首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the olfactory bulb (OB) is a complex process that requires contributions from several progenitor cell niches to generate neuronal diversity. Previous studies showed that Tbr2 is expressed during the generation of glutamatergic OB neurons in rodents. However, relatively little is known about the role of Tbr2 in the developing OB or in the subventricular zone‐rostral migratory stream (SVZ‐RMS) germinal niche that gives rise to many OB neurons. Results: Here, we use conditional gene ablation strategies to knockout Tbr2 during embryonic mouse olfactory bulb morphogenesis, as well as during perinatal and adult neurogenesis from the SVZ‐RMS niche, and describe the resulting phenotypes. We find that Tbr2 is important for the generation of mitral cells in the OB, and that the olfactory bulbs themselves are hypoplastic and disorganized in Tbr2 mutant mice. Furthermore, we show that the SVZ‐RMS niche is expanded and disordered following loss of Tbr2, which leads to ectopic accumulation of neuroblasts in the RMS. Lastly, we show that adult glutamatergic neurogenesis from the SVZ is impaired by loss of Tbr2. Conclusions: Tbr2 is essential for proper morphogenesis of the OB and SVZ‐RMS, and is important for the generation of multiple lineages of glutamatergic olfactory bulb neurons. Developmental Dynamics 243:440–450, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Precise patterns of cell division and migration are crucial to transform the neuroepithelium of the embryonic forebrain into the adult cerebral cortex. Using time-lapse imaging of clonal cells in rat cortex over several generations, we show here that neurons are generated in two proliferative zones by distinct patterns of division. Neurons arise directly from radial glial cells in the ventricular zone (VZ) and indirectly from intermediate progenitor cells in the subventricular zone (SVZ). Furthermore, newborn neurons do not migrate directly to the cortex; instead, most exhibit four distinct phases of migration, including a phase of retrograde movement toward the ventricle before migration to the cortical plate. These findings provide a comprehensive and new view of the dynamics of cortical neurogenesis and migration.  相似文献   

3.
Neurogenesis occurs in adult brain neural progenitor cells (NPCs) located in the subventricular zone (SVZ) of the lateral ventricle and the subgrandular zone of the hippocampal dentate gyrus. After ischemic stroke, NPCs in the SVZ proliferate and migrate towards the ischemic boundary region to replenish damaged neurons. During development, the Wnt pathways contribute to stem cell maintenance and promote neurogenesis. We hypothesized that stroke up regulates Wnt family genes in SVZ cells. Non-ischemic and ischemic cultured SVZ cells and a single population of non-ischemic and ischemic SVZ cells isolated by laser capture microdissection (LCM) were analyzed for Wnt pathway expression using real-time RT-PCR and immunostaining. The number of neurospheres increased significantly (p<0.05) in SVZ cells derived from ischemic (32+/-4.7/rat) compared with the number in non-ischemic SVZ cells (18+/-3/rat). Wnt family gene mRNA levels were detected in SVZ cells isolated from both cultured and LCM SVZ cells, however there was no up regulation between non-ischemic and ischemic SVZ cells. Immunostaining on brain sections also demonstrated no up regulation of Wnt pathway protein between ischemic and non-ischemic SVZ cells. Expression of the Wnt family genes in SVZ cells support the hypothesis that the Wnt pathway may be involved in neurogenesis in the adult brain. However, ischemia does not up regulate Wnt family gene expression.  相似文献   

