首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The herbicide paraquat, bearing structural similarity to the known dopaminergic neurotoxicant MPTP, has been suggested as a potential etiologic factor in Parkinson's disease. Consideration of paraquat as a candidate neurotoxicant requires demonstration that systemic delivery produces substantia nigra dopaminergic neuron loss and the attendant neurobehavioral syndrome reflecting depletion of dopamine terminals within the striatum. To address these issues paraquat was administered systemically into adult C57 bl/6 mice, ambulatory behavior monitored, substantia nigra dopamine neuron number and striatal dopamine terminal density quantified. The data indicate that paraquat like MPTP elicits a dose-dependent decrease in substantia nigra dopaminergic neurons assessed by a Fluoro-gold prelabeling method, a decline in striatal dopamine nerve terminal density assessed by measurement of tyrosine hydroxylase immunoreactivity; and neurobehavioral syndrome characterized by reduced ambulatory activity. Taken together, these data suggest that systemically absorbed paraquat crosses the blood-brain barrier to cause destruction of dopamine neurons in the substantia nigra, consequent reduction of dopaminergic innervation of the striatum and a neurobehavioral syndrome similar to the well characterized and bona fide dopaminergic toxin MPTP.  相似文献   

2.
3.
Administration of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to mammals causes damage to the nigrostriatal dopaminergic pathway similar to that observed in Parkinson disease (PD). Reactive oxygen species (ROS) are thought to be involved in the pathogenesis of MPTP-mediated dopaminergic neurodegeneration. To further clarify the role of superoxide anion radical (*O2-) and to study the possible involvement of hydroperoxides in MPTP-mediated neurodegeneration, MPTP neurotoxicity was induced in mice deficient in either CuZn superoxide dismutase (SOD), a scavenger enzyme for *O2-, or cellular glutathione peroxidase (GSHPx-1), a scavenger enzyme for hydroperoxides. Littermate control and homozygous deficient mice were injected intraperitoneally with a total cumulative dose of 0, 75, or 150 mg/kg of MPTP delivered over 5 d. All mice were killed 5 d after the last injection and the brains were processed for immunohistological analysis for tyrosine hydroxylase (TH) in the striatum and the substantia nigra pars compacta (SNc), as well as for direct measurements of dopamine concentrations in the striatum. The intensity of TH immunoreactivity in the striatum was evaluated by measuring the relative optical density (OD) with NIH IMAGE, and expressed as Log (OD of striatum)/Log (OD of white matter). Degeneration of TH-containing neurons was assessed by counting TH-positive neurons in the SNc. We found that this MPTP exposure protocol produced dose-dependent depletion of TH immunoreactivity and dopamine in the striatum in littermate control mice and both strains of knockout mice; however. reduction in TH immunoreactivity and dopamine content were significantly greater in CuZn-SOD or GSHPx-1 deficient mice compared with littermate controls. MPTP exposure did not significantly alter the number of TH-positive neurons in the SNc in littermate control or knockout mice. These data suggest that some of the deleterious effects of MPTP on striatal dopaminergic nerve terminals are mediated by both *O2- and hydroperoxides, and that they occur prior to dopaminergic neurodegeneration in the SNc. The similarity between the MPTP model and PD raises the possibility that both types of ROS may play a significant role in the early pathogenesis of dopaminergic neurodegeneration in PD.  相似文献   

