首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the present study was to visualize the synaptic interactions of GABAergic neurons involved in the mediation of velocity storage. In the previous report, ultrastructural studies of degenerating neurons were conducted following midline section of rostral medullary commissural fibers with subsequent behavioral testing. The midline lesion caused functionally discrete damage to the velocity storage component, but not to the direct pathway, of the angular vestibulo-ocular reflex, and the degenerating neurons were interpreted as potential participants in the velocity storage network. We concluded that at least some of the commissural axons mediating velocity storage originate from clusters of neurons in the lateral crescents of the rostral medial vestibular nucleus. In the present report, immunocytochemical evidence is presented that many vestibular commissural neurons, putatively involved in mediating velocity storage, are GABAergic. These cells have large nuclei, small round or narrow tubular mitochondria, occasional cisterns and vacuoles, but few other organelles. Their axons are thinly-myelinated, and terminate in boutons containing mitochondria of similar ultrastructural appearance and a moderate density of round/pleomorphic synaptic vesicles. Such terminals often form axoaxonic synapses, and less frequently axodendritic contacts, with non-GABAergic elements. On the basis of the present results, we conclude that a portion of the commissural neurons of the velocity storage pathway is GABAergic. The observation of GABAergic axoaxonic synapses in this pathway is interpreted as a structural basis for presynaptic inhibition of medial vestibular nucleus circuits by velocity storage-related commissural neurons. Conversely, substantial ultrastructural evidence for postsynaptic inhibition of non-GABAergic commissural cells argues for a dual role for GABAergic terminals mediating velocity storage: presynaptic inhibition of non-GABAergic vestibular cells by GABAergic velocity storage commissural axons, and postsynaptic inhibition of non-GABAergic velocity storage cells by GABAergic axons. Both pre- and postsynaptic inhibitory arrangements could provide the morphologic basis for disinhibitory activation of the velocity storage network within local neuronal circuits.  相似文献   

2.
The angular vestibulo-ocular reflex maintains gaze during head movements. It is thought to be mediated by two components: direct and velocity storage pathways. The direct angular vestibulo-ocular reflex is conveyed by a three neuron chain from the labyrinth to the ocular motoneurons. The indirect pathway involves a more complex neural network that utilizes a portion of the vestibular commissure. The purpose of the present study was to identify the ultrastructural characteristics of commissural neurons in the medial vestibular nucleus that are related to the velocity storage component of the angular vestibulo-ocular reflex. Ultrastructural studies of degenerating medial vestibular nucleus neurons were conducted in monkeys following midline section of rostral medullary commissural fibers with subsequent behavioral testing. After this lesion, oculomotor and vestibular functions attributable to velocity storage were abolished, whereas the direct angular vestibulo-ocular reflex pathway remained intact. Since this damage was functionally discrete, degenerating neurons were interpreted as potential participants in the velocity storage network. Ultrastructural observations indicate that commissural neurons related to velocity storage are small and medium sized cells having large nuclei with deep indentations and relatively little cytoplasm, which are located in the lateral crescents of rostral medial vestibular nucleus. The morphology of degenerating dendritic profiles varied. Some contained numerous round or tubular mitochondria in a pale cytoplasmic matrix with few other organelles, while others had few mitochondria but many cisterns and vacuoles in dense granular cytoplasm. The commissural nature of these cells was further suggested by the presence of two different types of degenerating axon terminals in the rostral medial vestibular nucleus: those with a moderate density of large spherical synaptic vesicles, and those with pleomorphic, primarily ellipsoid synaptic vesicles. The recognition of two types of degenerating terminals further supports our interpretation that at least two morphological types of commissural neurons participate in the velocity storage network. The degenerating boutons formed contacts with a variety of postsynaptic partners. In particular, synapses were observed between degenerating boutons and non-degenerating dendrites, and between intact terminals and degenerating dendrites. However, degenerating pre- and postsynaptic elements were rarely observed in direct contact, suggesting that additional neurons are interposed in the indirect pathway commissural system. On the basis of these ultrastructural observations, it is concluded that vestibular commissural neurons involved in the mediation of velocity storage have distinguishing ultrastructural features and synaptology, that are different from those of direct pathway neurons.  相似文献   

