首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to investigate the potential of using polycrystalline lithium formate for EPR (electron paramagnetic resonance) dosimetry of clinical electron beams, with the main focus on the dose-to-water energy response. Lithium formate dosimeters were irradiated using (60)Co gamma-rays and 6-20 MeV electrons in a PMMA phantom to doses in the range of 3-9 Gy. A plane-parallel ion chamber was used for water-based absolute dosimetry. In addition, the electron/photon transport was simulated using the EGSnrc Monte Carlo code. From the EPR measurements, the standard deviation of single dosimeter readings was 1.2%. The experimental energy response (the lithium formate dosimeter reading per absorbed dose to water for electrons relative to that for (60)Co gamma rays) was nearly independent of the electron energy and on average 0.99 +/- 0.03. The Monte Carlo calculated energy response was on average 0.5% higher than the experimental energy response, the difference being not significant. Simulations with water and polystyrene as irradiation media indicated that the energy response of lithium formate dosimeters was nearly independent of the phantom materials. In conclusion, lithium formate EPR dosimetry of clinical electron beams provides precise dose measurements with low dependence on the electron energy.  相似文献   

2.
The electron paramagnetic resonance (EPR) alanine dosimetry system is based on EPR measurements of radicals formed in alanine by ionizing radiation. The system has been studied to determine its energy dependence for photons in the 10-30 MV region relative to those of 60Co and to find out if the system would be suitable for dosimetry comparisons. The irradiations were carried out at the National Research Council, Ottawa, Canada and the doses ranged from 8 to 54 Gy. The EPR measurements were performed at the University of Oslo, Norway. The ratio of the slope of the alanine reading versus dose-to-water curve for a certain linac photon beam quality and the corresponding slope for a reference 60Co gamma-radiation gives an experimental measure of the relative dose-to-water response of the EPR alanine dosimetry system. For calculating the linear regression coefficients of these alanine reading versus dose curves, the method of weighted least squares was used. This method is assumed to produce more accurate regression coefficients when applied to EPR dosimetry than the common method of standard least squares. The overall uncertainty on the ratio of slopes was between 0.5 and 0.6% for all three linac energies. The relative response for all the linac beams compared to cobalt was less than unity: by about 0.5% for the 20 and 30 MV points but by more than 1% for the 10 MV point. The given standard uncertainties negate concluding that there is any significant internal variation in the measured response as a function of beam quality between the three linac energies. Thus, we calculated the average dose response for all three energies and found that the alanine response is 0.8% (+/-0.5%) lower for high energy x-rays than for 60Co gamma-rays. This result indicates a small energy dependence in the alanine response for the high-energy photons relative to 60Co which may be significant. This result is specific to our dosimetry system (alanine with 20% polyethylene binder pressed into a particular shape) including its waterproofing sleeve of PMMA (2 mm thick); however, we expect that this result may apply to other similar detectors.  相似文献   

3.
The objective of the present investigation was to evaluate lithium formate electron paramagnetic resonance (EPR) dosimetry for measurement of dose distributions in phantoms prior to intensity-modulated radiation therapy (IMRT). Lithium formate monohydrate tablets were carefully prepared, and blind tests were performed in clinically relevant situations in order to determine the precision and accuracy of the method. Further experiments confirmed that within the accuracy of the current method, the dosimeter response was independent of beam energies and dose rates used for IMRT treatments. The method was applied to IMRT treatment plans, and the dose determinations were compared to ionization chamber measurements. The experiments showed that absorbed doses above 3 Gy could be measured with an uncertainty of less than 2.5% of the dose (coverage factor k = 1.96). Measurement time was about 15 min using a well-calibrated dosimeter batch. The conclusion drawn from the investigation was that lithium formate EPR dosimetry is a promising new tool for absorbed dose measurements in external beam radiation therapy, especially for doses above 3 Gy.  相似文献   