4.
Previous results from our laboratory have shown that 17beta-oestradiol prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) striatal dopamine depletion. 17beta-oestradiol, oestriol and oestrone are the naturally occurring oestogens in humans. Using various dopamine markers, the present study investigated whether oestrone and oestriol such as 17beta-oestradiol have neuroprotective activity in MPTP-treated mice. Male mice were treated with 17beta-oestradiol, oestriol or oestrone for 5 days before and after MPTP administration, and were compared with nonlesioned mice receiving the same treatment. Striatal concentrations of dopamine and its metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), were assayed by high-performance liquid chromatography. Dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2) specific binding were measured by autoradiography. DAT, VMAT2 and tyrosine hydroxylase mRNA levels were measured by in situ hybridisation. MPTP induced a loss of DAT and VMAT2 specific binding in the striatum and substantia nigra, as well as a decrease of VMAT2 mRNA in the substantia nigra. 17beta-oestradiol treatment prevented the loss of these dopaminergic markers, as well as striatal concentrations of dopamine, DOPAC and HVA. Mice receiving oestriol and oestrone showed catecholamine concentrations comparable to MPTP mice. Oestriol treatment had no effect on dopaminergic markers in MPTP mice whereas oestrone prevented striatal DAT loss and the decrease of VMAT2 mRNA in the substantia nigra. In nonlesioned mice, 17beta-oestradiol, oestriol or oestrone had no effect on all the dopaminergic markers investigated. In conclusion, a weak or a lack of effect of oestriol and oestrone was observed compared to 17beta-oestradiol in MPTP mice and none of these steroids had an effect in nonlesioned mice. A DAT and VMAT2 specific binding decrease after MPTP in the striatum and substantia nigra, as well as a decrease of substantia nigra VMAT2 mRNA, was observed and could be prevented by oestradiol.  相似文献   

5.
The angiotensin -converting enzyme (ACE) inhibitor perindopril has been shown to exert beneficial effects on the dopaminergic system. Here, we investigated the effects of perindopril on the dopaminergic system in mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment, in comparison with a Ca(2+) antagonist, amlodipine. Administration of perindopril showed dose-dependent neuroprotective effects against MPTP-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) depletion. However, administration of amlodipine showed no significant effects on striatal dopamine depletion after MPTP treatment. In our immunohistochemical studies with antibodies against tyrosine hydroxylase (TH), microtubule-associated protein 2a, b (MAP2), dopamine transporter (DAT), parvalbumin (PV), glial fibrillary acidic protein (GFAP) and Cu/Zn-superoxide dismutase (Cu/Zn-SOD), the administration of perindopril significantly attenuated MPTP-induced substantia nigra and striatal damage. This drug also blocked the increases in GFAP-positive astrocytes in the striatum and substantia nigra after MPTP treatment. Furthermore, the administration of perindopril showed a protective effect against the intense Cu/Zn-SOD immunoreactivity in the neurons and glial cells in both the striatum and substantia nigra after MPTP treatment. These results indicated that the ACE inhibitor perindopril can protect against MPTP-induced striatal dopamine and DOPAC depletion in mice. The protective effect may be, at least in part, caused by the reduction of free radicals caused by MPTP. The present study also demonstrated that perindopril is effective against MPTP-induced neurodegeneration of the nigro-striatal dopaminergic pathway. Furthermore, our results provided further evidence that free radical scavengers may be effective in the treatment of neurodegenerative diseases such as Parkinson's disease.  相似文献   

6.
Parkinson's disease (PD) is one of the major neurodegenerative disorders. The etiology of this disease is likely due to combinations of environmental and genetic factors. Symptomatic hallmarks of PD are tremor, bradykinesia, rigidity and postural instability. On the morphological and anatomical level, PD is characterized by massive degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to a severe loss of striatal dopaminergic fibers and to a massive reduction of dopamine levels in the striatum. In addition, PD is characterized by the appearance of Lewy bodies within the surviving dopaminergic neurons. Animal models of PD allow getting insight into the mechanisms of several symptoms of PD thereby providing indispensable tools for basic and applied research. The biochemical and cellular changes that occur following administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in rodents or monkeys are remarkably similar to those seen in idiopathic PD. In this review, the main characteristics of experimental models of PD induced by the neurotoxic compound MPTP are reviewed.  相似文献   

