首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has previously been proposed that a Ca2+-dependent K+ conductance is implicated in the inhibitory odourant response in rat and toad olfactory receptor neurons. Previous whole-cell and single-channel measurements on inside-out excised patches, in addition to immunochemical evidence, indicated the presence of Ca2+-dependent K+ channels in olfactory cilia, the transducing structures of these sensory cells. Ca2+-dependent K+ channels opened in 'on-cilium' membrane patches from C. caudiverbera upon odourant stimulation. Furthermore, after excision in the inside-out configuration, the channel could be opened by micromolar Ca2+, in a Ca2+-dependent fashion, but it was unresponsive to cyclic AMP. We estimated that the Ca2+ concentration in the proximity of a Ca2+-dependent K+ channel within the cilia reaches at least 100 microM during the odour response. The K+ channel displayed a higher selectivity for K+ than for Na+. Our results support a role for this Ca2+-dependent K+ channel in chemotransduction.  相似文献   

2.
We have used single-channel recording techniques to investigate the properties of sodium-activated potassium channels (KNa channels) in cultured rat olfactory bulb neurons, and in large neurons in the mitral cell layer of thin slices of olfactory bulb. Ion channels highly selective for potassium over sodium and chloride, and requiring 10-180 mM internal sodium (Nai) for their activation, were present in approximately 75% of inside-out membrane patches detached from cultured olfactory bulb neurons. Most of these patches contained several KNa channels. KNa channels were seen in cell-attached patches only when Nai was raised by including veratridine in the extracellular medium. Preincubation of the cell in TTX or removal of extracellular sodium prevented this effect of veratridine, confirming that the channels observed under these conditions were indeed KNa channels. Lithium did not substitute for Nai in activating these channels. With 150 mM potassium on both sides of the membrane, KNa channels had a single-channel conductance of 172 pS, and at least two subconducting states were observed in addition to this fully open state. Under these ionic conditions, the channels exhibited linear fully open channel current-voltage curves over the potential range of -100 to 0 mV. At voltages more positive than the potassium equilibrium potential, the single-channel currents exhibited inward rectification as a result of sodium block of outward potassium current. The channels opened in bursts, during which they fluctuated between the fully open and closed states, and the substates. Between bursts they sometimes entered a long-lived inactive state that could last for up to several minutes. In addition, KNa channels in the detached patches exhibited rundown, a progressive irreversible loss in activity, over a time course that varied from less than 1 min to longer than 1 hr. Rundown of KNa channel activity in cell-attached patches (in the presence of veratridine) did not occur, suggesting that some intracellular factor necessary for KNa channel activity is lost when the membrane patch is detached from the cell.  相似文献   

3.
Mutations in alpha1A, the pore-forming subunit of P/Q-type calcium channels, are linked to several human diseases, including familial hemiplegic migraine (FHM). We introduced the four missense mutations linked to FHM into human alpha1A-2 subunits and investigated their functional consequences after expression in human embryonic kidney 293 cells. By combining single-channel and whole-cell patch-clamp recordings, we show that all four mutations affect both the biophysical properties and the density of functional channels. Mutation R192Q in the S4 segment of domain I increased the density of functional P/Q-type channels and their open probability. Mutation T666M in the pore loop of domain II decreased both the density of functional channels and their unitary conductance (from 20 to 11 pS). Mutations V714A and I1815L in the S6 segments of domains II and IV shifted the voltage range of activation toward more negative voltages, increased both the open probability and the rate of recovery from inactivation, and decreased the density of functional channels. Mutation V714A decreased the single-channel conductance to 16 pS. Strikingly, the reduction in single-channel conductance induced by mutations T666M and V714A was not observed in some patches or periods of activity, suggesting that the abnormal channel may switch on and off, perhaps depending on some unknown factor. Our data show that the FHM mutations can lead to both gain- and loss-of-function of human P/Q-type calcium channels.  相似文献   