4.
In the adult rodent brain, constitutive neurogenesis occurs in two restricted regions, the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone of the hippocampal dentate gyrus, where multipotent neural stem/progenitor cells generate new neurons. Using Western blotting and immunohistochemistry for established markers, we demonstrated that the expression of 3-phosphoglycerate dehydrogenase (Phgdh), an enzyme involved in de novo synthesis of l-serine, was upregulated in the SVZ. The expression was selective to cells having morphological features and expressing markers of astrocyte-like primary neural stem cells (type B cells) and their progeny, actively proliferating progenitors (type C cells). By contrast, Phgdh protein expression was virtually absent in committed neuronal precursors (type A cells) derived from type C cells. High levels of Phgdh were also expressed by glial tube cells located in the rostral migratory stream (RMS). Interestingly, ensheathment of type A cells by these Phgdh-expressing cells was persistent in the SVZ and RMS, suggesting that l-serine mediates trophic support for type A cells via these glial cells. In vitro neurosphere assays confirmed that growth-factor-responsive, transient amplifying neural progenitors in the SVZ, but not differentiated neurons, expressed Phgdh. In the aged brain, a decline in Phgdh expression was evident in type B and C cells of the SVZ. These observations support the notion that availability of l-serine within neural stem/progenitor cells may be a critical factor for neurogenesis in developing and adult brain.  相似文献   

5.
The presence of ongoing neurogenesis in the adult mammalian brain raises the exciting possibility that endogenous progenitor cells may be able to generate new neurons to replace cells lost through brain injury or neurodegenerative disease. We have recently demonstrated increased cell proliferation and the generation of new neurons in the Huntington's disease human brain. In order to better understand the potential role of endogenous neuronal replacement in neurodegenerative disorders and extend our initial observations in the human Huntington's disease brain, we examined the effect of striatal cell loss on neurogenesis in the subventricular zone (SVZ) of the adult rodent forebrain using the quinolinic acid (QA) lesion rat model of Huntington's disease. Cell proliferation and neurogenesis were assessed with bromodeoxyuridine (BrdU) labeling and immunocytochemistry for cell type-specific markers. BrdU labeling demonstrated increased cell proliferation in the SVZ ipsilateral to the QA-lesioned striatum, resulting in expansion of the SVZ in the lesioned hemisphere. Quantification revealed that QA lesion-induced striatal cell loss produced a significant increase in the area of BrdU-immunoreactivity in the SVZ ipsilateral to the lesioned hemisphere between 1 and 14 days post-lesion compared with sham-lesioned animals, with the greatest increase observed at 7 days post-lesion. These changes were associated with an increase in cells in the anterior SVZ ipsilateral to the lesioned striatum expressing the antigenic marker for SVZ neuroblasts, doublecortin (Dcx). Importantly, we observed Dcx-positive cells extending from the SVZ into the QA-lesioned striatum where a subpopulation of newly generated cells expressed markers for immature and mature neurons. This study demonstrates that loss of GABAergic medium spiny projection neurons following QA striatal lesioning of the adult rat brain increases SVZ neurogenesis, leading to the putative migration of neuroblasts to damaged areas of the striatum and the formation of new neurons.  相似文献   

6.
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been proposed to be involved in adult hippocampal neurogenesis in response to cerebral ischemia. To identify whether VEGFR-3 is involved in poststroke neurogenesis, we investigated the temporal regulation of VEGFR-3 mRNA expression in the subventricular zone (SVZ) of rats with transient focal cerebral ischemia by in situ hybridization analysis, and identified the phenotypes of cells expressing VEGFR-3 by double- and triple-labeling techniques. In sham-operated rats, hybridization signals for VEGFR-3 mRNA were evident at a weaker intensity in the SVZ of the lateral ventricle. VEGFR-3 was transiently increased in the dorsolateral SVZ of the infarcted hemisphere on days 3–7 after reperfusion. Almost all VEGFR-3-expressing cells in the ipsilateral SVZ were colabeled with glial fibrillary acidic protein and the neural progenitor marker nestin, and were highly proliferative. In addition, a subset of VEGFR-3-labeled cells in the ipsilateral SVZ expressed the immature neuronal marker, polysialic acid-neural cell adhesion molecule. These data indicate that VEGFR-3 is upregulated in SVZ astrocytes and immature neurons after focal ischemia, suggesting that VEGFR-3 might mediate the adult neurogenesis after ischemic stroke.  相似文献   