7.
《Neurological research》2013,35(6):644-657
Abstract

The angiotensin -converting enzyme (ACE) inhibitor perindopril has been shown to exert benefical effects on the dopaminergic system. Here, we investigated the effects of perindopril on the dopaminergic system in mice after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment, in comparison with a Ca2+ antagonist, amlodipine. Administration of perindopril showed dose-dependent neuroprotective effects against MPTP-induced striatal dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) depletion. However, administration of amlodipine showed no significant effects on striatal dopamine depletion after MPTP treatment. In our immunohistochemical studies with antibodies against tyrosine hydroxylase (TH), microtubule-associated protein 2a, b (MAP2), dopamine transporter (DAT), parvalbumin (PV), glial fibrillary acidic protein (GFAP) and Cu/Zn-superoxide dismutase (Cu/Zn-SOD), the administration of perindopril significantly attenuated MPTP-induced substantia nigra and striatal damage. This drug also blocked the increases in GFAP-positive astrocytes in the striatum and substantia nigra after MPTP treatment. Furthermore, the administration of perindopril showed a protective effect against the intense Cu/Zn-SOD immunoreactivity in the neurons and glial cells in both the striatum and substantia nigra after MPTP treatment. These results indicated that the ACE inhibitor perindopril can protect against MPTP-induced striatal dopamine and DOPAC depletion in mice. The protective effect may be, at least in part, caused by the reduction of free radicals caused by MPTP. The present study also demonstrated that perindopril is effective against MPTP-induced neurodegeneration of the nigro-striatal dopaminergic pathway. Furthermore, our results provided further evidence that free radical scavengers may be effective in the treatment of neurodegenerative diseases such as Parkinson's disease.  相似文献   

8.
Mice lacking alpha-synuclein are resistant to mitochondrial toxins   总被引:1,自引:0,他引:1  
Abnormalities in the function of alpha-synuclein are implicated in the pathogenesis of Parkinson's disease (PD). We found that alpha-synuclein-deficient mice are resistant to MPTP-induced degeneration of dopaminergic neurons. There was dose-dependent protection against loss of both dopamine in the striatum and dopamine transporter (DAT) immunoreactive neurons in the substantia nigra. These effects were not due to alterations in MPTP processing. We found that alpha-synuclein-deficient mice are also resistant to both malonate and 3-nitropropionic acid (3-NP) neurotoxicity. There was reduced generation of reactive oxygen species in alpha-synuclein-deficient mice following administration of 3-NP. These findings implicate alpha-synuclein as a modulator of oxidative damage, which has been implicated in neuronal death produced by MPTP and other mitochondrial toxins.  相似文献   

9.
Glial fibrillary acidic protein immunohistochemistry was used as a selective marker for regional reactive gliosis in the striatum and ventral mesencephalon in cats and mice exposed to the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Thirty mice (C-57 black strain) were injected with 30 mg/kg intraperitoneally (IP) MPTP.HCl for seven days. Five adult cats were injected with 10 mg/kg IP MPTP.HCl for seven days. Animals were killed five to seven days after the last MPTP injection. Reactive gliosis was observed throughout the mouse striatum but not in the substantia nigra. In contrast, reactive gliosis was topographically represented in the cat caudate nucleus with a dorsal-ventral and medial-lateral gradient evident. Gliosis was also observed in the putamen and the substantia nigra, pars compacta. Tyrosine hydroxylase immunocytochemistry revealed a loss of dopamine in the mouse striatum but no loss of substantia nigra neurons. Nigral neurons were destroyed in the cat. These results suggest that MPTP may destroy nigrostriatal dopamine cell bodies and terminals in the cat while destruction in the mouse is at least initially confined to striatal terminals.  相似文献   