4.
Outside-out patches of extrasynaptic membrane were isolated from leg muscles of locusts. L-Glutamate and its agonists were applied to such patches either continuously or in rapidly switched pulses. When the pipette contained a high chloride concentration, 2.5 x 10(-5) M glutamate triggered single-channel currents (gated by H-receptors) with a conductance of 25 pS which were carried by chloride, in addition to cationic channels (gated by D-receptors). For the chloride channels, the distribution of channel open times had components of about 2 and 12 ms. Pulses of higher glutamate concentrations elicited many superimposed channel openings, and the approximately saturating concentration of 10(-3) M glutamate opened 100-200 channels simultaneously. When the pipette contained low chloride, channel conductance was reduced, and the current voltage relation was shifted towards the now negative chloride equilibrium potential. H-Receptor-gated chloride channels were activated by glutamate, ibotenate and aspartate, but not by GABA, quisqualate, kainate, N-methyl-D-aspartate and carbachol. The currents declined in the continued presence of agonist showing a time constant of desensitization greater than 1 s. Recovery from desensitization after removal of the agonist was tested with double pulses and was found to have a time constant of about 300 ms.  相似文献   

5.
The spatial distribution of transient K current, IA, was studied using a combination of patch-clamp and whole-cell voltage-clamp techniques. The average IA current density in somatic patches is 0.64 times the current density in the entire axotomized cell body, a finding which suggests that the axon hillock or initial segment of the axon has a higher concentration of IA channels than much of soma. The highest density of active channels during the peak IA is 1/micron2 at a membrane voltage of -20 mV. There is no evidence for a gradient in the distribution of IA channels in the cell body, but the channels are not evenly distributed. The variability in the number of channels per patch for multiple patches on the same neuron is much higher than expected for a random distribution. Statistical analysis of the data yields a coefficient of dispersion of 8.1, a value indicating a high degree of clustering. The utility of this statistic for evaluating channel distributions is discussed. Several lines of evidence suggest that the upper limit for the area of IA channel clusters is approximately 250 micron2. Single-channel currents attributed to IA were recorded in the cell-attached configuration. The voltage dependence of channel opening and inactivation are the same as measured in whole-cell voltage-clamp experiments. The single-channel conductance is about 9 pS in normal saline. Patches 9-30 micron2 in areas that contain IA channels are often devoid of other K channel types, suggesting that IA channels can occur in isochannel clusters. IA inactivation follows an exponential time course in all of the neurons examined, but the time constant of inactivation ranges from 25 to 560 msec in different cells. The voltage dependence of activation and inactivation and the reversal potential of the current are approximately the same in all cells. When multiple patches on the same neuron are studied, it is found that IA inactivates exponentially with approximately the same time constant in each patch, regardless of patch area. The data suggest that each neuron expresses predominantly, and perhaps exclusively, a single type of IA channel with distinct kinetic properties. The wide range of IA inactivation time constants observed in different cell suggests that a large number of channel types are available for expression. Possible mechanisms for generating diversity in channel types are discussed.  相似文献   

6.
We examined both the development of electrical excitability in cultured Xenopus muscle over a period of 7 days, and the effects of neural tube on the muscle action potential. During muscle development, delayed and anomalous rectification were present in most cases within 24 hr. The action potential was dependent on Na at all times examined, and the rate of rise of the action potential (Vmax) increased substantially (seven-fold) from the first 2 days to 6 to 7 days in vitro, reflecting an increase in Na current density. In order to determine the mechanism for the increase in Vmax, we examined single-channel Na currents using the gigaseal technique. Single-channel conductance (gamma) did not increase substantially when measured using the patch clamp technique: gamma = 24 pS at 1 to 2 days, and gamma = 28 pS at 4 to 6 days. The channel open time at 14 degrees C was 0.6 msec for 1- to 2-day-old cells and 0.5 msec in 4- to 6-day-old cells at a step potential 40 mV from rest. The time constant for current decay as well as the time-to-peak current also did not change over time. Thus, channel kinetics appear unchanged. The maximum inward current from summed records was statistically greater for older cells, and the frequency of patches displaying single-channel events increased from 75 to 98%. Thus, we conclude that during development in vitro, Na current density increases as a result of an increase in channel density without detectable alterations in single-channel properties. Neural tube addition led to a further increase in Vmax (two-fold), even in muscle cells with no apparent nerve contact. Single channel analysis of cells in coculture revealed gamma to be 28 pS in three cells displaying a single amplitude peak for individual Na currents. In the majority of cases (9/12), however, there appeared to be two classes of Na channels present which were difficult to separate. The larger conductance channel likely corresponds to the 28 pS class. The smaller channels, when present, did not contribute substantially to the population of events comprising the amplitude histogram. Other single-channel kinetic parameters also did not change. We, therefore, conclude that neural tube addition does not effect activation or inactivation kinetics but likely causes a further increase in channel density and possibly the induction of a second type of Na channel.  相似文献   