7.
8.
The central nervous system (CNS) of adult mammals regenerates poorly; in vivo, neurogenesis occurs only in two restricted areas, the hippocampal subgranular zone (SGZ) and the subventricular zone (SVZ). Neurogenic potential depends on both the intrinsic properties of neural progenitors and the environment, or niche, in which progenitor cells reside. Isolation of multipotent progenitor cells from broad CNS regions suggests that the neurogenic potential of the adult CNS is dictated by local environmental cues. Here, we report that astrocytes in the neurogenic brain regions, the SGZ and SVZ, of adult mice release molecular signals, such as sonic hedgehog (Shh), that stimulate adult neural progenitors to reenter the cell cycle and generate new neurons in vitro and in vivo. Transplantation of SGZ astrocytes or application of Shh caused de novo neurogenesis from the non-neurogenic neocortex of adult mice. These findings identify a molecular target that can activate the dormant neurogenic potential from nonconventional neurogenic regions of the adult CNS and suggest a novel mechanism of neural replacement therapy for treating neurodegenerative disease and injury without transplanting exogenous cells.  相似文献   

9.
Adult neurogenesis occurs most notably in the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the olfactory bulb (OB) where new neurons are generated from neural progenitors cells produced in the subventricular zone (SVZ) of the forebrain. As it is well known that gonadal steroid hormones, primarily estradiol, modulate neurogenesis in the hippocampus of adult female rodents, we wanted to determine whether estradiol would also affect the proliferation of progenitor cells in the SVZ and by consequence the rate of newly generated cells in the main OB. Thus a first group of adult female C57Bl6/J mice was ovariectomized and received a short term treatment with estradiol (single injection of 1 or 10 μg 17β-estradiol or Silastic capsule of estradiol during 2 days) before receiving a single injection with BrdU to determine whether estradiol would modulate the cell proliferation in the SVZ. A second group of adult ovariectomized female mice was submitted to the same estradiol treatment before receiving four BrdU injections, and was sacrificed 21 days later to determine whether a modulation in cell proliferation actually leads to a modulation in the number of newborn cells in the main OB. We observed a decrease in cell proliferation in the SVZ following either dose of estradiol compared to the controls. Furthermore, 21 days after their generation in the SVZ, the number of BrdU labeled cells was also lower in the main OB, both in the granular and periglomerular cell layers of estradiol-treated animals. These results show that a short term treatment with estradiol actually downregulates cell proliferation leading to a decreased number of newborn cells in the OB.  相似文献   

10.
Molecular mechanisms by which stroke increases neurogenesis have not been fully investigated. Using neural progenitor cells isolated from the subventricular zone (SVZ) of the adult rat subjected to focal cerebral ischemia, we investigated the Notch pathway in regulating proliferation and differentiation of adult neural progenitor cells after stroke. During proliferation of neural progenitor cells, ischemic neural progenitor cells exhibited substantially increased levels of Notch, Notch intracellular domain (NICD), and hairy enhancer of split (Hes) 1, which was associated with a significant increase of proliferating cells. Blockage of the Notch pathway by short interfering ribonucleic acid (siRNA) against Notch or a γ secretase inhibitor significantly reduced Notch, NICD and Hes1 expression and cell proliferation induced by stroke. During differentiation of neural progenitor cells, Notch and Hes1 expression was downregulated in ischemic neural progenitor cells, which was coincident with a significant increase of neuronal population. Inhibition of the Notch pathway with a γ secretase inhibitor further substantially increased neurons, but did not alter astrocyte population in ischemic neural progenitor cells. These data suggest that the Notch signaling pathway mediates adult SVZ neural progenitor cell proliferation and differentiation after stroke.  相似文献   