10.
11.
Parkinson’s disease (PD) is characterized by progressive degeneration of dopaminergic neurons accompanied by an inflammatory reaction. The neuron-derived chemokine fractalkine (CX3CL1) is an exclusive ligand for the receptor CX3CR1 expressed on microglia. The CX3CL1/CX3CR1 signaling is important for sustaining microglial activity. Using a recently developed PD model, in which the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin is delivered intranasally, we hypothesized that CX3CR1 could play a role in neurotoxicity and glial activation. For this, we used CX3CR1 knock-in mice and compared results with those obtained using the classical PD models through intraperitonal MPTP or intrastriatal 6-hydroxydopamine (6-OHDA). The striatum from all genotypes (CX3CR1+/+, CX3CR1+/GFP and CX3CR1-deficient mice) showed a significant dopaminergic depletion after intranasal MPTP inoculation. In contrast to that, we could not see differences in the number of dopaminergic neurons in the substantia nigra of CX3CR1-deficient animals. Similarly, after 6-OHDA infusion, the CX3CR1 deletion decreased the amphetamine-induced turning behavior observed in CX3CR1+/GFP mice. After the 6-OHDA inoculation, a minor dopaminergic neuronal loss was observed in the substantia nigra from CX3CR1-deficient mice. Distinctly, a more extensive neuronal cell loss was observed in the substantia nigra after the intraperitoneal MPTP injection in CX3CR1 disrupted animals, corroborating previous results. Intranasal and intraperitoneal MPTP inoculation induced a similar microgliosis in CX3CR1-deficient mice but a dissimilar change in the astrocyte proliferation in the substantia nigra. Nigral astrocyte proliferation was observed only after intraperitoneal MPTP inoculation. In conclusion, intranasal MPTP and 6-OHDA lesion in CX3CR1-deficient mice yield no nigral dopaminergic neuron loss, linked to the absence of astroglial proliferation.  相似文献   

12.
We investigated the chronological changes of dopamine D1 and D2 receptors and dopamine uptake sites in the striatum and substantia nigra of mouse brain treated with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) by quantitative autoradiography using [3H]SCH23390, [3H]raclopride and [3H]mazindol, respectively. The mice received i.p. injections of MPTP (10 mg/kg) four times at intervals of 60 min, the brains were analyzed at 6 h and 1, 3, 7 and 21 days after the last the injection. Dopamine D2 receptor binding activity was significantly decreased in the substantia nigra from 7 to 21 days after MPTP administration, whereas such binding activity was significantly increased in the medial part of the striatum at 21 days. There was no alteration of dopamine D1 receptor binding activity in either the striatum or the substantia nigra for the 21 days. The number of dopamine uptake sites gradually decreased in the striatum and the substantia nigra, starting at 6 h after MPTP administration, and the lowest levels of binding activity were observed at 3 and 7 days in the striatum (18% of the control values in the medial part and 30% in the lateral part) and at 1 day in the substantia nigra (20% of the control values). These results indicate that severe functional damage to the dopamine uptake sites occurs in the striatum and the substantia nigra, starting at an early stage after MPTP treatment. Our findings also demonstrate the compensatory up-regulation in dopamine D2 receptors, but not dopamine D1 receptors, in the striatum after MPTP treatment. Furthermore, our results support the existence of dopamine D2 receptors, but not dopamine D1 receptors, on the nigral neurons. The present findings suggest that there are differential vulnerabilities to MPTP toxicity in the nigrostriatal dopaminergic receptor systems of mouse brain.  相似文献   

13.
Cellular sites of enkephalin gene expression were investigated using the technique of in situ hybridization in the normal striatum and in the denervated striatum of monkeys depleted of dopamine by pretreatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Animals received MPTP by either (a) intravenous injection to induce generalized parkinsonism, or (b) infusion into one carotid artery to induce unilateral parkinsonism. The animals which received systemic injections of MPTP were found to have an essentially total loss of nigral dopamine cells whereas the intracarotid MPTP treatment was found to destroy approximately 95% of the dopamine neurons in the ipsilateral substantia nigra. A double-stranded cDNA probe encoding the human preproenkephalin (PPE) gene was isotopically labelled with 35S and used to detect PPE mRNA within striatal tissue sections. Application of this radiolabelled cDNA probe to lightly fixed striatal sections from both groups of animals revealed an increase in expression of PPE mRNA within denervated striatal enkephalinergic neurons relative to control tissue. An increase in the number of detectable enkephalinergic mRNA-positive neurons relative to control tissue was also noted. These results suggest that the nigral dopaminergic neurons tonically inhibit PPE gene expression in the striatum.  相似文献   

