首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A successful vaccine vector for human immunodeficiency virus type 1 (HIV-1) should induce anti-HIV-1 immune responses at mucosal sites. We have generated recombinant Mycobacterium smegmatis vectors that express the HIV-1 group M consensus envelope protein (Env) as a surface, intracellular, or secreted protein and have tested them in animals for induction of both anti-HIV-1 T-cell and antibody responses. Recombinant M. smegmatis engineered for expression of secreted protein induced optimal T-cell gamma interferon enzyme-linked immunospot assay responses to HIV-1 envelope in the spleen, female reproductive tract, and lungs. Unlike with the induction of T-cell responses, priming and boosting with recombinant M. smegmatis did not induce anti-HIV-1 envelope antibody responses, due primarily to insufficient protein expression of the insert. However, immunization with recombinant M. smegmatis expressing HIV-1 Env was able to prime for an HIV-1 Env protein boost for the induction of anti-HIV-1 antibody responses.  相似文献   

2.
Human immunodeficiency virus type 1 (HIV-1) acquisition occurs predominantly through mucosal transmission. We hypothesized that greater mucosal immune responses and protective efficacy against mucosal HIV-1 infection may be achieved by prime-boost immunization at mucosal sites. We used a macaque model to determine the safety, immunogenicity, and protective efficacy of orally delivered, replication-competent but attenuated recombinant vaccinia viruses expressing full-length HIV-1 SF162 envelope (Env) or simian immunodeficiency virus (SIV) Gag-Pol proteins. We examined the dose and route that are suitable for oral immunization with recombinant vaccinia viruses. We showed that sublingual inoculation of two vaccinia virus-naive pigtailed macaques with 5 × 108 PFU of recombinant vaccinia viruses was safe. However, sublingual inoculation with a higher dose or tonsillar inoculation resulted in secondary oral lesions, indicating the need to optimize the dose and route for oral immunization with replication-competent vaccinia virus vectors. Oral priming alone elicited antibody responses to vaccinia virus and to the SF162 Env protein. Intramuscular immunization with the SF162 gp120 protein at either 20 or 21 weeks postpriming resulted in a significant boost in antibody responses in both systemic and mucosal compartments. Furthermore, we showed that immune responses induced by recombinant vaccinia virus priming and intramuscular protein boosting provided protection against intrarectal challenge with the simian-human immunodeficiency virus SHIV-SF162-P4.  相似文献   

3.
The HIV-1 prime boost phase I/II vaccine trial using a recombinant canarypox vector, vCP1521, containing subtype E env (gp120), and subtype B env (gp41), gag and protease has started in Thailand. We have demonstrated that although 4 from 15 human immunodeficiency virus type 1 (HIV-1) seronegative Individuals showed cytotoxic T lymphocyte (CTL) responses to vaccinia virus antigens, none of them showed specific CTL responses to subtype E Env after in vitro stimulation. This preliminary study suggests that specific CTL responses to subtype E envelope detected in HIV-1 seronegative Individuals after vaccination should be considered as specific responses to the immunization.  相似文献   

4.
Recombinant rabies virus (RV) vaccine strain-based vectors expressing HIV-1 antigens have been shown to induce strong and long-lasting cellular but modest humoral responses against the expressed antigens in mice. However, an effective vaccine against HIV-1 may require stronger responses, and the development of such an immune response may depend on the presence of certain cytokines at the time of the inoculation. Here, we describe several new RV-based vaccine vehicles expressing HIV-1 Gag or envelope (Env) and murine IL-2 or IL-4. Cells infected with recombinant RVs expressed high levels of functional IL-2 or IL-4 in culture supernatants in addition to HIV-1 proteins. The recombinant RV expressing IL-4 was highly attenuated in a cytokine-independent manner, indicating that the insertion of two foreign genes into the RV genome is mainly responsible for the attenuation observed. The expression of IL-4 resulted in a decrease in the cellular immune response against HIV-1 Gag and Env when compared with the parental virus not expressing IL-4 and only 2 of 20 mice seroconverted to HIV-1 Env after two inoculations. The IL-2-expressing RV was completely apathogenic after direct intracranial inoculation of mice. In addition, mice immunized with IL-2 maintained strong anti-HIV-1 Gag and Env cellular responses and consistently induced seroconversion against HIV-1 Env after two inoculations. This suggests the potential use of IL-2 in RV-based HIV-1 vaccine strategies, which may require the induction of both arms of the immune response.  相似文献   