4.
The energy dependence of alanine/EPR dosimetry, in terms of absorbed dose-to-water for clinical 6, 10, 25 MV x-rays and 60Co gamma-rays was investigated by measurements and Monte Carlo (MC) calculations. The dose rates were traceable to the NRC primary standard for absorbed dose, a sealed water calorimetry. The electron paramagnetic resonance (EPR) spectra of irradiated pellets were measured using a Bruker EMX 081 EPR spectrometer. The DOSRZnrc Monte Carlo code of the EGSnrc system was used to simulate the experimental conditions with BEAM code calculated input spectra of x-rays and gamma-rays. Within the experimental uncertainty of 0.5%, the alanine EPR response to absorbed dose-to-water for x-rays was not dependent on beam quality from 6 MV to 25 MV, but on average, it was about 0.6% lower than its response to 60Co gamma-rays. Combining experimental data with Monte Carlo calculations, it is found that the alanine/EPR response per unit absorbed dose-to-alanine is the same for clinical x-rays and 60Co gamma-rays within the uncertainty of 0.6%. Monte Carlo simulations showed that neither the presence of PMMA holder nor varying the dosimeter thickness between 1 mm and 5 mm has significant effect of the energy dependence of alanine/EPR dosimetry within the calculation uncertainty of 0.3%.  相似文献   

5.
The aim of this study was to investigate signal fading in lithium formate electron paramagnetic resonance (EPR) dosimeters used for clinical applications in radiotherapy. A new experimental method for determination of signal fading, designed to resolve small changes in signal from slowly decaying unstable radicals, was used. Possible signal fading in lithium formate due to different storage temperatures was also tested. Air humidity was kept at a constant level of 33% throughout the experiments. The conclusion drawn from the investigations was that the EPR signal from lithium formate is stable during at least 1 month after irradiation and is not sensitive to variations in storage temperature <40?°C when kept at a relative air humidity of 33%. This makes lithium formate a suitable dosimeter for transfer dosimetry in clinical audits.  相似文献   

6.
Recently the EDR2 (extended dose range) film has been introduced commercially for applications in radiation therapy dosimetry. In addition to characterizing the wide dynamic range, several authors have reported a reduced energy dependence of this film compared to that of X-Omatic Verification (XV) films for megavoltage photon beams. However, those investigations were performed under limited geometrical conditions. We have investigated the dosimetric performance of EDR2 film for the verification of IMRT fields at more clinically relevant conditions by comparing the film doses with the doses measured with an ion chamber and XV films. The effects of using a low energy scattered photon filter on EDR2 film dosimetry was also studied. In contrast to previous reports our results show that EDR2 film still exhibits considerable energy dependence (a maximum discrepancy of 9%, compared with an ion chamber) at clinically relevant conditions (10 cm depth for IMRT fields). However, by using the low-energy filters the discrepancy is reduced to within 3%. Therefore, EDR2 film, in combination with the filters, is found to be a promising two-dimensional dosimeter for verification of IMRT treatment fields.  相似文献   

7.
This work explores the possibility of measuring the absorbed dose of ultrasoft x-rays (USX, 1.5 keV Al(Kalpha)) with GAFCHROMIC HD-810 radiochromatic dosimetry films (HD-810 films) and colour scanners. HD-810 films were exposed to USX, soft x-rays (14.8 keV) and gamma-rays (60Co) for various times. The response of HD-810 films to absorbed doses of gamma-rays in water was calibrated with Fricke dosimetry and used for the calibration of USX. The optical density of the HD-810 films was quantified with an HP ScanJet 6100C scanner and Corel Picture Paint 7. The choice of the reading channel and colour adjustment settings were optimized to either improve sensitivity or expand the measurable dose range. The response of the HD-810 films to the absorbed dose in water decreased by 50% when the effective photon energy decreased from 1.25 MeV to 14.8 keV. The ratio of the mass energy absorption coefficient of the active layer of HD-810 films to that of water was found to play a major role in this decrease. The mean absorbed doses of the active layer of the HD-810 films exposed to USX were derived. The calculation of the initial photon fluence rate and the mean absorbed doses of USX to biological samples such as plasmid DNA is discussed. This study suggests that radiochromatic dosimetry films are promising secondary dosimeters for measuring the absorbed dose of USX.  相似文献   