7.
Spatial distribution of the cAMP-gated channel was investigated in amphibian olfactory receptor cells. Low doses of cAMP applied to the cytoplasmic side of a membrane patch excised from cilia produced single channel activity of unitary conductance 28pS. Variance analysis showed that the ciliary membrane contained 920 cAMP gated-channels/microns2 in the newt and 2400 channels/microns2 in the toad. In contrast, the membrane of the dendrite and cell body contained only 2 cAMP-gated channels/microns2 (newt) and 6 channels/microns2 (toad). Thus, there is a high density of cAMP-gated channels in the cilia where olfactory transduction is thought to take place.  相似文献   

8.
9.
Ionic channels in mouse astrocytes in culture   总被引:14,自引:0,他引:14  
We observed Na, K, and Cl voltage-dependent currents in a patch-clamp study of mouse brain astrocytes. In whole-cell recordings, depolarizations activated inward currents that were identified as Na currents since they were blocked by TTX, although complete block required high concentrations (greater than 1 microM). The corresponding single-channel Na currents were observed in outside-out patches. The channels were opened by a depolarizing pulse applied from a holding potential identical to the resting potential (-70 to -80 mV). Therefore, they may be considered functional Na channels. After addition of veratridine and an alpha-scorpion toxin, the decay of Na currents in whole-cell recordings was slower than observed under control conditions. At the single-channel level, the channels appeared to open in bursts. Depolarization did not increase the duration of the bursts, but inside each burst, increased the time spent in the open state. The K currents observed in the whole-cell recording mode were separated into inactivating and noninactivating currents. The inactivating current resembled the A current in its kinetics, its insensitivity to tetraethylammonium, and its sensitivity to 4-aminopyridine. At the single-channel level, at least 3 classes of K channels were observed at steady depolarized potentials. They resembled the K channels found in chromaffin cells by Marty and Neher (1985). Large conductance channels (385 pS) activated around 0 mV were identified as Cl channels.  相似文献   

10.
C Erxleben 《Glia》1991,4(3):285-292
Unitary currents through single ion channels in the glial cells, which ensheath the abdominal stretch receptor neurons of the crayfish, were characterized with respect to their basic kinetic properties. In cell-attached and excised patches two types of Ca(++)-independent K+ channels were observed with slope conductances of 57 pS and 96 pS in symmetrical K+ solution. The 57 pS K+ channel was weakly voltage-dependent with a slope of the Po vs. membrane potential relationship of +95 mV for an e-fold change in Po. In addition to the main conductance level, the channel displayed conductance levels of 80 and 109 pS. In excised patches, channel activity of this "subconductance" K+ channel showed "rundown" that could be prevented with 2 mM ATP-Mg on the cytoplasmic side of the membrane. The 96 pS K+ channel was strongly voltage-dependent with a slope of +12 mV for an e-fold change in Po. Averaged single-channel currents elicited by voltage jumps proved the channel to be of the delayed rectifying type. Channel activity persisted in excised patches with minimal salt solution and in virtually Ca(++)-free saline. Because of its dependence on intracellular ATP-Mg, the subconductance K+ channel is discussed as a target of modulation by transmitters or peptides via phosphorylation of the channel.  相似文献   

