacetic acid, were the predominant drug-related entities in rat and dog urine.  相似文献   

12.
Dogs receiving a 7.5 mg/kg oral or i.v. dose of tritium labelled 9,9-dimethylacridane-10-carboxylic acid S-(2-dimethylamino)thiolethyl ester (DMA) as the methane sulfonate salt (DMA-MS) excreted 86-95% of the radioactivity within 6 days. A similar recovery was obtained for rats receiving 300 mg/kg orally of 15 mg/kg i.v. In both species, approximately 66% of the dose was excreted in the feces as metabolites. Absorption of the oral dose was shown to be 80% and 100% for the rat and dog, respectively. Up to 47% of an i.v. dose was excreted in the bile of rats and an efficient enterohepatic circulation process insues. The parent drug is rapidly metabolized in the tissues yielding at least 6 polar metabolites which contribute to relatively long plasma half-lives in the order of 40 h for dogs and 58-90 h for rats. An atypical increase in plasma radioactivity following an i.v. dose could be rationalized in view of these results. Metabolite profiles were examined in plasma, urine, bile and feces and found to be qualitatively similar. Des-methyl-DMA and DMA-N-oxide were identified as two minor metabolites.  相似文献   

13.
Rats, rabbits, and dogs were given single iv or single and multiple oral doses of felbamate ranging from 1.6-1000 mg/kg. Absorption of oral drug was complete in all species. The mean Cmax increased with dose from 13.9 to 185.9 micrograms/ml in rats, from 19.1 to 161.9 micrograms/ml in rabbits, and from 12.6 to 168.4 micrograms/ml in dogs. The tmax also increased with dose from 1-8 hr in rats, 8-24 hr in rabbits, and 3-7 hr in dogs. The plasma elimination half-life for the drug increased with dose from 2-16.7 hr in rats, 7.2-17.8 hr in rabbits, and 4.1-4.5 hr in dogs. A proportional increase in Cmax with dose was observed in all species up to 300-400 mg/kg doses. A biexponential equation fitted the drug plasma concentration vs. time data well. For multiple oral doses of 50 mg/kg or less, projected and observed steady-state concentrations agreed well. Animals dosed with [14C]felbamate eliminated most of the radioactivity in urine (58-87.7%), less in feces (7-23.7%), with considerable amounts in the bile. In rats, radioactivity was readily distributed into tissues and crossed the placenta and blood-brain barrier, but no accumulation in any tissue was observed. The volume of distribution was 131, 54, and 72% of body weight for rats, rabbits, and dogs, respectively. Binding of drug to rat, rabbit, and dog plasma proteins ranged from 22.4-35.9%. The overall plasma clearance of the drug for rats, rabbits, and dogs was 327, 52, and 108 ml.h-1.kg-1, respectively. Renal clearance of unchanged drug accounted for an estimated 20-35% and hepatic clearance due to metabolism for 65-80% of the overall clearance.  相似文献   

14.
1. The absorption, distribution, metabolism and excretion of 2-[3'-(2"-quinolyl-methoxy)phenylamino]benzoic acid (QMPB), a novel leukotriene D4/E4 antagonist, were investigated in rat, dog, guinea pig and man. 2. The oral absorption of the potassium salt of QMPB was rapid and almost complete (90%) in rats, and about 50% in dogs. In man, high oral bioavailability was indicated. Absorption in dogs of the zwitterion form was only 7%. 3. The distribution of 3H-QMPB was examined in rats and guinea pigs. Whole-body autoradiography in rats showed that radioactivity was concentrated predominantly in the liver, bile and intestinal lumen, after both oral and i.v. administration. 4. A major metabolite was identified as the O-ester beta-glucuronide of QMPB. 5. Renal excretion in rat, dog and man was very low. In rat, almost complete biliary excretion of QMPB as the glucuronide conjugate was demonstrated. 6. Pronounced enterohepatic circulation of QMPB was demonstrated in rats, and the plasma concentration curves and the negligible renal excretion in dog and man also indicate enterohepatic circulation in these species.  相似文献   