5.
Immune correlates of vaccine protection from HIV-1 infection would provide important milestones to guide HIV-1 vaccine development. In a proof of concept study using mucosal priming and systemic boosting, the titer of neutralizing antibodies in sera was found to correlate with protection of mucosally exposed rhesus macaques from SHIV infection. Mucosal priming consisted of two sequential immunizations at 12-week intervals with replicating host range mutants of adenovirus type 5 (Ad5hr) expressing the HIV-189.6p env gene. Following boosting with either heterologous recombinant protein or alphavirus replicons at 12-week intervals animals were intrarectally exposed to infectious doses of the CCR5 tropic SHIVSF162p4. Heterologous mucosal prime systemic boost immunization elicited neutralizing antibodies (Nabs), antibody-dependent cytotoxicity (ADCC), and specific patterns of antibody binding to envelope peptides. Vaccine induced protection did not correlate with the type of boost nor T-cell responses, but rather with the Nab titer prior to exposure.  相似文献   

6.
Recombinants based on vaccinia virus vectors, especially on the highly attenuated modified vaccinia virus Ankara (MVA) strain, are now being tested in clinical trials for safety and immunogenicity, using prime/boost heterologous regimes of vaccination. Due to the limited replication capacity of MVA, it is necessary to develop procedures that can enhance the specific cellular immune responses to the recombinant antigen delivered by the MVA vector. In this investigation, we have characterized the systemic immune responses in BALB/c mice using interferon-gamma (IFN-gamma) or interleukin-12 (IL-12) in an adjuvant-like manner elicited by MVA recombinants or naked DNA vectors expressing one of those cytokines in combination with the human immunodeficiency virus type 1 (HIV-1) envelope (Env) as antigen. In infected mice, virus gene expression in splenocytes and levels of cytokines IFN-gamma and IL-12 in serum were maximal by 6h post-infection (hpi) with MVA recombinants expressing IFN-gamma (MVAIFN-gamma) or IL-12 (MVAIL-12). In the infected animals, co-expression of HIV-1 env (MVAENV) and either IFN-gamma or IL-12 from MVA recombinants produced a two and three-fold increase of anti-env CD8+ T cell response, respectively. When priming was carried out with DNA vectors expressing HIV-1 env and either IFN-gamma or IL-12, the magnitude of the specific anti-env CD8+ T cell stimulation after MVAENV booster was further enhanced. Our findings revealed that IFN-gamma or IL-12 can be used to potentiate the cellular immune response to HIV-1 env, when delivered either from a single MVA recombinant or from a DNA vector. The increment of the CD8+ T cell response was higher in a DNA/MVA prime/boost protocol. Thus, the immune response of MVA vectors can be improved with the co-delivery of the cytokines IFN-gamma or IL-12.  相似文献   

7.
The HIV-1 CRF01_AE gag gene was modified by codon restriction for Mycobacterium spp. and transformed into BCG; and it was designated as rBCG/codon optimized gagE. This produced 11 fold higher HIV-1 gag protein expression than the recombinant native gene rBCG/HIV-1gagE. In mice, CTL activity could be induced either by a single immunization of the codon optimized construct or by using it as a priming antigen in the prime-boost modality with recombinant Vaccinia virus expressing native HIV-1 gag. Specific secreted cytokine responses were also investigated. Only when rBCG gag was codon optimized did the prime-boost immunization produce significantly enhanced IFN-γ and IL-2 secretion indicating recognition via CD4+ and CD8+ T cells, and these responses seemed to be codon optimized immunogen dose-responsive. On contrary, the prime-boost vaccination using an equal amount of native rBCG/HIV-1gagE instead, or a single rBCG/codon optimized gagE immunization, had no similar effect on the cytokine secretion. These findings suggest that the use of recombinant codon BCG construct with recombinant Vaccinia virus encoding CRF01_AE gag as the prime-boost HIV vaccine candidate, will induce CD4+ Th1 and CD8+ T cell cytokine secretions in addition to enhancing CD8+ CTL response.  相似文献   