3.
The GABAergic innervation of the extraocular motor nuclei in the cat was evaluated using postembedding immunocytochemical techniques. The characterization of GABA-immunoreactive terminals in the oculomotor nucleus was carried out at the light and electron microscopic levels. GABA-immunopositive puncta suggestive of boutons were abundant in semithin sections throughout the oculomotor nucleus, and were found in close apposition to somata and dendrites. Ultrathin sections revealed an extensive and dense distribution of GABA-immunoreactive synaptic endings that established contacts with the perikarya and proximal dendrites of motoneurons and were also abundant in the surrounding neuropil. GABAergic boutons were characterized by the presence of numerous mitochondria, pleiomorphic vesicles and multiple small symmetrical synaptic contacts. The trochlear nucleus exhibited the highest density of GABAergic terminations. In contrast, scarce GABA immunostaining was associated with the motoneurons and internuclear neurons of the abducens nucleus. In order to further elucidate the role of this neurotransmitter in the oculomotor system, retrograde tracing of horseradish peroxidase was used in combination with the GABA immunostaining. First, medial rectus motoneurons were identified following horseradish peroxidase injection into the corresponding muscle. This was carried out because of the peculiar afferent organization of medial rectus motoneurons that contrasts with the remaining extraocular motoneurons, especially their lack of direct vestibular inhibition. Semithin sections of the oculomotor nucleus containing retrogradely labeled medial rectus motoneurons and immunostained for GABA revealed numerous immunoreactive puncta in close apposition to horseradish peroxidase-labeled somata and in the surrounding neuropil. At the ultrastructural level, GABAergic terminals established synaptic contacts with the somata and proximal dendrites of medial rectus motoneurons. Their features and density were similar to those found in the remaining motoneuronal subgroups of the oculomotor nucleus. Second, oculomotor internuclear neurons were identified following the injection of horseradish peroxidase into the abducens nucleus to determine whether they could give rise to GABAergic terminations in the abducens nucleus. About 20% of the oculomotor internuclear neurons were doubly labeled by retrograde horseradish peroxidase and GABA immunostaining. A high percentage (80%) of the oculomotor internuclear neurons projecting to the abducens nucleus showed immunonegative perikarya. It was concluded that the oculomotor internuclear pathway to the abducens nucleus comprises both GABAergic and non-GABAergic neurons and, at least in part, the GABA input to the abducens nucleus originates from this source. It is suggested that this pathway might carry excitatory and inhibitory influences on abducens neurons arising bilaterally.  相似文献   

4.
本文作者曾证明,三叉神经感觉主核背内侧区和三叉上核尾外侧部是大鼠三又神经本体觉三级传入通路中继站。为证实此二处的GABA能丘脑投射神经元和中间神经元是否参与三叉神经本体觉的传导和初级整合并阐明其整合机制,用Ricin毁损三叉神经中脑核神经元及其终末,HRP逆行标记此区的丘脑投射神经元以及抗GABA免疫组化三者结合的方法,在电镜下发现:(1)中脑核神经元的溃变终末与该二区神经毯中的GABA能三叉—丘脑投射神经元的胞体和树突形成轴—体和轴—树突触。(2)溃变终末与GABA样中间神经元形成突触。(3)GA—BA样终末与GABA能三叉—丘脑投射神经元形成突触。(4)GABA样终末也与GABA样神经元的胞体和树突形成自突触。此外还观察到GABA能三叉—丘脑投射神经元的回返侧支与GABA能中间神经元间的突触连接和大的“贝壳状”GABA样终末与周围的神经成分形成复杂的突触复合体。证实该二区的GABA能三叉—丘脑投射神经元直接参与三叉神经本体党的向心传导;同时,GABA能中间神经元和其它来源的GABA能神经成分也参与本体觉传导的初级整合作用,其间存在着突触前、后抑制,去抑制,突触前易化,回返抑制等复杂整合机制的结构基础。  相似文献   