11.
Voltage-sensitive K+ channels were studied in rat cerebellar Purkinje neurons in culture using the single-channel recording technique. Recordings in the cell-attached and outside-out configuration revealed multiple voltage-sensitive K+ channel types in patches from both the somatic and the dendritic regions. K+ channel types were present in all patches studied. The same channel types were observed in somatic and dendritic recordings. Channel types were identified by reversal potential, single-channel conductance, voltage sensitivity, and patterns of activity. In cell-attached patches recorded under physiological conditions, 3 channel types were identified. Mean single-channel conductances were 92, 57, and 12 pS. All 3 channel types were activated by membrane depolarization. Similar channel types were identified in inside-out and outside-out patches recorded under physiological conditions. Two additional channel types were identified in the outside-out patches, with mean single-channel conductances of 41 and 26 pS. In cell-attached recordings under symmetrical K+ conditions, 6 channel types were identified. Mean single-channel conductances were 222, 134, 39, 25, 14, and 15 pS. Channel types with mean conductances of 222, 134, and 39 pS required membrane depolarization for activation. A comparison of channel properties indicated that these channel types correlated with the 3 channel types observed in cell-attached patches under physiological conditions. The 3 smaller-conductance channel types (25, 14, and 15 pS) were active at potentials around rest or at hyperpolarized membrane potentials. Two K+ channel types (39 and 25 pS) were commonly associated with the late phase of extracellularly recorded spontaneous spike events, suggesting a functional role in the repolarizing phase of somatic and dendritic action potentials. These results demonstrate that voltage-sensitive K+ channels are a prominent component of both the somatic and the dendritic membrane of the cerebellar Purkinje neuron and support the view that multiple voltage-sensitive K+ channel types contribute to the membrane functions of both cellular regions in this CNS neuronal type.  相似文献   

12.
Effect of zinc on NMDA receptor-mediated channel currents in cortical neurons.   总被引:16,自引:0,他引:16  
Recent data have indicated that the divalent cation Zn2+ can selectively block central neuronal excitation mediated by N-methyl-D-aspartate (NMDA) receptors. The present experiments were conducted to determine the action of Zn2+ at the single-channel level. Outside-out membrane patches were prepared from cultured murine cortical neurons. Glutamate, 3 microM, in the presence of 5 microM glycine activated channels with a main conductance state of about 50 pS which were blocked in a voltage-dependent manner by Mg2+. Zn2+ appeared to have 2 effects on these NMDA receptor-activated channels. First, at concentrations as low as 1-10 microM, Zn2+ produced a concentration-dependent reduction in channel open probability, insensitive to membrane voltage between -60 and +40 mV; about 50% reduction in open probability was produced by 3 microM Zn2+. This reduction was mostly due to a decrease in opening frequency and only weakly mimicked by Mg2+. Second, at higher concentrations (10-100 microM) and negative membrane voltages, Zn2+ additionally produced an apparent reduction in single-channel amplitude, associated with an increase in channel noise, suggestive of a fast channel block. The amplitude reduction was voltage-dependent, with a delta of 0.51; amplitude distribution analysis suggested that this voltage dependence was primarily contributed by the "on" blocking rate constant, with little contribution from the "off" rate constant. The channel block produced by Zn2+ was faster than that of Mg2+, which at 100 microM and negative membrane voltages induces flickering of the NMDA receptor-activated channel without changing apparent channel amplitude.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The present study investigated the effects of N-glycosylation sites on Torpedo acetylcholine (ACh) receptors expressed in Xenopus oocytes by monitoring whole-cell membrane currents and single-channel currents from excised patches. Receptors with the mutant subunit at the asparagine residue on the conserved N-glycosylation site (mbetaN141D, mgammaN141D, or mdeltaN143D) or the serine/threonine residue (mbetaT143A, mgammaS143A, or mdeltaS145A) delayed the rate of current decay as compared with wild-type receptors, and the most striking effect was found with receptors with mbetaT143A or mgammaS143A. For wild-type receptors, the lectin concanavalin A, that binds to glycosylated membrane proteins with high affinity, mimicked this effect. Receptors with mbetaN141D or mdeltaN143D exhibited lower single-channel conductance, but those with mbetaT143A, mgammaS143A, or mdeltaS145A otherwise revealed higher conductance than wild-type receptors. Mean opening time of single-channel currents was little affected by the mutation. N-glycosylation sites, thus, appear to play a role in the regulation of ACh receptor desensitization and ion permeability.  相似文献   