8.
To improve the immunogenicity of epitopes derived from Gag proteins of simian immunodeficiency virus (SIV) and from the envelope (Env) protein of human immunodeficiency virus type 1 (HIV-1), we have designed hybrid DNA vaccines by inserting sequences encoding antigenic domains of SIV and HIV-1 into the hepatitis B virus envelope gene. This gene encodes the hepatitis B surface antigen (HBsAg) capable of spontaneous assembly into virus-like particles that were used here as carrier. Injections of hybrid vectors encoding B-cell epitopes from the gp41 and the gp120 envelope proteins of HIV-1 induced specific humoral responses in BALB/c mice. Furthermore, high frequencies of IFN-gamma-secreting CD8+ T cells specific for various antigenic determinants of SIV-Gag were observed after intramuscular injections of hybrid DNA vectors in BALB/c mice. Genetic immunization of HLA-A2.1-transgenic mice with HIV-Env/HBsAg-encoding DNA generated a strong CTL response and IFN-gamma-secreting CD8+ T lymphocytes specific for HIV-1 envelope-derived peptide. H-2d-restricted HBs-specific T-cell responses dominated over SIV-Gag responses in BALB/c mice whereas HLA-A2-restricted HIV-Env response was enhanced after fusion with HBsAg. These data demonstrate that different B and T-cell epitopes of vaccine-relevant viral antigens can be expressed in vivo as fusion proteins with HBsAg but that the optimal immunogenicity may differ strikingly between individual epitopes.  相似文献   

9.
Induction of HIV-1-specific immune responses was evaluated using a recombinant BCG (rBCG) vector-based vaccine expressing HIV-1 Env V3 peptide (rBCG-pSOV3J1). rBCG-pSOV3J1 was manufactured as a freeze-dried preparation based on good laboratory practice guidelines. Guinea pigs were immunized with the freeze-dried rBCG vaccine by oral administration to test the effectiveness of what is generally considered the most convenient and practical route for vaccination. While delayed-type hypersensitivity (DTH) skin reactions to purified protein derivative were not detected in any of the animals receiving oral rBCG-pSOV3J1, HIV-1 V3J1 antigen-specific DTH responses were detected in all of the immunized guinea pigs 1.5 years after immunization. In addition, significant proliferative responses against HIV-1 V3J1 antigen were measured in peripheral blood mononuclear cells and splenocytes from all animals receiving oral rBCG. Interestingly, intestinal intraepithelial lymphocytes from the animals also exhibited high levels of proliferative activity against HIV-1 V3J1 antigen. These results suggest that oral vaccination of guinea pigs with freeze-dried rBCG-pSOV3J1 induces high levels of functional T cells specific for HIV-1 antigens in both mucosal and systemic compartments and suggest that this approach has potential for use as a vaccine against HIV-1.  相似文献   

10.
Designing an HIV-1 envelope glycoprotein (Env) that can induce broadly neutralizing antibodies in humans remains one of the great challenges in biomedical research. Monomeric gp120 has repeatedly failed to induce cross-neutralizing antibodies in clinical trials. Spearman et al. vaccinated uninfected volunteers with a trimeric gp140 protein. They found that the vaccine was safe and induced neutralizing antibody responses against the homologous virus, but not cross-neutralizing responses. The results reinforce the notion that our Env vaccine design needs to improve.  相似文献   