15.
1. The disposition of radioactivity has been studied in rats and dogs after administration of a new anthelminthic agent, 14C-labelled methyl-5-cyclopropylcarbonyl-2-benzimidazole carbamate (14C-ciclobendazole). 2. An oral dose of 14C-ciclobendazole (4 mg/kg) to rats was rapidly absorbed and about 70% and 20% of the dose was excreted in the faeces and urine, respectively, during 2 days. Bile duct cannulated rats excreted about 80% of the dose in 48-h bile, about 2% in the faeces and about 10% in the urine showing that an oral dose was well-absorbed and that some enterohepatic circulation probably occurred. The excretion of radioactivity in the bile was less after i.v. administration. 3. An oral dose of 14C-ciclobendazole (4 mg/kg) to dogs was mainly eliminated during 2 days with about 80% of the dose in the faeces and only about 10% in the urine. Anaesthetised bile duct-cannulated dogs, excreted between 26% and 35% of an oral dose in the bile during 24 h and up to 58% of an oral dose was absorbed at this time. 4. The tissue distribution of radioactivity in rats and dogs after single or multiple oral doses of 14C-ciclobendazole (4 mg/kg) showed that there was no unusual accumulation or localisation of radioactivity in the measured tissues. Highest concentrations were present in the intestinal tract, liver and kidneys, organs associated with biotransformation and excretion and also in the lungs and adrenals. 5. After oral administration of 14C-ciclobendazole to rate at three different dose levels (4, 40 and 400 mg/kg), peak plasma levels occurred at 15-30 min and declined with similar half-lives (about 20 h). A comparison of peak concentrations and areas under the plasma concentration-time relationships showed that the absorption of ciclobendazole was probably dose-dependent, a lower proportion probably being absorbed at higher doses. After repeated daily oral dosing with 14C-ciclobendazole (4 mg/kg), there were no significant changes in either the daily plasma concentrations or the biological half-life measured after the last dose, indicating that ciclobendazole probably did not induce or inhibit its own metabolism when dosed repeatedly at 4 mg/kg. 6. A comparison of the areas under the plasma concentration-time relationships after oral, i.p. and i.v. administration of 14C-ciclobendazole to rates indicated that there was no signigicant uptake by the liver during first pass and that an oral dose was well absorbed by rats. 7. The peak plasma concentration in the dog, after an oral dose of 14C-ciclobendazole (4 mg/kg) was reached at about 30 min and declined with a half-life of about 3 h. 8. Ciclobendazole was probably well-absorbed by rats and dogs and excreted more rapidly by the latter species than by the former Relatively higher plasma concentrations of drug and/or metabolites were thus achieved in rats than in dogs.  相似文献   

16.
The metabolic disposition of pelrinone, a cardiotonic drug, was studied in mouse, rat, rabbit, dog, monkey and man. Pelrinone was rapidly and extensively absorbed in rodents, dogs, monkeys and man. Except in rabbits, the major portion of the serum radioactivity was due to parent drug. Pelrinone was moderately bound to human serum proteins and weakly bound to serum proteins from animals. Radioactive compounds were rapidly eliminated from rat tissues with the highest concentrations found in organs associated with absorption and elimination. After a 1.0 mg/kg i.v. dose, the rapid elimination of pelrinone from mouse, rat and dog serum precluded estimation of an elimination half life (t1/2). However, after higher oral or i.v. doses, a more prolonged elimination phase was apparent and the t1/2 of pelrinone ranged from 8-10 h in rodents and dogs. In human subjects given escalating oral or i.v. doses of pelrinone, the elimination t1/2 was independent of dose and averaged 1-2 h. The serum AUC of pelrinone was linearly dose-related following oral doses up to 20 mg/kg in dogs and 100 mg in man. In mice, a greater proportional increase in AUC occurred between oral doses of 2-100 mg/kg while in rats, the serum AUC increased in less than proportional manner from 10-200 mg/kg p.o. In all species, radioactive compounds were excreted mainly in the urine. No metabolites were detected in dog and human urine while small amounts of unconjugated metabolites were excreted in mouse and rat urine.  相似文献   

17.
The disposition, biliary excretion, and pharmacokinetics of ketoconazole in Sprague-Dawley rats were determined after intravenous administration. Greater than 80% of the radioactivity after a 5 mg/kg iv dose of 3H-ketoconazole was excreted in the feces. Urinary excretion was essentially complete after 48 hr; however, fecal excretion was prolonged over a 7-day period. Biliary excretion of radioactivity averaged 54.3 +/- 18.0% of the dose over a 7.5-8-hr period in pentobarbital-anesthesized rats. The possibility of enterohepatic recirculation was examined using a linked rat technique. Less than 2% of the radioactivity was found in the recipient bile over 9-12 hr. In eight male rats, the plasma pharmacokinetics of ketoconazole, as determined by an HPLC assay with fluorescence detection, were as follows: VD = 655 +/- 91 ml/kg, Cl = 14.4 +/- 5.1 ml/min/kg, and t 1/2 = 35.0 +/- 12.3 min. Three of the rats were given an additional oral dose to determine absolute bioavailability. The time to peak was 30-60 min, and the bioavailability was 35.8 +/- 3.55%. Previous studies have indicated that ketoconazole is well absorbed in rats; therefore, the poor bioavailability is probably due to first pass metabolism. The prolonged fecal excretion of radioactivity from an intravenous dose was probably caused by slow elimination of ketoconazole metabolites.  相似文献   

