首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using the fluorescent dye, double retrograde-labeling tracing technique, separate populations of insular cortex neurons were demonstrated to project to the amygdaloid central nucleus and to autonomic nuclei of the dorsal medulla. Both populations were located in layer V of the agranular and granular insual with neurons projecting to the dorsal medulla demonstrating a more medial distribution. The results yield additional detail on the organization of forebrain areas involved in autonomic regulation.  相似文献   

2.
The projections from the central amygdaloid nucleus (Ce) to different subdivisions of the bed nucleus of the stria terminalis (BNST) were investigated using retrograde transport of fluorescent dyes. Iontophoretic injections of either Fast Blue (FB) or bisbenzimide (BB) were applied to the anterior medial, posterior medial, anterior lateral and posterior lateral parts of the bed nucleus of the stria terminalis. The anterior medial BNST receives projections from caudal part of medial Ce (CeM). The posterior medial BNST receives projections specifically from the intermediate subdivision of Ce, though in some cases projections from the ventral subdivision (CeV) of Ce were seen. The anterior lateral BNST receives projections primarily from the caudal lateral Ce (CeL) as well as middle and caudal part of CeM. The posterior lateral BNST receives projection from rostral CeL as well as the CeV and lateral capsular Ce. In general, the results indicate that the major subdivisions of the BNST receive projections from Ce subdivisions having similar connections with diencephalic or brainstem cell groups. Additional evidence is presented suggesting that Ce-BNST projections are part of an extensive system of intrinsic connections linking similar groups of neurons in both the Ce and BNST as well as within Ce.  相似文献   

3.
Certain neurochemical and connectional characteristics common to extended amygdala and the nucleus accumbens shell suggest that the two represent a single functional-anatomical continuum. If this is so, it follows that the outputs of the two structures should be substantially similar. To address this, projections from the caudomedial shell and central nucleus of the amygdala, a key extended amygdala structure, were demonstrated in Sprague-Dawley rats with different anterograde axonal tracers processed separately to exhibit distinguishable brown and blue-black precipitates. The caudomedial shell projection is strong in the ventral pallidum and along the medial forebrain bundle through the lateral preopticohypothalamic continuum into the ventral tegmental area, distal to which it thins abruptly. The central nucleus projects strongly to the bed nucleus of the stria terminalis and the sublenticular extended amygdala, but substantially to the lateral hypothalamus only at levels behind the rostral part of the entopeduncular nucleus. Innervation of the ventral tegmental area by the central amygdala is minimal, but the lateral one-third of the substantia nigra, pars compacta and an adjacent lateral part of the retrorubral field receive substantial central amygdala input. Central amygdaloid projections are robust in caudal brainstem sites, such as the reticular formation, parabrachial nucleus, nucleus of the solitary tract and dorsal vagal complex, all of which receive little input from the accumbens. The substantial differences in the output systems of the caudomedial shell of accumbens and central amygdala suggest that the two represent distinct functional-anatomical systems.  相似文献   

4.
Recent evidence suggests that the amygdaloid central nucleus (ACE) may contribute importantly to cardiovascular adjustments in response to the presentation of conditioned emotional stimuli, possibly via direct ACE projections to cardiovascular regulatory nuclei in the medulla. The present experiment was conducted to obtain additional data relevant to this suggestion. Extracellular single-unit recordings were obtained from 85 histologically-verified ACE neurons during Pavlovian differentially conditioned heart-rate responding in rabbits. Conditioning involved pairing one tone (CS+), but not a second tone (CS-), with paraorbital shock. Those ACE neurons which project to the lower brainstem were identified by their antidromic responses to stimulation of a mesencephalic region through which descending ACE projections course. Under these conditions it was possible to classify ACE neurons as conforming to one of 6 general categories based on their spontaneous activity and conditioned response characteristics. In addition, it was determined that: (1) the electrophysiological characteristics of many ACE neurons were differentially altered in response to presentations of the CS+ versus the CS-; (2) the responses of many ACE neurons to presentations of the CS+ were correlated with the magnitudes of concomitant conditioned alterations in heart rate; and (3) the activity of antidromically-identified ACE neurons which project to the lower brainstem was decreased in response to presentations of each CS. These data provide additional support for the notion that the ACE contributes to cardiovascular regulation during the presentation of emotionally-arousing stimuli.  相似文献   