11.
目的 探讨HIV-2核心蛋白基因gag重组DNA疫苗与重组鸡痘病毒进行联合免疫引起小鼠的免疫应答,为研究HIV-2基因重组疫苗的免疫策略提供实验基础。方法 大量制备并纯化HIV-2 gag重组DNA疫苗和重组鸡痘病毒,以肌肉注射的方式免疫BALB/c小鼠,ELISA法检测小鼠血清HIV-2抗体,流式细胞仪测定CD4^+、CD8^+T淋巴细胞亚类数量,乳酸脱氢酶(LDH)释放法检测脾CTL对HIV-2靶细胞的杀伤活性。结果 重组DNA疫苗和重组鸡痘病毒单独免疫及二者联合免疫均刺激小鼠产生HIV-2特异性抗体,脾T细胞亚类数量增加,并产生针对HIV-2靶细胞的特异性CTL杀伤活性,但联合免疫组在各项指标上均高于单独免疫组。结论 以HIV-2gag重组DNA疫苗进行基础免疫、以HIV-2gag重组鸡痘病毒进行加强免疫能诱导小鼠产生更强的特异性细胞和体液免疫应答。  相似文献   

12.
To identify the most promising vaccine candidates for combinatorial strategies, we compared five SIV vaccine platforms including recombinant canary pox virus ALVAC, replication-competent adenovirus type 5 host range mutant RepAd, DNA, modified vaccinia Ankara (MVA), peptides and protein in distinct combinations. Three regimens used viral vectors (prime or boost) and two regimens used plasmid DNA. Analysis at necropsy showed that the DNA-based vaccine regimens elicited significantly higher cellular responses against Gag and Env than any of the other vaccine platforms. The T cell responses induced by most vaccine regimens disseminated systemically into secondary lymphoid tissues (lymph nodes, spleen) and effector anatomical sites (including liver, vaginal tissue), indicative of their role in viral containment at the portal of entry. The cellular and reported humoral immune response data suggest that combination of DNA and viral vectors elicits a balanced immunity with strong and durable responses able to disseminate into relevant mucosal sites.  相似文献   

13.
Live attenuated nonpathogenic Mycobacterium bovis bacillus Calmette-Guérin (BCG) mediates long-lasting immune responses, has been safely administered as a tuberculosis vaccine to billions of humans, and is affordable to produce as a vaccine vector. These characteristics make it very attractive as a human immunodeficiency virus (HIV) vaccine vector candidate. Here, we assessed the immunogenicity of recombinant BCG (rBCG) constructs with different simian immunodeficiency virus (SIV)gag expression cassettes as priming agents followed by a recombinant replication-incompetent New York vaccinia virus (NYVAC) boost in rhesus macaques. Unmutated rBCG constructs were used in comparison to mutants with gene deletions identified in an in vitro screen for augmented immunogenicity. We demonstrated that BCG-SIVgag is able to elicit robust transgene-specific priming responses, resulting in strong SIV epitope-specific cellular immune responses. While enhanced immunogenicity was sustained at moderate levels for >1 year following the heterologous boost vaccination, we were unable to demonstrate a protective effect after repeated rectal mucosal challenges with pathogenic SIVmac251. Our findings highlight the potential for rBCG vaccines to stimulate effective cross-priming and enhanced major histocompatibility complex class I presentation, suggesting that combining this approach with other immunogens may contribute to the development of effective vaccine regimens against HIV.  相似文献   

14.
The Semliki Forest virus (SFV) vector system is a new approach for in vivo expression of heterologous proteins and can also be used to generate specific immune responses in animal models. HIV-1 envelope glycoprotein produced using the SFV expression system is correctly folded, cleaved, transported to the cell surface and exhibits functional activity. We evaluated a recombinant Semliki Forest virus naked RNA-based immunization protocol for generation of monoclonal antibodies against the HIV-1 envelope glycoprotein. In vitro-transcribed RNA encoding for the SFV replicase complex and Env protein of HIV-1 (HXB2 strain) was injected intramuscularly to mice. This approach elicited an Env-specific antibody response in four mice out of five and a monoclonal antibody, 12H2, directed against gp41 was produced. Our results show that recombinant SFV RNA immunization can potentially be used as a quick and direct method to produce monoclonal antibodies, with the particular advantage that vectored RNA, rather than purified antigen, delivers a complex oligomer produced correctly.  相似文献   