14.
Emerging evidence suggests beneficial effect of estrogen for Parkinson's disease (PD), yet the exact mechanisms implicated remain obscured. Activated glia observed in MPTP mouse model and in PD may participate in the cascade of deleterious events that ultimately leads to dopaminergic nigral neuronal death. In vitro studies demonstrate that estrogen can modify the microglial and astroglial expression of inflammatory mediator, such as cytokines and chemokines implicated in neuroinflammation and neurodegeneration. To determine whether estrogen-elicited neuroprotection in PD is mediated through glia, adult male C57Bl/6 mice were treated with 17beta-estradiol (E2) for a total of 11 days. Following 5 days of pretreatment with E2, they were injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the sixth day. The brains were collected on day 11. Immunohistochemistry and quantitative study were used to assess the number of tyrosine hydroxylase-immunoreactive (TH-IR) neurons in the substantia nigra pars compacta (SNpc) and that of activated astrocytes and activated microglia in the SNpc and the striatum. Pretreatment with E2 decreased the loss of TH-IR nigral neurons and diminished the deficit of TH-IR striatal fibers triggered by MPTP. The neuroprotective effect of E2 was coincident with an attenuation of a glial response within the nigra and the striatum. These findings suggest that the neuroprotective effects of E2 evidenced in MPTP mouse model might mediate through an inhibition of reactive glia. However, direct neuroprotective effects of E2 upon TH-IR neurons cannot be excluded.  相似文献   

15.
Ketogenic diet (KD) is a high-fat, low-protein and low-carbohydrate diet. It is reported that KD can provide the neuroprotection for the neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease (PD) and amyotrophic lateral sclerosis. The main clinical symptom of PD is motor dysfunction derived from the loss of dopaminergic neurons in the substantia nigra (SN) and dopamine content in the striatum subsequently. It is well known that treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice produce motor dysfunction, biochemical, and neurochemical changes remarkably similar to idiopathic PD patients. In this study, we investigated the neuroprotective and anti-inflammatory effects of KD in MPTP-treated mice. The data showed that pretreatment with KD alleviated the motor dysfunction induced by MPTP. The decrease of Nissl-staining and tyrosine hydroxylase (TH)-positive neurons induced by MPTP was inhibited in the SN. The change of dopamine was very similar to dopaminergic neurons in the SN. KD inhibited the activation of microglia induced by MPTP in the SN. The levels of proinflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha) in the SN were also decreased and induced by MPTP. So, we concluded that KD was neuroprotective and anti-inflammatory against MPTP-neurotoxicity.  相似文献   

16.
The neurotoxin MPTP is widely used to cause damage to the dopaminergic system in rodents and non-human primates to model various aspects of Parkinson's disease. In mice, depletion of striatal dopamine is the commonly used endpoint to assess neuronal damage. However, it has proved technically challenging to quantify dopaminergic cell bodies as an index of neuronal integrity. To meet this challenge, we applied laser pressure catapult microdissection (LCM) of the substantia nigra in combination with quantitative Western blot to provide an index of dopamine neurodegeneration in mice treated with MPTP. Seven days following initiation of MPTP treatment, striatal dopamine depletion was maximal and there was histological evidence of neuronal degeneration in the substantia nigra. To index the integrity of dopamine cell bodies, tyrosine hydroxylase (TH) and beta-actin were quantified by Western blot in LCM extracts. In untreated mice, TH was detected in LCM extracts of substantia nigra but was undetectable in equivalently sized extracts of cortex from the same animals. In MPTP-treated mice, there was a significant 70% reduction in TH relative to beta-actin in LCM extracts as compared to vehicle-injected controls. This reduction corresponded to decreases in striatal dopamine and loss of immunocytochemically detected TH but not beta-actin in the substantia nigra (SN). Thus, this method provides a quantitative means to measure dopamine neuron toxicity in the substantia nigra and, as such has potential application in evaluating regimens that may be neuroprotective or neurorestorative for dopaminergic neurons.  相似文献   