5.
We have previously reported [15] that malignant cardiac arrhythmias can be evoked in the rabbit receiving digitalis by cardiovascular changes in response to (a) a Pavlovian aversively conditioned stimulus (CS) or (b) electrical stimulation of the amygdaloid central nucleus (ACE), a structure which contributes to Pavlovian-conditioned cardiovascular responses in the rabbit. The present study was designed to examine further the role of the ACE in arrhythmogenesis by determining the effect of lesions of the ACE on the occurrence of CS-evoked arrhythmias during digitalis administration in the rabbit. Two groups of rabbits (ACE lesion and SHAM) received electrodes implanted bilaterally in the ACE, while a third group (UNOP) served as an unoperated control. All rabbits were given Pavlovian conditioning trials in which a tone conditioned stimulus (CS) was paired with an eyelid shock as an unconditioned stimulus (US). Twenty-four h later, rabbits in the lesion group received bilateral lesions of the ACE. Twenty-four h after the lesion, rabbits in all three groups were given a retention test in which an i.v. infusion of ouabain was delivered, followed by 20 CS alone trials. Presence or absence of arrhythmias was scored during the pre-CS baseline and CS periods for each trial. All three groups exhibited few instances of pre-CS baseline arrhythmias, the frequency of which did not differ between groups. The SHAM and UNOP control groups exhibited a significant increase in the occurrence of CS-arrhythmias compared to pre-CS levels. This increase was blocked in the group receiving lesions of the ACE, as was CS-induced bradycardia which typically occurs in response to the CS in the rabbit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
The purpose of this study was to examine the effects of bilateral electrolytic lesions of the central nucleus of the amygdala (CEA) in comparison with sham lesions on neuroendocrine responses during conditioned emotional stress in male Wistar rats. Lesions in the CEA, made either before or after the single learning trial of inescapable footshock, failed to affect the conditioned response of plasma epinephrine levels. Plasma levels of norepinephrine showed neither a conditioned stress effect nor were influenced by lesioning. Pre-training CEA lesions, but not post-training intervention, abolished the conditioned elevations of circulating plasma corticosterone and prolactin. These results suggest that the CEA is involved in the conditioning rather than the retention of neuroendocrine stress responses. The effects of pre-training lesioning of the CEA can possibly be explained by a reduced feedback of all these neuroendocrine factors during or shortly after acquisition. In addition, there is a remarkable differentiation between various hormonal correlates of conditioned stress following CEA lesioning. Only corticosterone and prolactin, that appear to be correlates of a passive behavioural stress response, were abolished. The lesions failed to affect the sympatho-active stress parameters (epinephrine and norepinephrine). Relations between coping strategy-active and passive behaviour-and physiology in connection with CEA functioning are discussed.  相似文献   

8.
The anterior cortical amygdaloid nucleus (ACo) is a chemosensory area of the cortical amygdala that receives afferent projections from both the main and accessory olfactory bulbs. The role of this structure is unknown, partially due to a lack of knowledge of its connectivity. In this work, we describe the pattern of afferent and efferent projections of the ACo by using fluorogold and biotinylated dextranamines as retrograde and anterograde tracers, respectively. The results show that the ACo is reciprocally connected with the olfactory system and basal forebrain, as well as with the chemosensory and basomedial amygdala. In addition, it receives dense projections from the midline and posterior intralaminar thalamus, and moderate projections from the posterior bed nucleus of the stria terminalis, mesocortical structures and the hippocampal formation. Remarkably, the ACo projects moderately to the central nuclei of the amygdala and anterior bed nucleus of the stria terminalis, and densely to the lateral hypothalamus. Finally, minor connections are present with some midbrain and brainstem structures. The afferent projections of the ACo indicate that this nucleus might play a role in emotional learning involving chemosensory stimuli, such as olfactory fear conditioning. The efferent projections confirm this view and, given its direct output to the medial part of the central amygdala and the hypothalamic ‘aggression area’, suggest that the ACo can initiate defensive and aggressive responses elicited by olfactory or, to a lesser extent, vomeronasal stimuli.  相似文献   