14.
Using patch-clamp techniques, we recorded single-channel currents from the plasma membrane of the outer segment of isolated light-adapted rods. The channels are potassium-selective and their conductance is about 87 pS. The channels are activated by depolarization and are not sensitive to cytoplasmic calcium, they are exclusively found in rods isolated with the proteolytic enzyme papain, and are not detected in rods isolated by mechanical means. Thus, these channels do not exist in an activatable form in the outer segment plasma membrane under physiological conditions. The channels might be derived from a normally inaccessible structure, such as the disk membrane, or, alternatively, they might be a modified form of a channel that is not active in the intact rod.  相似文献   

15.
Perillán PR  Li X  Potts EA  Chen M  Bredt DS  Simard JM 《Glia》2000,31(2):181-192
Astrocytic inward rectifying K(+) channels that participate in K(+) spatial buffering in the central nervous system have been extensively investigated, but specific gene products have not been fully identified. We studied primary cultured reactive astrocytes of stellate and polygonal morphology from adult rat brains, as well as stellate astrocytes from neonatal rat brains. Single-channel recordings of cell-attached patches revealed that polygonal reactive astrocytes expressed only one hyperpolarization-activated single-channel conductance of 11-15 pS whose open probability was independent of voltage, whereas stellate reactive and stellate neonatal astrocytes exhibited two conductances, 11-15 pS and 24-27 pS. All three subtypes of astrocytes exhibited a hyperpolarization-activated macroscopic inward K(+) current that was strongly rectifying and was abrogated by 1 mM intracellular Mg(2+) introduced during conventional but not perforated patch whole-cell recording. This Mg(2+)-sensitive current comprised the total inward rectifier current in polygonal reactive astrocytes, but only a fraction of the inward rectifier current in stellate reactive and stellate neonatal astrocytes. Because a strongly rectifying, inward rectifier K(+) channel with a single-channel conductance of 11-15 pS that is voltage independent is consistent with features of Kir2.3 (IRK3), we performed immunofluorescence experiments with anti-Kir2.3 and anti-glial fibrillary acidic protein antibodies. Both antibodies co-localized to all three subtypes of astrocytes in primary culture and to reactive astrocytes in situ within brain and gelatin sponge implants. Our data indicate that astrocytes of both polygonal and stellate morphology, from both adult and neonatal rat brain, express Kir2.3 both in vivo and in vitro. Constitutive expression of Kir2.3 regardless of cell morphology or age of origin of the source tissue suggests an important functional role for this channel in astrocytes.  相似文献   

16.
In patch-clamp recordings from excised membrane patches, the distribution of cGMP-activated channels in the plasma membrane of the rod photoreceptor was examined. These channels have been shown to be the light-sensitive channels that carry the inward dark current in the rod outer segment, where phototransduction occurs (Matthews, 1987); thus, they are centrally involved in photoreceptor transduction. In the outer segment, cGMP-activated channels were present at high density. In the inner segment, cGMP-activated channels were also present, but their density was much lower than in the outer segment. Calcium-activated potassium channels had the opposite distribution, with a higher density in the inner segment. The results suggest that there is a barrier preventing the unrestricted spread of membrane proteins between the inner and outer segments.  相似文献   