11.
The subventricular zone (SVZ) is the largest germinal zone in the mature rodent brain, and it continuously produces young neurons that migrate to the olfactory bulb. Neural stem cells in this region generate migratory neuroblasts via highly proliferative transit-amplifying cells. The Wnt/beta-catenin signaling pathway partially regulates the proliferation and neuronal differentiation of neural progenitor cells in the embryonic brain. Here, we studied the role of beta-catenin signaling in the adult mouse SVZ. beta-Catenin-dependent expression of a destabilized form of green fluorescent protein was detected in progenitor cells in the adult SVZ of Axin2-d2EGFP reporter mice. Retrovirus-mediated expression of a stabilized beta-catenin promoted the proliferation of Mash1+ cells and inhibited their differentiation into neuroblasts. Conversely, the expression of Dkk1, an inhibitor of Wnt signaling, reduced the proliferation of Mash1+ cells. In addition, an inhibitor of GSK3 beta promoted the proliferation of Mash1+ cells and increased the number of new neurons in the olfactory bulb 14 days later. These results suggest that beta-catenin signaling plays a role in the proliferation of progenitor cells in the SVZ of the adult mouse brain.  相似文献   

12.
During cerebral neocortical development, excitatory neurons are generated from radial glial cells in the ventricular zone (VZ) or from secondary progenitor cells in the subventricular zone (SVZ); these neurons then migrate toward the pial surface. We have observed that post-mitotic neurons generated directly in the VZ accumulated just above the VZ with a multipolar morphology, while secondary progenitor cells having a long ascending process left the VZ faster than the post-mitotic neurons. Recent observations of human developing neocortex have revealed the existence of radial glia-like progenitors (oRG cells) in the SVZ. This type of progenitor was first thought to be human specific; however, similar cells have also been found in mouse neocortex, and the morphology of these cells resembled that of some of the secondary progenitor cells that we had previously observed, suggesting the existence of a common architecture for the developing neocortex among mammals. In this review, we discuss the nature of the SVZ and its similarities and differences between humans and mice.  相似文献   

13.
Adult neurogenesis is due to the persistence of pools of constitutive stem cells able to give rise to a progeny of proliferating progenitors. In rodents, adult neurogenic niches have been found in the subventricular zone (SVZ) along the lateral ventricles and in the subgranular zone of the dentate gyrus in the hippocampus. SVZ progenitors undergo a unique process of tangential migration from the lateral ventricle to the olfactory bulb (OB) where they differentiate mainly into GABAergic interneurons in the granule and glomerular layers. SVZ progenitor proliferation, migration and differentiation into fully integrated neurons, are strictly related processes regulated by complex interactions between cell intrinsic and extrinsic influences. Numerous observations demonstrate that neurotrasmitters are involved in all steps of the adult neurogenic process, but the understanding of their role is hampered by their intricate mechanism of action and by the highly complex network in which neurotransmitters work. By considering the three main steps of olfactory adult neurogenesis (proliferation, migration and integration), this review will discuss recent advances in the study of neurotransmitters, highlighting the regulatory mechanisms upstream and downstream their action.  相似文献   

14.
近年来很多实验证明各种脑损伤和中枢神经疾病都能促进神经干细胞或祖细胞向非嗅球区域迁移,本研究将成年大鼠一侧大脑皮层血管去除,用免疫组化方法标记前脑室下区正在分裂的细胞、神经元祖细胞和胶质细胞祖细胞。结果证明:损伤侧及对侧的背外侧脑室下区各类祖细胞明显增多并向胼胝体迁移,在胼胝体内它们分别形成迁移路至损伤部位;迁移路内的各种祖细胞具有典型的不成熟的迁移细胞特点,胞体细长,一般首尾各有一突起,其引导突皆朝向损伤区。本研究结果提示去皮层血管增殖的前脑室下区神经元祖细胞和胶质细胞祖细胞通过放射状迁移路至损伤部位可能参与修复机制。  相似文献   