9.
Anatomical structures demonstrating increased glucose uptake during the various stages of amygdaloid kindling in rats were identified by the 14C-2-deoxyglucose (DG) autoradiographic technique. Partial (stages 1 and 2) seizures were correlated with increased DG uptake in the ipsilateral amygdala and its direct projection fields. The appearance of generalized motor (stages 3, 4, and 5) seizures was accompanied by less limbic involvement and recruitment of a bilateral system including substantia nigra, specific and nonspecific thalamic nuclei, globus pallidus, and neocortex. Increased hippocampal DG uptake was correlated with prolonged amygdaloid afterdischarge duration but not with the behavioral seizure stage. This study does not reveal which of these structures are responsible for the observed behavioral and electrical events and which are activated by them. It does suggest, however, that three discrete anatomical systems underlie the generation of partial seizures, generalized motor seizures, and local afterdischarge.  相似文献   

10.
11.
Previous work has implicated projections from the acoustic thalamus to the amygdala in the classical conditioning of emotional responses to auditory stimuli. The purpose of the present studies was to determine whether the lateral amygdaloid nucleus (AL), which is a major subcortical target of projections from the acoustic thalamus, might be the sensory interface of the amygdala in emotional conditioning. Lesions were placed in AL of rats and the effects on emotional conditioning were examined. Lesions of AL, but not lesions of the striatum above or the cortex adjacent to the AL, interfered with emotional conditioning. Lesions that only partially destroyed AL or lesions placed too ventrally that completely missed AL had no effect. AL lesions did not affect the responses elicited following nonassociative (random) training. AL is thus an essential link in the circuitry through which auditory stimuli are endowed with affective properties and may function as the sensory interface of the amygdala during emotional learning.  相似文献   

12.
Considerable evidence suggests that the amygdaloid central nucleus (ACE) may contribute importantly to autonomic regulation, possibly via direct ACE projections to the brainstem. Lacking, however, have been comprehensive data concerning the electrophysiological characteristics of ACE neurons. The present experiment was therefore undertaken in order to characterize the spontaneous activity and sensory-evoked responses of ACE neurons in the conscious rabbit. Particular attention was given to the identification, via antidromic activation, and characterization of those ACE neurons which project to the lower brainstem. Single-unit recordings were obtained from 100 histologically verified ACE neurons. Most of these, including all brainstem projection neurons, discharged at very low spontaneous rates and were unresponsive to the presentation of auditory, visual and somatic stimuli. Based upon spontaneous activity and sensory-evoked responses, the activity of other ACE neurons appeared to conform to one of several profiles. These included neurons showing increased activity to the presentation of all sensory stimuli, and neurons showing activity that was spontaneously entrained with the respiratory cycle. These data indicate the heterogeneous nature of ACE neuronal activity, and provide a basis for the comparison of additional experiments which concern the electrophysiological characteristics of the ACE.  相似文献   

13.
The present paper describes the effect of capsaicin-induced stressful stimulus on the expression of immediate early genes (IEGs) c-fos, c-jun, junB and junD in the hypothalamic paraventricular nucleus (PVN) and the central amygdaloid nucleus (ACe) using in situ hybridization. Stress caused an intense expression of c-fos, c-jun and junB especially in the PVN and ACe and also a clear induction of junD was observed in the PVN. This suggests that the PVN and the ACe are two major targets of stress in the brain. The intense expression of the IEGs in the ACe and PVN suggests that stress may affect neurotransmitter gene expression through Fos and Jun proteins in both these nuclei.  相似文献   