15.
The genetic diversity of HIV-1 envelope glycoproteins (Env) remains a major obstacle to the development of an antibody-based AIDS vaccine. The present studies examine the breadth and magnitude of neutralizing antibody (NAb) responses in rhesus monkeys after immunization with DNA prime-recombinant adenovirus (rAd) boost vaccines encoding either single or multiple genetically distant Env immunogens, and subsequently challenged with a pathogenic simian-human immunodeficiency virus (SHIV-89.6P). Using a standardized multi-tier panel of reference Env pseudoviruses for NAb assessment, we show that monkeys immunized with a mixture of Env immunogens (clades A, B, and C) exhibited a greater breadth of NAb activity against neutralization-sensitive Tier 1 viruses following both vaccination and challenge compared to monkeys immunized with a single Env immunogen (clade B or C). However, all groups of Env-vaccinated monkeys demonstrated only limited neutralizing activity against Tier 2 pseudoviruses, which are more characteristic of the neutralization sensitivity of circulating HIV-1. Notably, the development of a post-challenge NAb response against SHIV-89.6P was similar in monkeys receiving either clade B, clade C, or clade A+B+C Env immunogens, suggesting cross-clade priming of NAb responses. In addition, vaccines encoding Env immunogens heterologous to SHIV-89.6P primed for a rapid anamnestic NAb response following infection compared to vaccines lacking an Env component. These results show that DNA/rAd immunization with multiple diverse Env immunogens is a viable approach for enhancing the breadth of NAb responses against HIV-1, and suggest that Env immunogens can prime for anamnestic NAb responses against a heterologous challenge virus.  相似文献   

16.
The immunogenicity of a poylvalent HIV-1 vaccine comprised of Env antigens from primary R5 isolates was evaluated in rhesus macaques. DNA vaccines encoding four Env antigens from multiple HIV-1 subtypes and HIV-1 Gag antigen from a single subtype elicited a persistent level of binding antibodies to gp120 from multiple HIV-1 isolates that were markedly enhanced following boosting with homologous gp120 proteins in QS-21 adjuvant irrespective of the route of DNA immunization. These sera neutralized homologous and, to a lesser degree, heterologous HIV-1 isolates. Four of the six immunized animals were completely protected following rectal challenge with a SHIV encoding Env from HIV-1(Ba-L), whereas the virus load was reduced in the remaining animals compared to na?ve controls. Hence priming with DNA encoding Env antigens from multiple HIV-1 clades followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of protecting macaques against mucosal transmission of R5 tropic SHIV isolate.  相似文献   

17.
The desire to induce HIV-1-specific responses soon after birth to prevent breast milk transmission of HIV-1 led us to propose a vaccine regimen which primes HIV-1-specific T cells using a recombinant Mycobacterium bovis bacillus Calmette-Guérin (rBCG) vaccine. Because attenuated live bacterial vaccines are typically not sufficiently immunogenic as stand-alone vaccines, rBCG-primed T cells will likely require boost immunization(s). Here, we compared modified Danish (AERAS-401) and Pasteur lysine auxotroph (222) strains of BCG expressing the immunogen HIVA for their potency to prime HIV-1-specific responses in adult BALB/c mice and examined four heterologous boosting HIVA vaccines for their immunogenic synergy. We found that both BCG.HIVA(401) and BCG.HIVA(222) primed HIV-1-specific CD8(+) T-cell-mediated responses. The strongest boosts were delivered by human adenovirus-vectored HAdV5.HIVA and sheep atadenovirus-vectored OAdV7.HIVA vaccines, followed by poxvirus MVA.HIVA; the weakest was plasmid pTH.HIVA DNA. The prime-boost regimens induced T cells capable of efficient in vivo killing of sensitized target cells. We also observed that the BCG.HIVA(401) and BCG.HIVA(222) vaccines have broadly similar immunologic properties, but display a number of differences mainly detected through distinct profiles of soluble intercellular signaling molecules produced by immune splenocytes in response to both HIV-1- and BCG-specific stimuli. These results encourage further development of the rBCG prime-boost regimen.  相似文献   

