首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Epidermal growth factor (EGF) has been shown to induce proliferation in cells, however, the role of prostaglandin E(2) (PGE(2)) plays in EGF-induced proliferation in still unclear. EGF and PGE(2) showed proliferation responses in epidermoid carcinoma cell A431 by MTT and [(3)H] thymidine incorporation assay. Activation of the EGF receptor and extracellular signal-regulated protein kinases (ERK1/2), but not p38 and JNK, appeared 10 min after EGF treatment, whereas total amounts of ERK1/2, p38 and JNK remained unchanged in A431 cells, accompanied by induction of COX-2 and PGE(2) production. PD98059, a specific ERK1/2 inhibitor, inhibited EGF-induced proliferation with concomitant decreases in ERK1/2 phosphorylation and COX-2/PGE(2) induction. Non-steroid anti-inflammatory drugs (NSAIDs) such as aspirin and diclofenac, a COX activity inhibitor, inhibited EGF-induced proliferation by blocking PGE(2) production. The addition of PGE(2) reversed the inhibitory effects of PD98059, aspirin, and diclofenac on EGF-induced proliferation. This suggests that COX-2/PGE(2) activation involves in EGF-induced proliferation and locates at the downstream of ERK1/2 activation. Furthermore, the natural product, 3-OH flavone, showed the most-potent inhibitory activity on EGF-induced proliferation among 9 structurally-related compounds, and suppression of EGF receptor phosphorylation, ERK1/2 phosphorylation, and COX-2/PGE(2) production by 3-OH flavone was identified. PGE(2) addition attenuates the inhibitory activity of 3-OH flavone on EGF-induced proliferation by MTT assay and colony formation by soft agar assay. Additionally, 3-OH flavone also showed more-specific inhibition on EGF- than on fetal bovine serum (FBS)-induced proliferation in A431 cells. Results of our present study provide evidence to demonstrate that PGE(2) is an important downstream molecule in EGF-induced proliferation, and 3-OH flavone, which inhibits PGE(2) production by blocking MAPK cascade, might reserve potential for development as an anti-cancer drug.  相似文献   

3.
4.
The aim of this study was to examine the effects of transforming growth factor (TGF) beta1 on the phenotype and the biological behavior of pancreatic cancer cell lines with and without mutations in the TGF-beta signaling pathway and to elucidate whether the Ras signaling cascade participates in mediating these effects of TGF-beta1. TGF-beta-responsive (PANC-1, COLO-357, and IMIM-PC1) and nonresponsive (CAPAN1 and IMIM-PC2) pancreatic cancer cell lines with activating mutations of the Ki-Ras oncogene were treated with 10 ng/ml TGF-beta1 over time. Phenotypic alterations were studied by electron and phase contrast microscopy and by immunohistochemistry and expression analyses of differentiation markers. The influence of TGF-beta on tumor cell scattering, migration, and invasion was determined. The role of the Ras-mitogen-activated protein kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) cascade in mediating TGF-beta-induced morphological and functional effects were studied by pretreatment with the MEK1 inhibitor PD 98059 and by measuring ERK2 activation using immune complex kinase assays. TGF-beta1 led to a reversible and time-dependent epithelial-mesenchymal transdifferentiation (EMT) in TGF-beta-responsive pancreatic cancer cell lines, characterized by a fibroblastoid morphology and an up-regulation of mesenchymal markers and a down-regulation of epithelial markers. EMT was associated with an increase in tumor cell migration, invasion, and scattering. In the responsive cell lines, TGF-beta1 induced a moderate but sustained activation of ERK2. EMT, the concomitant changes in gene expression, and the invasive and migratory potential were reduced or abolished by pretreatment with the selective MEK1 inhibitor. Thus, in TGF-beta-responsive pancreatic cancer cells with activating Ki-Ras mutations, TGF-beta1 treatment caused an EMT associated with a more invasive phenotype. Cross-talk with the Ras-MEK-ERK-signaling cascade appears to be essential for mediating these effects of TGF-beta1.  相似文献   