8.
A commercial optically stimulated luminescence (OSL) dosimetry system was investigated for in vivo dosimetry in radiation therapy. Dosimetric characteristics of InLight dot dosimeters and a microStar reader (Landauer Inc.) were tested in (60)Co beams. The reading uncertainty of a single dosimeter was 0.6%. The reproducibility of a set of dosimeters after a single irradiation was 1.6%, while in repeated irradiations of the same dosimeters it was found to be 3.5%. When OSL dosimeters were optically bleached between exposures, the reproducibility of repeated measurements improved to 1.0%. Dosimeters were calibrated for the entrance dose measurements and a full set of correction factors was determined. A pilot patient study that followed phantom validation testing included more than 100 measured fields with a mean relative difference of the measured entrance dose from the expected dose of 0.8% and the standard deviation of 2.5%. In conclusion, these results demonstrate that OSL dot dosimeters represent a valid alternative to already established in vivo dosimetry systems.  相似文献   

9.
In the current work, EPR (electron paramagnetic resonance) dosimetry using alanine films (134 microm thick) was utilized for dose measurements in inhomogeneous phantoms irradiated with radiotherapy photon beams. The main phantom material was PMMA, while either Styrofoam or aluminium was introduced as an inhomogeneity. The phantoms were irradiated to a maximum dose of about 30 Gy with 6 or 15 MV photons. The performance of the alanine film dosimeters was investigated and compared to results from ion chamber dosimetry, Monte Carlo simulations and radiotherapy treatment planning calculations. It was found that the alanine film dosimeters had a linear dose response above approximately 5 Gy, while a background signal obscured the response at lower dose levels. For doses between 5 and 60 Gy, the standard deviation of single alanine film dose estimates was about 2%. The alanine film dose estimates yielded results comparable to those from the Monte Carlo simulations and the ion chamber measurements, with absolute differences between estimates in the order of 1-15%. The treatment planning calculations exhibited limited applicability. The current work shows that alanine film dosimetry is a method suitable for estimating radiotherapeutical doses and for dose measurements in inhomogeneous media.  相似文献   

10.
This study is concerned with dose measurement of photon beams, both dynamic and static, by using x-ray film. As discussed in our last study (Burch et al 1997, Yeo et al 1997), x-ray film, as an integrating dosimeter, can be an ideal candidate if the over-response problem to low-energy photons (energies below 400 keV) is solved. In summary, the problem of the over-response can be explained as follows. Because the mass energy absorption coefficient of x-ray film increases as photon energy decreases, softening of the photon spectra with depth in a phantom makes the extent of film over-response a function of phantom depth (Burch et al 1997, Yeo et al 1997). Film dosimetry is based upon (a) calibration of the film response (i.e. optical density) at some specific depth in a phantom and (b) conversion of the film density which can cover whole depths in a phantom to dose by using the calibration curve. In megavoltage dosimetry, this normally causes over-response in doses at depths greater than the calibration depth.  相似文献   

11.
The energy dependence of lithium fluoride dosemeters is a complicated function of energy as well as of cavity size. In the application of TLD to charged particle dosimetry, a cavity perturbation effect may exist even though the ratios of the mass stopping powers are constant over the energies encountered. This effect was investigated for lithium fluoride rods in electron fields ranging in energy from 2-5 to 20 MeV. A 13% change of TL response per unit of absorbed dose was measured over that energy range. A semi-empirical theory was developed to account for the cavity effect, using Burlin cavity theory as a starting point. The agreement between theory and measurement is satisfactory.  相似文献   

12.
The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.  相似文献   

13.
The energy dependence of alanine/EPR dosimetry for 8, 12, 18 and 22 MeV clinical electron beams was investigated by experiment and by Monte Carlo simulations. Alanine pellets in a waterproof holder were irradiated in a water phantom using an Elekta Precise linear accelerator. The dose rates at the reference point were determined following the TG-51 protocol using an NACP-02 parallel-plate chamber calibrated in a (60)Co beam. The EPR spectra of irradiated pellets were measured using a Bruker EMX 081 EPR spectrometer. Experimentally, we found no significant change in alanine/EPR response to absorbed dose-to-water over the energy range 8-22 MeV at an uncertainty level of 0.6%. However, the response for high-energy electrons is about 1.3 (+/-1.1)% lower than for (60)Co. The EGSnrc Monte Carlo system was used to calculate the ratio of absorbed dose-to-alanine to absorbed dose-to-water and it was shown that there is 1.3 (+/-0.2)% reduction in this ratio from the (60)Co beam to the electron beams, which confirms the experimental results. Alanine/EPR response per unit absorbed dose-to-alanine was also investigated and it is the same for high-energy electrons and (60)Co gamma-rays.  相似文献   