5.
Bak IJ  Baker R  Choi WB  Precht W 《Neuroscience》1976,1(6):477-482
Ultrastructural degeneration studies were carried out on the cat trochlear nucleus following lesion of the vestibulo-trochlear pathway in order to characterize the location and type of presynaptic endings involved in this pathway. Four types of boutons are found in the normal trochlear nucleus. Types I and II are large and demonstrate typical en passant profiles with small diameter synaptic vesicles (35 and 40 nm). These terminals are characterized by the absence of neurofilaments in the Type II endings. Types III and IV are smaller boutons, located more axondendritically, and contain larger diameter synaptic vesicles (45 nm). Type V terminals contain large, granulated vesicles and occur only rarely. Following the interruption of the ascending projection from the ipsilateral superior and medial vestibular nuclei by parasagittal medullary lesions, degeneration of Type II boutons was commonly encountered in the ipsilateral trochlear nucleus. Predominantly Type III degeneration was found in the contralateral trochlear nucleus. Electrical stimulation of the vestibular nerve showed that these lesions resulted in (1) a complete loss of inhibition in the ipsilateral trochlear nucleus and (2) a significant (75-90%) reduction in the contralateral excitatory pathway to the trochlear nucleus. Midline sagittal lesions in the floor of the fourth ventricle interrupting the decussating fiber projection from the bilateral medial vestibular nuclei resulted in selective degeneration of only Type III boutons in both trochlear nuclei. We conclude that inhibitory vestibular neurons eminating from the superior vestibular nucleus terminate on trochlear motoneurons with Type II boutons and excitatory vestibular neurons from the contralateral medial vestibular nucleus end on trochlear motoneurons with Type III boutons.  相似文献   

6.
Summary The cat dorsal lateral geniculate nucleus (LGN) was examined at the light- and electron-microscopic level after immunocytochemistry for GAD (the synthesizing enzyme of the inhibitory neurotransmitter GABA), to identify cells and processes with GAD-like immunoreactivity. GAD-positive perikarya were distributed throughout the A and C laminae, constituting a moderate proportion of cells in the LGN. Labeled cells were characterized by small size, scant cytoplasm, relatively large nuclei with common indentations, small mitochondria, few organelles and few strands of rough endoplasmic reticulum. Unlabeled cells were of large, medium and small size. GAD-positive terminals were identified as F1 and F2 types (Guillery's nomenclature) on the basis of their synaptic relations and ultrastructure. Labeled F2 terminals were postsynaptic to retinal (RLP) boutons and presynaptic to unlabeled dendrites in synaptic glomeruli. Labeled F1 terminals made synapses on unlabeled somata and dendrites, and on labeled dendrites and F2 terminals. Presumably, most labeled F1 terminals originate from GABAergic perigeniculate axons. Retinal (RLP) and cortico-geniculate (RSD) boutons remained unlabeled in the reative zone. These terminals made synapses with labeled and unlabeled dendrites and with labeled F2 boutons. In conjunction with previous studies on GAD-positive cells in the perigeniculate nucleus, these results provide immunocytochemical and morphological evidence suggesting that the GABAergic intrinsic and extrinsic (perigeniculate) interneurons mediate the different inhibitory phenomena which occur in relay cells of the cat LGN. The ultrastructural features and synaptic relations of GABAergic cells and processes in the cat LGN are similar to those of equivalent neural elements in the LGN of rat and monkey, suggesting general principles of organization and morphology for GABAergic neurons in the thalamus of different mammals.Supported in part by grants EY 02877 and HD 03352 from the National Institutes of Health  相似文献   