17.
Expression of S-100 protein is related to neuronal damage in MPTP-treated mice   总被引:11,自引:0,他引:11  
S-100beta is a calcium-binding protein expressed at high levels in brain and is known as a marker of brain damage. However, little is known about the role of S-100beta protein during neuronal damage caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To determine whether S-100beta protein is induced in glial cells after MPTP treatment, we investigated the expression of S-100 protein immunohistochemically, using MPTP-treated mice. We also examined the change of neurons and glial cells in mice after MPTP treatment. The present study shows that tyrosine hydroxylase (TH) immunoreactivity decreased gradually in the striatum and substantia nigra from 1 day after MPTP treatment. Thereafter, TH-immunopositive cells and fibers decreased in the striatum and substantia nigra at 3 days after MPTP treatment. In contrast, S-100-immunopositive cells and glial fibrillary acidic protein (GFAP)-immunopositive cells increased markedly in the striatum and substantia nigra at 3 days after MPTP treatment. Seven days after MPTP treatment, S-100-immunopositive cells decreased in the striatum and substantia nigra. However, the number of GFAP-immunopositive cells increased in these regions. In double-labeled immunostaining with anti-S-100 and anti-GFAP antibodies, S-100 immunoreactivity was observed only in the GFAP-positive astrocytes. These results provide evidence that astrocytic activation may play a role in the pathogenesis of MPTP-induced degeneration of dopaminergic neurons. Furthermore, the present study demonstrates that S-100 protein is expressed selectively by astrocytes, but not by microglia, after MPTP treatment. These results provide valuable information for the pathogenesis of the acute stage of Parkinson's disease.  相似文献   

18.
In this report we show that dextromethorphan, a non-opioid cough suppressant, prevents the neurodegeneration of dopaminergic neurons in the substantia nigra of mice treated with diethyldithiocarbamate (DDC) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This effect is further substantiated by the assessment of dopamine (DA) content in the striatum of these animals. Dextromethorphan does not attenuate the striatal DA fall induced by MPTP alone but completely prevents DDC-induced enhancement after the combined treatment. Moreover, a study of DA metabolites has confirmed this neuroprotective property. The striatal levels of serotonin, which were studied as a control neuronal marker, did not change with any of the treatments administered. Furthermore, we show that dextromethorphan reduces the toxicity of glutamate against dopamine neurons in mesencephalic cell cultures. In line with previous data suggesting that dextromethorphan can prevent neuronal damage, our observations supply new evidence regarding the possibility of this compound being of therapeutic use in neurodegenerative diseases.  相似文献   

19.
目的观察神经节苷脂对帕金森病(Parkinsondisease,PD)鼠模型的旋转行为、纹状体多巴胺浓度及黑质病理的影响。方法将6-羟基多巴胺用立体定向法注入大鼠一侧中脑被盖腹侧区制作PD大鼠模型,并于同侧侧脑室注射混合型神经节苷脂(amixedgangliosidepreparation,GM),观察GM对由阿朴吗啡所诱发的旋转行为、受损侧纹状体多巴胺浓度及黑质病理的影响。结果GM能减轻PD大鼠模型的旋转行为、使受损侧纹状体多巴胺浓度下降和黑质神经细胞减少。结论GM可减轻6-羟基多巴胺对黑质多巴胺能神经元的损伤。  相似文献   

20.
目的 :研究尼古丁对帕金森病大鼠的影响 ,探讨其对 PD的作用机制。方法 :通过 6 - OHDA脑立体定向注射术建立大鼠帕金森病模型。采用生化方法观察不同剂量尼古丁对帕金森病大鼠的作用 ,检测黑质自由基、抗氧化剂及多巴胺含量的变化。结果 :造模前及造模后皮下注射尼古丁的 PD大鼠 ,黑质自由基及抗自由基酶及多巴胺含量较PD组有明显改善 (P<0 .0 5 )。结论 :尼古丁可减轻 6 - OHDA对黑质 DA能神经元的损伤 ,对 PD大鼠具有保护作用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号