5.
Objective: To evaluate the effects of curcumin on matrixmetalloproteinase-9 (MMP-9) and invasion abilityinduced by transforming growth factor-β1 (TGF-β1) in MDA-MB-231 cells and potential mechanisms. Methods:Human breast cancer MDA- MB-231 cells were used with the CCK-8 assay to measure the cytotoxicity ofcurcumin. After treatment with 10 ng/ml TGF-β1, with or without curcumin (≤10 μM), cell invasion was checkedby transwell chamber. The effects of curcumin on TGF-β1-stimulated MMP-9 and phosphorylation of Smad2,extracellular-regulated kinase (ERK), and p38 mitogen activated protein kinases (p38MAPK) were examined byWestern blotting. Supernatant liquid were collected to analyze the activity of MMP-9 via zymography. Followingtreatment with PD98059, a specific inhibitor of ERK, and SB203580, a specific inhibitor of p38MAPK, Westernblotting and zymography were employed to examine MMP-9 expression and activity, respectively. Results: Lowdose curcumin (≤10 μM) did not show any obvious toxicity to the cells, while 0~10 μmol/L caused a concentration–dependent reduction in cell invasion provoked by TGF-β1. Curcumin also markedly inhibited TGF-β1-regulatedMMP-9 and activation of Smad2, ERK1/2 and p38 in a dose- and time-dependent manner. Additionally, PD98059,but not SB203580, showed a similar pattern of inhibition of MMP-9 expression. Conclusion: Curcumin inhibitedTGF-β1-stimulated MMP-9 and the invasive phenotype in MDA-MB-231 cells, possibly associated with TGF-β/Smad and TGF-β /ERK signaling.  相似文献   

6.
7.
Shin VY  Wu WK  Ye YN  So WH  Koo MW  Liu ES  Luo JC  Cho CH 《Carcinogenesis》2004,25(12):2487-2495
Early studies revealed that cigarette smoke promotes gastric cancer growth through the induction of cyclooxygenase-2 (COX-2). Nicotine, one of the active ingredients in cigarette smoke, has detrimental effects in the stomach. To date, there is no direct evidence to validate the effect of nicotine on gastric tumor growth and its carcinogenic mechanism(s). We therefore investigated whether nicotine could promote tumor growth and neovascularization in vivo, and the biological mechanism(s) in connection with the signaling cascade involving COX-2 and extracellular signal-regulated protein kinase (ERK). Athymic nude mice, with gastric cancer cells (AGS) orthotopically implanted into the gastric wall, treated with nicotine (50 or 200 microg/ml) in their drinking water for 3 months developed larger tumor areas than mice in the control group. Nicotine further increased proliferating cellular nuclear antigen (PCNA) staining and microvessel density by 70 and 30%, respectively, with concomitant activation of ERK phosphorylation, COX-2 and vascular endothelial growth factor (VEGF) expression in the tumors. Intraperitoneal administration of a selective COX-2 inhibitor (SC-236, 2 mg/kg) prevented the nicotine-induced tumor growth and neovascularization dose-dependently. Consistent with our animal model, an in vitro study also demonstrated that incubation with nicotine (50-200 microg/ml) for 5 h stimulated cell proliferation dose-dependently and increased COX-2 expression, prostaglandin E(2) (PGE(2)) and VEGF release, as well as activation of ERK phosphorylation. Pre-treatment with specific mitogen-activated protein kinase kinase (MEK) inhibitors (U0126 or PD98059) attenuated COX-2 expression and subsequent PGE(2) release by nicotine. Furthermore, the stimulatory action of nicotine on cancer cell growth and angiogenic factor VEGF production was suppressed by inhibitors of MEK (U0126) and COX-2 (SC-236). These findings reveal a direct promoting action of nicotine on the growth of gastric tumor and neovascularization through sequential activation of the ERK/COX-2/VEGF signaling pathway, which can be targeted for chemoprevention of gastric cancer, particularly in cigarette smokers.  相似文献   