14.
Cardiovascular responses elicited by electrical stimulation of the central amygdaloid nucleus were examined in awake and anesthetized rats. Stimulation through chronically implanted electrodes evoked increases in arterial pressure and heart rate in awake, freely behaving rats. The responses, which were dependent upon the frequency and the intensity of the stimulus, were not consistently related to the presence of evoked amygdaloid afterdischarges or to evoked behavioral reactions. Following induction of anesthesia, stimuli delivered to the same rats through the same fixed electrodes produced decreases in blood pressure and heart rate. Microinjection ofl-glutamate into the amygdala of freely behaving rats also elicited increases in arterial pressure and heart rate, indicating that the cardiovascular changes evoked by electrical stimuli are due to excitation of local neurons rather than fibers of passage. The timing and pattern of the response elicited by electrical stimulation of the amygdala in the awake but not anesthetized rat closely corresponds with that evoked by an acoustic conditioned emotional stimulus.  相似文献   

15.
Neurotensin (NT) is an endogenous peptide which has been hypothesized to function in the central nervous systems as a neurotransmitter. Injection of NT into the cerebral ventricular system of rodents produces antinociception in a variety of analgesia tests. In the hot plate test, direct microinjection of NT into the central nucleus of the amygdala (AC) produced a significant increase in the nociceptive threshold of the rat, while injections into tissue adjacent to the AC were generally ineffective. Antinociception following intra-AC injection of NT occurred at an ED50 dose of 2.4 μg NT, and was significantly lower than the ED50 dose observed when NT was given into the lateral ventricles (93.2 μg NT). Lesions of the stria terminalis totally abolished the antinociceptive effect of intra-AC administration of NT, indicating that AC efferent or afferent fibers within the stria terminalis are necessary for the observed increase in nociceptive threshold.  相似文献   

16.
The central nucleus of the amygdala (ACe) in the rat sends a considerable projection to, and receives projections from, the parabrachial nucleus (PB) and the dorsal vagal complex (DVC; the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve). In each part of this 'triangle', immunohistochemical staining for the following peptides has been observed in perikarya and fibers: neurotensin, somatostatin, substance-P, Leu-enkephalin and corticotropin-releasing factor. The aim of the present study was to investigate whether any of these peptides are involved in projections to the brainstem from the ACe, and to characterize the distribution of each cell type in the ACe. The results of double retrograde tracing studies indicate that most of the ACe neurons projecting to the PB and DVC are present in the medial part of ACe (ACem), and that many of them project to both the 1 B and the DVC. The combined use of immunohistochemistry with a retrograde fluorescent tracer, True Blue, indicated that the peptide-containing perikarya are found predominantly in the lateral part of ACe (ACe1), and that only a small proportion of neurotensin, somatostatin and corticotropin-releasing factor-stained neurons contained True Blue after injections into the PB or the DVC. The results suggest that most of the fibers in the descending projection from the ACe to the brainstem do not contain the peptides examined here.  相似文献   

17.
The role of the cerebellum and the red nucleus in the conditioned eyeblink response was assessed, using a combination of reversible lesions and multiple-unit extracellular recording in the awake, behaving rabbit. Lesion, recording, and stimulation experiments have indicated that both of these structures are involved in the performance of learned skeletal muscle responses. The present study sought to distinguish the relative contributions of the interpositus nucleus and the red nucleus to the expression of the learned response by recording behavior-related multiple unit activity in one structure while reversibly inactivating the other via injections of local anesthetic. Results indicate that inactivating either the interpositus or the red nucleus temporarily abolishes the learned eyeblink response. Injection of lidocaine into the interpositus also abolishes the neuronal unit model of the conditioned response in the red nucleus, while injection into the red nucleus does not affect the model in the interpositus. These results are consistent with the hypothesis that the red nucleus acts as a relay for motor commands from the cerebellum, and that the plasticity that generates conditioned responses occurs in the cerebellum or an afferent structure.  相似文献   