15.
Stroke in rodents is associated with increased neurogenesis and the migration of newborn neurons to sites of brain ischemia, where they may participate in repair and recovery. To determine if neurogenesis following stroke yields functional new neurons, we labeled neuronal precursors in the mouse subventricular zone (SVZ) with a lentivirus-green fluorescent protein vector, produced stroke by occluding the middle cerebral artery, and detected newborn neurons 8 weeks later by fluorescence microscopy. Patch-clamp studies on fluorescent neurons in the cortical region surrounding infarction showed tetrodotoxin-sensitive Na+ action potentials and spontaneous excitatory post-synaptic currents, suggesting that ischemia led to functional neurogenesis with synaptic integration. These findings support the hypothesis that enhancing endogenous neurogenesis after stroke might have therapeutic benefit.  相似文献   

16.
The tailless (Tlx) gene encodes an orphan nuclear receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). The function of Tlx in neural stem cells of the adult SVZ remains largely unknown. We show here that in the SVZ of the adult brain Tlx is exclusively expressed in astrocyte-like B cells. An inducible mutation of the Tlx gene in the adult brain leads to complete loss of SVZ neurogenesis. Furthermore, analysis indicates that Tlx is required for the transition from radial glial cells to astrocyte-like neural stem cells. These findings demonstrate the crucial role of Tlx in the generation and maintenance of NSCs in the adult SVZ in vivo.  相似文献   

17.
Tumor necrosis factor (TNF)-alpha has been reported to modulate brain injury, but remarkably, little is known about its effects on neurogenesis. We report that TNF-alpha strongly influences survival, proliferation, and neuronal differentiation in cultured subventricular zone (SVZ) neural stem/progenitor cells derived from the neonatal P1-3 C57BL/6 mice. By using single-cell calcium imaging, we developed a method, based on cellular response to KCl and/or histamine, that allows the functional evaluation of neuronal differentiation. Exposure of SVZ cultures to 1 and 10 ng/ml mouse or 1 ng/ml human recombinant TNF-alpha resulted in increased differentiation of cells displaying a neuronal-like profile of [Ca2+](i) responses, compared with the predominant profile of immature cells observed in control, nontreated cultures. Moreover, by using neutralizing antibodies for each TNF-alpha receptor, we found that the proneurogenic effect of 1 ng/ml TNF-alpha is mediated via tumor necrosis factor receptor 1 activation. Accordingly, the percentage of neuronal nuclear protein-positive neurons was increased following exposure to mouse TNF-alpha. Interestingly, exposure of SVZ cultures to 1 ng/ml TNF-alpha induced cell proliferation, whereas 10 and 100 ng/ml TNF-alpha induced apoptotic cell death. Moreover, we found that exposure of SVZ cells to TNF-alpha for 15 minutes or 6 hours caused an increase in the phospho-stress-activated protein kinase/c-Jun N-terminal kinase immunoreactivity initially in the nucleus and then in growing axons, colocalizing with tau, consistent with axonogenesis. Taken together, these results show that TNF-alpha induces neurogenesis in neonatal SVZ cell cultures of mice. TNF-alpha, a proinflammatory cytokine and a proneurogenic factor, may play a central role in promoting neurogenesis and brain repair in response to brain injury and infection.  相似文献   