8.
Epidermal growth factor receptor (EGFR) mediated mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling pathway was isolated as invasion-metastasis related factor in pancreatic cancer in our previous studies. Matrix metalloproteinase-7 (MMP-7) and tight junction (TJ) proteins are indicated to be involved in cancer invasion-metastasis. To clarify the underlying mechanism of involvement of MMP-7 in cancer invasion, western blotting, invasion assay and immunohistochemistry were performed in dissociated (PC-1.0 and AsPC-1) and non-dissociated (PC-1 and Capan-2) pancreatic cancer cells, as well as pancreatic cancer tissues. Intracellular MMP-7 protein presented as pre-proenzyme and its expression was decreased by AG1478 (EGFR inhibitor) or U0126 (MEK inhibitor) treatment in pancreatic cancer cells. Activated MMP-7 protein was only detected in the medium of PC-1.0 and AsPC-1 cells, but not detected in the medium of PC-1 and Capan-2 cells. Moreover, MMP-7 treatment significant induced the dissociation of cell colonies in PC-1 and Capan-2 cells. Synchronously, TJ structure was apparently disrupted and translocation of TJ proteins to cytoplasm or extracellular medium was induced in PC-1 and Capan-2 cells. Furthermore, MMP-7 treatment markedly increased the in vitro invasion of PC-1 and Capan-2 cells. In addition, MMP-7 expression at the invasive front was obviously stronger than that at the center of pancreatic cancer tissues. Activation of MMP-7 protein is closely involved in disruption of TJ structure and consequent induction of cell dissociation as well as invasion in pancreatic cancer. EGFR mediated MEK/ERK signaling pathway is implied to be involved in regulation of MMP-7 expression in pancreatic cancer cells.  相似文献   

9.
Gamma-aminobutyric acid (GABA) was first discovered as an inhibitory neurotransmitter in the central nervous system (CNS) and has been reported to have a variety of functions, including regulation of cell division, cell differentiation and maturation, and to be involved in the development of certain cancers outside the CNS. In the present study, using the human renal cell carcinoma cell line Caki-2, we demonstrated that GABA stimulation significantly increased the expression of MMP-2 and -9 and subsequently increased the invasive activity of the cancer cells. Because MAPK signaling is one of the key regulators of MMP expression, we further evaluated MAPK signaling after stimulation with GABA. It was found that GABA stimulation promoted the phosphorylation of MAPKs, including ERK1/2, JNK, and p38. ERK1/2 phosphorylation was sustained for up to 12 h, while phosphorylation of JNK and p38 returned to the endogenous level by 30 min. It was noteworthy that the ras/raf/MEK/ERK pathway inhibitor PD98059 attenuated GABA-induced MMP-9 expression and that both PD98059 and MMP inhibitors attenuated the GABA-induced invasive activity of Caki-2 cells. Moreover, data obtained by depletion of the MEK/ERK pathway using interfering RNA transfection of Caki-2 cells clearly corroborated the above results, as both MMP-9 expression and GABA-induced invasive ability were decreased significantly. We also demonstrated that the GABA-induced increase in invasive ability via ERK1/2 up-regulation was mediated mainly through the GABA-B receptor. These results indicate that GABA stimulation promotes cancer cell invasion and that the effect is partly due to ERK1/2-dependent up-regulation of MMPs.  相似文献   