14.
Epoxy resin phantom materials have been available for some time and are widely used for dosimetry purposes, not least in audit phantoms. Information on their behaviour is partly available in the literature, but there are different mixes and formulations often given similar names and it may not be appropriate to transfer information from one material to another. Five commercially available water substitute materials have been evaluated for use in megavoltage photon beams: WT1, WTe, RMI 451, RMI 457 and 'plastic water'. Four independent experiments were carried out to compare these materials with water in megavoltage photon beams ranging in energy from cobalt 60 to nominal 16 MV x-rays, and some general conclusions are drawn from the results as to their use. All are suitable for relative dosimetry in megavoltage photon beams. However, differences of up to 1% are observed for absolute measurements. The newer formulations, developed for electron beam use, are also closer to water for megavoltage photon beams.  相似文献   

15.
Dosimetric evaluation of a new design MOSFET in vivo dosimeter   总被引:1,自引:0,他引:1  
A single-use dosimeter, designed for in vivo patient dosimetry, has been evaluated. Key dosimetric characteristics of the dosimetry system have been measured for high-energy photon and electron beams commonly used in external beam therapy. Under the measurement conditions utilized, dose accuracy was within 5% for all data points, and inter-batch uniformity was acceptable, with a standard deviation of 1.7%. Dose linearity was confirmed for doses ranging from 2 to 400 cGy. The dosimeter readings were independent of dose rate for rates ranging from 80 to 480 cGy/min. When used as instructed, the dosimeter readings were accurate across the tested range of energy and modality. These measurements show that the dosimetry system's performance may be acceptable for in vivo dosimetry of entrance d(max) doses.  相似文献   

16.
It is well known that the experimental dosimetry of brachytherapy sources presents a challenge. Depending on the particular-dosimeter used, measurements can suffer from poor spatial resolution (ion chambers), lack of 3D information (film) or errors due to the presence of the dosimeter itself distorting the radiation flux. To avoid these problems, we have investigated the dosimetry of a clinical 192Ir source using a polyacrylamide gel (PAG) dosimeter. Experimental measurements of dose versus radial distance from the centre of the source (cross-line plots) were compared with calculations produced with a Nucletron NPS planning system. Good agreement was found between the planning system and gel measurements in planes selected for analysis. Gel dosimeter measurements in a coronal plane through the phantom showed a mean difference between measured absorbed dose and calculated dose of 0.17 Gy with SD = 0.13 Gy. Spatially, the errors at the reference point remain within one image pixel (1.0 mm). The use of polymer gel dosimetry shows promise for brachytherapy applications, offering complete, three-dimensional dose information, good spatial resolution and small measurement errors. Measurements close to the source, however, are difficult, due to some of the limiting properties of the polyacrylamide gel.  相似文献   

17.
A large area and highly sensitive thermoluminescent (TL) sheet film was used for two-dimensional dose distribution measurements at millimetre distances from a 103Pd interstitial brachytherapy source. The TL film is made of Teflon homogeneously mixed with small particles of thermoluminescent material (BaSO4: Eu doped). This TL sheet (5 cm x 5 cm) was used to determine the relative dosimetric characteristics (i.e., radial dose function, 2D and 1D anisotropy functions, as defined by the updated AAPM Task Group No 43 report) of the model 200 103Pd source that emits low energy photons (21 keV). The two-dimensional dosimetry data were obtained for distances from the source surface to 15 mm. The radial dose function measured with the TL sheet is in reasonable agreement within 11% with the values recommended in the updated AAPM TG-43 report. All the measured 2D dose distributions showed limited symmetry about the source axes. The differences between the 1D anisotropy function values measured with the TL sheet and the data recommended in the updated AAPM TG-43 report were 10% at 5 mm and 7.5% at 10 mm, respectively, for the model 200 103Pd seed. Our experiments have demonstrated that it is feasible to use the TL sheet as a dosimeter in the determination of the dosimetric characteristics in the immediate vicinity of interstitial brachytherapy sources emitting low energy photons.  相似文献   