18.
The main olfactory bulb (MOB) is the first relay on the olfactory sensory pathway and the target of the neural progenitor cells generated in the subventricular zone (SVZ) lining the lateral ventricles and which migrate along the rostral extension of the SVZ, also called the rostral migratory stream (RMS). Within the MOB, the neuroblasts differentiate into granular and periglomerular interneurons. A reduction in the number of granule cells during sensory deprivation suggests that neurogenesis may be influenced by afferent activity. Here, we show that unilateral sensory deafferentation of the MOB by axotomy of the olfactory receptor neurons increases apoptotic cell death in the SVZ and along the rostro-caudal extent of the RMS. The vast majority of dying cells in the RMS are migrating neuroblasts as indicated by double Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling/PSA-NCAM labeling. Counting bromodeoxyuridine-labeled cells in animals killed immediately or 4 days after tracer administration showed a bilateral increase in proliferation in the SVZ and RMS which was balanced by cell death on the operated side. These data suggest that olfactory inputs are required for the survival of newborn neural progenitors. The greatest enhancement in proliferation occurred in the extension of the RMS located in the MOB, revealing a population of local precursors mitotically stimulated following axotomy. Together, these findings indicate that olfactory inputs may strongly modulate the balance between neurogenesis and apoptosis in the SVZ and RMS and provide a model for further investigation of the underlying molecular mechanisms of this activity-dependent neuronal plasticity.  相似文献   

19.
Although new neurons are produced in the subventricular zone (SVZ) of the adult mammalian brain, fewer functional neurons are produced with increasing age. The age-related decline in neurogenesis has been attributed to a decreased pool of neural progenitor cells (NPCs), an increased rate of cell death, and an inability to undergo neuronal differentiation and develop functional synapses. The time between mitotic events has also been hypothesized to increase with age, but this has not been directly investigated. Studying primary-cultured NPCs from the young adult and aged mouse forebrain, we observe that fewer aged cells are dividing at a given time; however, the mitotic cells in aged cultures divide more frequently than mitotic cells in young cultures during a 48-hour period of live-cell time-lapse imaging. Double-thymidine-analog labeling also demonstrates that fewer aged cells are dividing at a given time, but those that do divide are significantly more likely to re-enter the cell cycle within a day, both in vitro and in vivo. Meanwhile, we observed that cellular survival is impaired in aged cultures. Using our live-cell imaging data, we developed a mathematical model describing cell cycle kinetics to predict the growth curves of cells over time in vitro and the labeling index over time in vivo. Together, these data surprisingly suggest that progenitor cells remaining in the aged SVZ are highly proliferative.  相似文献   

20.
Tanaka Y  Tanaka R  Liu M  Hattori N  Urabe T 《Neuroscience》2010,171(4):1367-1376
Evidence suggests that neurogenesis occurs in the adult mammalian brain, and that various stimuli, for example, ischemia/hypoxia, enhance the generation of neural progenitor cells in the subventricular zone (SVZ) and their migration into the olfactory bulb. In a mouse stroke model, focal ischemia results in activation of neural progenitor cells followed by their migration into the ischemic lesion. The present study assessed the in vivo effects of cilostazol, a type 3 phosphodiesterase inhibitor known to activate the cAMP-responsive element binding protein (CREB) signaling, on neurogenesis in the ipsilateral SVZ and peri-infarct area in a mouse model of transient middle cerebral artery occlusion. Mice were divided into sham operated (n=12), vehicle- (n=18) and cilostazol-treated (n=18) groups. Sections stained for 5-bromodeoxyuridine (BrdU) and several neuronal and a glial markers were analyzed at post-ischemia days 1, 3 and 7. Cilostazol reduced brain ischemic volume (P<0.05) and induced earlier recovery of neurologic deficit (P<0.05). Cilostazol significantly increased the density of BrdU-positive newly-formed cells in the SVZ compared with the vehicle group without ischemia. Increased density of doublecortin (DCX)-positive and BrdU/DCX-double positive neural progenitor cells was noted in the ipsilateral SVZ and peri-infarct area at 3 and 7 days after focal ischemia compared with the vehicle group (P<0.05). Cilostazol increased DCX-positive phosphorylated CREB (pCREB)-expressing neural progenitor cells, and increased brain derived neurotrophic factor (BDNF)-expressing astrocytes in the ipsilateral SVZ and peri-infarct area. The results indicated that cilostazol enhanced neural progenitor cell generation in both ipsilateral SVZ and peri-infarct area through CREB-mediated signaling pathway after focal ischemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号