7.
γ-Aminobutyric acid-ergic (GABAergic) neurons are major inhibitory interneurons that are widely distributed in the central nervous system. The caudal nucleus tractus solitarius (cNTS), which plays a key role in respiratory, cardiovascular, and gastrointestinal function, contains GABAergic neurons for regulation of neuronal firing. In the present study, GABAergic neuronal organization was analyzed in relation to the location of subnuclei in the mouse cNTS. According to the differential expression of glutamate decarboxylase 67 (GAD67), vesicular glutamate transporter 2 (VGLUT2), calbindin, and tyrosine hydroxylase (TH) mRNAs, the cNTS was divided into four subnuclei: the subpostrema, dorsomedial, commissural, and medial subnuclei. The numerical density and size of soma in the four subnuclei were then quantified by an unbiased disector analysis. Calbindin-positive cells constituted subpopulations of small non-GABAergic neurons preferentially localized in the subpostrema subnucleus. TH-positive cells constituted large neurons preferentially localized in the medial subnucleus. GABAergic neurons constituted a subpopulation of small neurons, preferentially localized in the commissural and medial subnuclei, which represented ≥50% of small cells in these subnuclei. Thus, the GABAergic small neurons were located around TH-positive large cells in the ventrolateral portion of the cNTS. This finding, in combination with results of previous studies in the rat cNTS showing that large cells originate efferents from the cNTS, suggests that GABAergic small neurons in the commissural and medial subnuclei might regulate output from the cNTS.  相似文献   

8.
A light and electron microscopic study of GABA-immunoreactive neurons and profiles in the ventroanterior-ventrolateral and ventromedial nuclei of rat dorsal thalamus was conducted using antiserum raised against GABA. Less than 1% of the neurons in these motor-related nuclei exhibited GABA immunoreactivity, confirming previous reports that these nuclei are largely devoid of interneurons. Immunoreactive neurons in the ventral anterior-ventral lateral complex and ventromedial nucleus were bipolar or multipolar in shape, and tended to be smaller than non-immunoreactive neurons. GABA immunoreactivity in the neuropil consisted of labeled axon terminals and myelinated and unmyelinated axons, and was lower in the ventral anterior-ventral lateral complex and ventromedial nucleus than in neighboring thalamic nuclei. The density of neuropil immunolabeling was slightly higher in ventral anterior-ventral lateral complex than in ventromedial nucleus. GABA-immunoreactive axon terminals, collectively termed MP boutons for their medium size and pleomorphic vesicles (and corresponding to "F" profiles of some previous studies of thalamic ultrastructure), formed symmetric synapses and puncta adhaerentia contacts predominantly with large and medium-diameter (i.e. proximal) non-immunoreactive dendrites. Approximately 12 and 18% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, were GABA-immunopositive. Many of these immunoreactive profiles probably arose from GABAergic neurons in the thalamic reticular nucleus, substantia nigra pars reticulata and entopeduncular nucleus. Two types of non-immunoreactive axon terminals were distinguished based on differences in morphology and synaptic termination sites. Boutons with small ovoid profiles and round vesicles that formed prominent asymmetric synapses onto small-diameter dendrites were observed. Mitochondria were rarely observed within these boutons, which arose from thin unmyelinated axons. These boutons composed approximately 82 and 74% of boutons in the ventral anterior-ventral lateral complex and ventromedial nucleus, respectively, and were considered to arise predominantly from neurons in the cerebral cortex. In contrast, boutons with large terminals that contained round or plemorphic vesicles and formed multiple asymmetric synapses predominantly with large-diameter dendrites were also observed. Puncta adhaerentia contacts were also common. Mitochondria were numerous within large boutons with round vesicles, which arose from myelinated axons. Many of the large boutons were likely to have originated from neurons in the cerebellar nuclei. Approximately 6% of the boutons in the ventral anterior-ventral lateral complex and 8% in ventromedial nucleus were of the large type.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
Summary Terminal degeneration of cerebellar afferents in the ventral medial thalamic nucleus (VM) was studied in cats at the ultrastructural level after uni- or bilateral lesions in the brachium conjunctivum (BC). To achieve discrete lesions within the BC, a new very accurate stereotaxic technique was used. Numerous large terminals belonging to a population of so-called LR boutons were observed degenerating in the VM. The boutons displayed a wide variety of degenerative changes. Some revealed the features of the classical neurofilamentous type of degeneration. Others, although containing a slightly increased number of neurofilaments, featured much more prominently large numbers of coated vesicle shells and heavy accumulations of a flocculent electrondense material. Degeneration in a third group of boutons similar to some extent to the light type of degeneration was characterized by tight clumping of enormously swollen or distorted synaptic vesicles within a light matrix. At later stages, however, all these boutons were believed to become shrunken and electron-dense since intermediate stages between the light- and dark-appearing boutons were observed. The degenerating cerebellar boutons formed asymmetrical synaptic contacts. Groups of 3 or 4 boutons terminated upon dendrites of projection neurons synapsing more frequently on spines than on dendritic stems. The synaptic contacts between cerebellar boutons and the vesicle-containing dendrites of local circuit neurons were encountered as often if not more than the contacts on projection neuron dendrites. Triads consisting of cerebellar boutons and dendrites of both types of neurons were observed very regularly. This synaptic arrangement provides the anatomical basis for the modification of cerebellar input in the VM by interneurons.  相似文献   