18.
This work reports the results of an experiment carried out to investigate the compatibility of TG-21 ion chamber calibration with Fricke dosimetry near the extremes of the clinically available megavoltage photon energy range. Doses determined from ion chamber measurements and from chemical dosimetry are compared for a 6-MV linear accelerator x-ray beam and 45-MV betatron beam. The Fricke dosimetry was carried out by the National Institute of Standards and Technology. Agreement within 1% between the two techniques was obtained at both photon energies using a currently accepted G-value.  相似文献   

19.
GafChromic (MD-55-2) radiochromic film has become increasingly popular for medical applications and has proven to be useful for brachytherapy dosimetry. To measure the absolute dose near a brachytherapy source, the response of the proposed detector in the measurement conditions relative to the response of the detector in calibration conditions must be known. MD-55-2 radiochromic film has been exposed in four different photon beams, a 30 and 40 kVp tungsten anode x-ray beam, a 75 kVp orthovoltage therapy beam, and a 60Co teletherapy beam to measure the relative detector response. These measurements were combined with coupled photon/electron Monte Carlo transport calculations to determine the absolute detector response. The Los Alamos National Laboratory Monte Carlo transport code MCNP4B2 was used. The measured relative response of this batch of MD-55-2 film varies from 8.79 mOD/Gy, measured for the 60Co beam, by as much as 42% for the low-energy x-ray beams. However, the absolute detector response varies from 4.32 mOD/Gy for the 60Co beam by, at most, only 6.3%. In this work we demonstrate that the absolute detector response of MD-55-2 radiochromic film is a constant and independent of beam quality. Further, this work shows that MCNP4B2 accurately simulates the energy response and geometry artifacts of the radiochromic film.  相似文献   

20.
The suitability of radiochromic EBT film was studied for high-precision clinical quality assurance (QA) by identifying the dose response for a wide range of irradiation parameters typically modified in highly-conformal treatment techniques. In addition, uncertainties associated with varying irradiation conditions were determined. EBT can be used for dose assessment of absorbed dose levels as well as relative dosimetry when compared to absolute absorbed dose calibrated using ionization chamber results. For comparison, a silver halide film (Kodak EDR-2) representing the current standard in film dosimetry was included. As an initial step a measurement protocol yielding accurate and precise results was established for a flatbed transparency scanner (Epson Expression 1680 Pro) that was utilized as a film reading instrument. The light transmission measured by the scanner was found to depend on the position of the film on the scanner plate. For three film pieces irradiated with doses of 0 Gy, approximately 1 Gy and approximately 7 Gy, the pixel values measured in portrait or landscape mode differed by 4.7%, 6.2% and 10.0%, respectively. A study of 200 film pieces revealed an excellent sheet-to-sheet uniformity. On a long time scale, the optical development of irradiated EBT film consisted of a slow but steady increase of absorbance which was not observed to cease during 4 months. Sensitometric curves of EBT films obtained under reference conditions (SSD = 95 cm, FS = 5 x 5 cm(2), d = 5 cm) for 6, 10 and 25 MV photon beams did not show any energy dependence. The average separation between all curves was only 0.7%. The variation of the depth d (range 2-25 cm) in the phantom did not affect the dose response of EBT film. Also the influence of the radiation field size (range 3 x 3-40 x 40 cm(2)) on the sensitometric curve was not significant. For EDR-2 films maximum differences between the calibration curves reached 7-8% for X6MV and X25MV. Radiochromic EBT film, in combination with a flatbed scanner, presents a versatile system for high-precision dosimetry in two dimensions, provided that the intrinsic behaviour of the film reading device is taken into account. EBT film itself presents substantial improvements on formerly available models of radiographic and a radiochromic film and its dosimetric characteristics allow us to measure absorbed dose levels in a large variety of situations with a single calibration curve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号