10.
11.
Sato N  Maehara N  Goggins M 《Cancer research》2004,64(19):6950-6956
The interactions between cancer cells and surrounding stroma play a critical role in tumor progression, but their molecular basis is largely unknown. Global gene expression profiling was performed using oligonucleotide microarrays to determine changes in the gene expression of pancreatic cancer cells (CFPAC1) and stromal fibroblasts induced by coculture. This analysis identified multiple genes as differentially expressed in pancreatic cancer cells and in fibroblasts as a consequence of their mutual interactions, including those that encode for proteins associated with tumor invasion, metastasis, and angiogenesis. Among the genes identified, the cyclooxygenase-2 (COX-2)/PTGS2 gene was of particular interest because COX-2 expression was markedly augmented in both cell types (cancer cells and fibroblasts) in response to coculture. Coculture with fibroblasts also induced COX-2 expression in additional pancreatic cancer cells with an unmethylated COX-2 promoter, but not in those with a methylated COX-2 promoter. Using an in vitro invasion assay, we found an increase in the invasive potential of CFPAC1 cells when they were cocultured with fibroblasts, an effect blocked partially by the addition of a selective COX-2 inhibitor, NS-398, or by COX-2 knockdown with small interfering RNA. Thus, COX-2 inhibitors can decrease the invasive properties of pancreatic cancer cells acquired through tumor-stromal interactions.  相似文献   

12.
背景与目的:了解ERK1/2-Sp1信号通路对肺癌细胞血管内皮生长因子(VEGF)基因的调控作用.材料与方法:采用激酶特异抑制剂PD98059抑制ERK1/2的活性,Western blot检测ERK1/2的表达.RNA干扰技术沉默Sp1基因,Mercury信号通路系统检测Sp1的转录活性.RT-PCR检测VEGF和Sp1基因的变化. 结果:ERK1/2激酶的活性几乎可被150μmol/L PD98059完全抑制,ERK1/2激酶活性下调伴随VEGF的表达下降.PD98059下调Sp1转录因子的活性.Sp1基因沉默后VEGF的表达量下调. 结论:在肺癌细胞中存在ERK1/2-Sp1-VEGF信号通路,ERK1/2激酶调控VEGF的表达可能部分依赖于转录因子Sp1的活性.  相似文献   

13.
14.
The expression levels of ets and MMP genes was examined in two breast cancer cell lines of differing invasive potential. The more invasive MDA-MB-231 cell line had higher levels of Ets-1, Ets-2, PEA3, ERM, Tel, Net, MMP-13 and -14 mRNA than MCF-7 cells. MMP-1, -3 and -16 mRNAs were expressed equally. TPA stimulated MMP-1, -9 and TIMP-1 mRNA expression in both cell lines. MMP-2 and MMP-7 mRNAs were not detected in either cell line. The Ets-1 protein was only detected in MDA-MB-231 cells and its level increased following TPA stimulation. TPA induced MMP-9 activity in MCF-7 cells and increased its activity in MDA-MB-231 cells, however, MMP-2 activity was not detected.  相似文献   

15.
16.
17.
18.
The novel mitogen/extracellular-signal-regulated kinase kinase 5/extracellular signal-regulated kinase-5 (MEK5/ERK5) pathway has been implicated in the regulation of cellular proliferation. MEK5 expression has been detected in prostate cancer cells, although the significance of the MEK5/ERK5 pathway in human prostate cancer has not been tested. We examined MEK5 expression in 127 cases of prostate cancer and 20 cases of benign prostatic hypertrophy (BPH) by immunohistochemistry and compared the results to clinical parameters. We demonstrated that MEK5 expression is increased in prostate cancer as compared to benign prostatic tissue. Strong MEK5 expression correlates with the presence of bony metastases and less favourable disease-specific survival. Furthermore, among the patients with high Gleason score of 8-10, MEK5 overexpression has an additional prognostic value in survival. MEK5 transfection experiments confirm its ability to induce proliferation (P < 0.0001), motility (P = 0.0001) and invasion in prostate cancer cells (P = 0.0001). MEK5 expression drastically increased MMP-9, but not MMP-2 mRNA expression. Luciferase report assays suggest that the -670/MMP-9 promoter is upregulated by MEK5 and electromobility shift assay further suggests the involvement of activator protein-I (AP-1), but not the NF-kappa B, binding site in the MMP-9 promoter. Using an AP-1 luciferase construct, activation of MEK5 was confirmed to enhance AP-1 activities up to twofold. Taken together, our results establish MEK5 as a key signalling molecule associated with prostate carcinogenesis. As the MEK5/ERK5 interaction is highly specific, it represents a potential target of therapy.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号