18.
The medial nucleus of the amygdala is important for the neural control of reproductive behavior in the adult male Syrian hamster. Two types of signals are essential for this behavior, chemosensory stimuli and gonadal steroids; these signals appear to be received in different parts of the medial nucleus. The anterior region receives input from olfactory and vomeronasal systems, both of which are required for this behavior, whereas the posterior region receives gonadal hormone inputs. Behavioral studies have also suggested a functional differentiation of these two areas; electrolytic lesions of the anterior, but not the posterior, part eliminates normal sexual behavior. In this study, the efferent projections of the anterior and posterior divisions of the medial nucleus of the amygdala in the Syrian hamster were analyzed throughout the forebrain after injections of the anterograde neuronal tracer, Phaseolus vulgaris-leucoagglutinin. Neurons of the anterior, but not the posterior, medial nucleus, were found to project to numerous olfactory bulb projection areas and to the ventral striatopallidal complex. Within areas of the chemosensory circuitry that control reproductive behavior, the anterior region of the medial nucleus projects to the intermediate part of the posterior bed nucleus of the stria terminalis and the lateral part of the medial preoptic area, whereas the posterior region of the medial nucleus projects to the medial parts of these areas. Differences in targets were also observed in the ventromedial nucleus of the hypothalamus where the anterior region projects to the core while the posterior part projects to the shell of this nucleus. Furthermore, reciprocal projections between the anterior and posterior regions of the medial nucleus were observed. Taken together, these studies support the hypothesis that the anterior and posterior regions of the medial amygdaloid nucleus provide substantially different contributions to the control of reproductive behaviors.  相似文献   

19.
The central amygdaloid nucleus (CeA) receives projection from the parabrachial nucleus (PBN) gustatory neurons and descendingly projects to the PBN. To assess if the CeA is involved in modulating the activity of gustatory neurons in the PBN, the effects of electrical stimulation and electrolytic lesion of CeA on PBN gustatory neurons were observed. Of 60 neurons observed, 30 were classified as NaCl-best, 18 as HCl-best, 5 as Quinine HCl (QHCl)-best, and 7 as sucrose-best. During CeA stimulation, the responses to at least one effective stimulus were inhibited in most PBN neurons, with the response magnitudes to HCl and QHCl significantly decreased (P<0.01). In contrast, bilateral lesions of CeA facilitated the responses to HCl and QHCl (P<0.01). According to the best-stimulus category, the effects on the responses to HCl and QHCl were similarly subjected to these modulations either during electrical stimulation or after electrolytic lesions of CeA. Analyses of across-unit patterns indicated that the CeA stimulation increased the chemical selection of PBN taste neurons while the CeA lesions depressed the effect on the chemical selection between NaCl and QHCl. These findings suggest that the CeA may be involved in mediating feeding behavior via modulating the activity of gustatory neurons of PBN.  相似文献   

20.
The effects of neurotensin (NT) on neurons in the central amygdaloid nucleus (ACe) were investigated in rat brain slice preparations by adding the peptide to the perfusing medium. Of 115 ACe neurons, 69 cells (60%) showed excitatory responses and 10 cells (9%) showed inhibitory responses to application of NT. The excitatory response to NT was observed in a dose-dependent manner and the threshold concentration was approximately 3 × 10−9 M. The excitatory effects of NT persisted under blockade of synaptic transmission. The NT fragment neurotensin 8–13 and the NT analogue neuromedin N showed effects similar to those of NT, whereas the NT fragment neurotensin 1–8 had no effect on ACe neurons. Of 43 neurons in the septal nucleus, 8 cells (19%) and 3 cells (7%) showed excitatory and inhibitory responses, respectively, to NT. The results suggest that NT exerts a potent excitatory effect on ACe neurons through a direct action on specific receptors, in which NT may play a role in amygdala-relevant functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号