18.
Gastrointestinal and vaginal mucosa are major sites of entry in natural HIV infection and therefore the preferred sites to elicit high-avidity CD8+ CTL by vaccination. We directly compare systemic and mucosal immunization in mice after DNA priming and boosting with rgp160 env expressed either in MVA or Ad for their ability to induce mucosal as well as systemic HIV-specific CTL. The optimal CTL response in the gut mucosa was observed after priming with the HIV-1 gp160 env DNA vaccine and boosting with rMVA or rAd encoding the same envelope gene all administered intrarectally (IR). Maximum levels of high-avidity CD8+ T cells were seen in intestinal lamina propria following this regimen. When the prime and boost routes were distinct, the delivery site of the boost had a greater impact than the DNA priming. IM DNA prime and IR rMVA boost were more effective than IR DNA prime and IM rMVA boost for eliciting mucosal CD8+ T-cell avidity. A systemic DNA-prime-followed by systemic rMVA boost induced high levels of high-avidity CD8+ T cells systemically, but responses were undetectable in mucosal sites. A single systemic immunization with rMVA was sufficient to induce high-avidity IFN-γ secreting CD8+ T cells in systemic organs, whereas a single mucosal immunization with rMVA was not sufficient to elicit high-avidity CD8+ T cells in mucosa. Thus, a heterologous mucosal DNA prime-viral vectored boost strategy was needed. The requirement for a heterologous DNA prime-recombinant viral boost strategy for generation of high-avidity CD8+ T cells in mucosal sites in mice may be more stringent than for the induction of high-avidity CD8+ T cells in systemic compartments.  相似文献   

19.
《Mucosal immunology》2010,3(1):57-68
Vaccine-mediated prevention of primary infection with human immunodeficiency virus (HIV) may require the sustained production of antibody at mucosal portals of entry. Here, we describe a novel approach of repeated mucosal immunization by delivering an HIV-1 envelope glycoprotein (gp) in a gel formulated for intravaginal delivery. Rabbits were immunized over one to three 19-day cycles of intravaginal dosing with soluble recombinant trimeric HIV-1 clade C gp140 administered in Carbopol gel. The formulation was well tolerated. A single immunization cycle induced immunoglobulin G (IgG) antibody detected in the serum and female genital tract, and titers were boosted on further immunization. Vaccine-induced serum antibodies neutralized the infectivity of a pseudovirus carrying a heterologous clade C envelope. Our data prove the concept that repeated exposure of the female genital tract to HIV envelope can induce mucosally detectable antibody.  相似文献   

20.
目的 比较Ⅰ型人类免疫缺陷病毒(HIV-1)及乙型肝炎病毒(HBV)包膜蛋白初次免疫及加强免疫后诱导产生抗体的规律,为提高HIV-1包膜蛋白诱导保护性抗体产生能力提供创新思路.方法 以10周龄雌性C57BL/6小鼠为动物模型,分别用HIV-1 06044毒株gp120三聚体(gp120T)、HBV表面抗原(HBsAg)蛋白与AddaVax佐剂免疫小鼠,背部皮下注射,共免疫3次,每次免疫间隔3周,第一、第二次免疫后7d和第三次免疫后3d、7d取血;第一次免疫后7d、第三次免疫后3d、7d取脾组织.用酶联免疫吸附实验(ELISA)及酶联免疫斑点实验(ELISpot)方法检测免疫小鼠血浆特异性结合抗体滴度及抗体分泌细胞(ASC)数量.结果 gp120T和HBsAg两种蛋白初次免疫后,动物均未产生明显的特异性抗体.两种蛋白加强免疫后特异性抗体水平明显升高,gp120T一次加强免疫及两次加强特异性抗体滴度逐渐升高,而HBsAg一次加强抗体滴度已经接近两次加强的水平.二次加强免疫后,gp120T和HBsAg免疫鼠脾脏特异性ASC数量差异不显著.结论 HIV-1包膜gp120T加强免疫诱导抗体水平达到高峰慢于HBsAg加强免疫,即加强免疫后gp120T诱导的回忆反应慢于HBsAg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号