17.
A method has been adapted to produce membrane vesicles suitable for routine membrane patch clamping from neonate rat skeletal muscle. Single K+ channel activity was recorded from cell-free inside-out patches. Most Ca2(+)-activated voltage sensitive channels had large conductances of up to 300 pS, as determined from their current/voltage relationship, and an open probability (Po) approaching unity at positive membrane potentials. A lower conductance K+ channel, probably responsible for inward rectification, had a lower conductance of about 100 pS. Outward rectifying K+ channels were also observed with the lowest conductance, about 40 pS. 0.1 mM ATP when applied to the inner membrane surface reduced or blocked activity, drastically reducing Po without altering single channel conductance. Such an effect has been reported in other preparations but was different in the neonate preparation in that it blocked channels with conductances as high as 300 pS. The simple preparation described, which we have also used successfully on mature rat and mouse skeletal muscle, has potential in the analysis of channel activities in various conditions and pathologies without the need for tissue culture to produce suitable membrane preparations.  相似文献   

18.
Volatile anaesthetics cause changes in the membrane resting potential of central neurons. This effect probably arises from actions on neuronal ion channels, but may also involve alterations in the ion composition of the extracellular space. Since glial cells play a key role in regulating the extracellular ion composition in the brains of mammals, we analyzed the effects of halothane, isoflurane and enflurane on the membrane conductances and ion channels of cultured cortical astrocytes. Astrocytes were dissociated from the neocortex of 0–2-day old rats and grown in culture for 3–4 weeks. Anaesthetic-induced changes in the membrane potential were recorded in the whole cell current-clamp configuration of the patch-clamp technique. We further studied the effects of halothane and enflurane on single ion channels in excised membrane patches. At concentrations corresponding to 1–2 MAC (1 MAC induces general anaesthesia in 50% of the patients and rats), membrane potentials recorded in the presence of enflurane, isoflurane and halothane did not differ significantly from the control values. At higher concentrations, effects of enflurane and halothane, but not of isoflurane, were statistically significant. Single-channel recordings revealed that halothane and enflurane activated a high conductance anion channel, which possibly mediated the effects observed during whole cell recordings. In less than 10% of the membrane patches, volatile anaesthetics either increased or decreased the mean open time of K+-selective ion channels without altering single-channel conductances. In summary, it seems unlikely that the actions of volatile anaesthetics described here are involved in the state of general anaesthesia. Statistically significant effects occurred at concentrations ten times higher than those required to cause half-maximal depression of action potential firing of neocortical neurons in cultured brain slices. However, it cannot be excluded that the changes observed in the membrane conductance of cortical astrocytes disturb the physiological function of these cells, thereby influencing the membrane resting potential of neurons.  相似文献   

19.
Using the single-channel patch-clamp technique, Ca2+-activated K+ channels of erythrocytes from patients with myotonic muscular dystrophy (MyD) were studied. Elementary single-channel properties—conductance, rectification, kinetics, voltage- and calcium-dependence—measured in inside-out patches of MyD erythrocytes, did not differ significantly from those of control cells. The activity of the channels, studied in patches attached to red cells from MyD patients, exhibited mean patch currents which were significantly higher than the controls. The increased mean patch current was due to a higher opening frequency, associated with a reduced mean channel closed time. These results indicate that Ca2+-activated K+ channels of erythrocytes from patients either detect a higher intracellular calcium concentration and/or express an augmented calcium-sensitivity. Since these channels are targets for phosphorylation, our findings make it possible to identify defective kinase mechanisms, in minimally disturbed cells of the patient, at a molecular level of resolution. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21: 1465–1472, 1998  相似文献   

20.
Single-channel and whole-cell currents in rat cerebellar granule cells   总被引:2,自引:0,他引:2  
The patch-clamp technique was used to study both whole-cell and single-channel currents in cultured rat cerebellar granule cells. In whole-cell recordings under voltage-clamp conditions 3 types of current were found; a transient inward sodium current and a transient and a sustained outward potassium current. Single-channel currents were recorded from both inside-out and outside-out membrane patches. Three types of potassium channel were identified; two non-inactivating channels with unit conductances of 160 and 60 pS and one inactivating channel of 20 pS. No calcium currents were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号