18.
The disposition of the carcinogen 3,3′-dichlorobenzidine (DCB) was studied in the male rat following oral administration. [14C]DCB was well absorbed by the rat with the maximum plasma radioactivity levels being found within 8 hr after dosing. The radioactivity was well distributed in the tissues 24 hr after administration with the highest levels found in the liver, followed by kidney, lung, and spleen. Repeated administration (six doses) of [14C]DCB to animals did not result in a substantial accumulation of 14C in the tissues. The elimination of radioactivity from the plasma, liver, kidney, and lung was biphasic showing an initial rapid decline (half-lives 1.68, 5.78, 7.14, and 3.85 hr, respectively) followed by a slower disappearance phase (half-lives 33.0, 77.0, 138.6, and 43.3 hr, respectively). Approximately half of the total 14C in the liver and kidney was covalently bound to cellular macromolecules 72 hr after dosing. [14C]DCB-derived radioactivity was extensively excreted by rats, mainly via the feces. Approximately 23–33% of the administered dose was recovered in the urine and 58–72% in the feces of rats within 96 hr. More than 65% of the administered 14C was eliminated in the bile of bile duct-cannulated rats within 24 hr after dosing. The radioactivity excreted in the urine and bile was primarily in the form of free (urine 71.2%, bile 25.5%) and conjugated (urine 19.6%, bile 57.9%) metabolites of DCB. Thus DCB is readily absorbed following oral administration, and then metabolized and excreted mainly via the feces.  相似文献   

19.
The pharmacokinetics of [14C]-quazodine, a new bronchodilator, were examined in man and dog. Absorption, metabolism, and excretion of quazodine were studied in the rat, dog, and man, while distribution of the drug was measured in rats. After iv dosage, clearance of unchanged drug from plasma was rapid in both dogs and man and followed a biexponential decay curve in accordance with the equation Cp = Ae?αt + Be?βt. A good fit between the actual data and the computer-generated curves was obtained employing a nonlinear regression analysis computer program. After po administration quazodine was rapidly absorbed in both man and dog, a peak plasma concentration being observed at 0.5 hr in man and at 1 hr in dogs. The drug did not localize in cerebrospinal fluid of dogs. Radioactivity was found in all tissues of rats at 1 hr after oral dosage, and no evidence for extreme drug localization or prolonged retention was found in any tissue including brain. In rats, 71.9% of the dose was recovered in urine and 14.2% in feces during the first 3 days after dosing. The 72-hr recoveries in dog urine and feces were 61.4 and 25.8%, whereas in humans these values were 84.1 and 1.1%, respectively. The major pathway for metabolism of quazodine in man, and to a lesser extent in the dog and rat, was by demethylation at the 7-position of the quinazoline ring-system followed by conjugation with glucuronic acid or sulfate. The glucuronide conjugate accounted for 78.0% of the radioactivity in human urine, 45.1% in dog, and 27.4% in rat urine. The amount of radioactivity present as the sulfate conjugate was 3.1, 15.3, and 10.5% in human, dog, and rat urine, respectively.  相似文献   

20.
The purpose of this study was to examine the effect of enterohepatic circulation on the pharmacokinetics of diflunisal in rats. The "linked animals" experiments provided evidence that diflunisal exhibits an enterohepatic circulation. Within 26 hr after iv administration of diflunisal (10 mg/kg) to rats, excretion was as follows: 42.2% of the dose, bile; 2.3%, unchanged drug; 27.8%, ester glucuronide; and 12.1%, ether glucuronide. On the average, approximately 65% of the amount of the drug and its glucuronides excreted in bile was reabsorbed from the gut. Biliary excretion and plasma data showed that biotransformation of diflunisal to its glucuronides is the rate-limiting step in their elimination. A concentration-dependent decrease in the partial formation clearance to ester glucuronide was observed with decreased concentration of diflunisal. These concentration-dependent kinetics can be at least partly explained by the nonlinear protein binding of diflunisal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号