11.
Neurons in the dorsal cochlear nucleus of the guinea pig were classified according to their positivity to the inhibitory neurotransmitter glycine, ultrastructure and projections to the inferior colliculus as indicated by tract-tracing and ultrastructural immunocytochemistry. Only some pyramidal and few giant cells, surrounded by glycinergic boutons containing flat and pleomorphic vesicles, projected to the inferior colliculus as glycine-negative excitatory cells. Smaller neurons in superficial layers of the dorsal cochlear nucleus did not project to the inferior colliculus, and were recognized as glycine-negative granule and unipolar brush cells. Few glycinergic, inhibitory neurons among granule cells were indicated as Golgi-stellate neurons. All small neurons associated to the granule cell areas received few, mainly glycinergic synapses, and their dendrites contacted large boutons (mossy fibers). Other medium-large glycine positive neurons in the superficial (cartwheel) and deep layers (tuberculo-ventral and large-giant) of the dorsal cochlear nucleus did not project to the inferior colliculus. Giant-large glycinergic neurons surrounded by sparse axo-somatic, mostly glycinergic synapses, probably represent commissural neurons projecting to the contralateral cochlear nucleus. Rare boutons, possibly descending from the inferior colliculus, were seen onto pyramidal cells or their dendrites, and these boutons mainly stored glycine positive pleomorphic vesicles or glycine negative round vesicles. No descending mossy fibers storing round vesicles were labelled from the central nucleus of the inferior colliculus. These observations suggest that very few terminals in the dorsal cochlear nucleus of the guinea pig are derived from the inferior colliculus.  相似文献   

12.
The first binaural integration within the auditory system responsible for sound localization depends upon commissural neurons that connect the two symmetrical cochlear nuclei. These cells in the deep polymorphic layer of the rat dorsal cochlear nucleus were identified with the electron microscope after injection of the retrograde tracer, Wheat Germ Agglutinin conjugated to Horseradish Peroxydase, into the contralateral cochlear nucleus. Commissural neurons are multipolar or bipolar with an oval to fusiform shape. Few commissural neurons, most inhibitory but also excitatory, connect most of the divisions of the rat cochlear nuclei. The most common type is a glycinergic, sometimes GABAergic, moderately large cell. Its ergastoplasm is organized into peripheral stacks of cisternae, and few axo-somatic synaptic boutons are present. Another type of commissural neuron is a medium-sized, spindle-shaped cell, glycine and GABA-negative, with sparse ergastoplasm and synaptic coverage. A giant, rare type of commissural neuron is glycine-positive and GABA-negative, with short peripheral stacks of ergastoplasmic cisternae. It is covered with synaptic boutons, many of which contain round synaptic vesicles. Another rare type of commissural neuron is a moderately large cell, oval to fusiform in shape, immunonegative for both glycine and GABA, and contacted by many axo-somatic boutons. It contains large dense mitochondria and numerous dense core vesicles of peptidergic type. Some labelled boutons, mostly inhibitory and probably derived from commissural neurons, contact pyramidal, cartwheel, giant and tuberculo-ventral neurons. The prevalent inhibition of electrical activity in a cochlear nucleus observed after stimulation of the contralateral cochlear nucleus may be due to commissural inhibitory terminals which contact excitatory neurons such as pyramidal and giant cells. Other inhibitory commissural terminals which contact inhibitory neurons such as cartwheel and tuberculo-ventral neurons, may explain the stimulation of electrical activity in the DCN after contralateral stimulation.  相似文献   

13.
Miklós IH  Kovács KJ 《Neuroscience》2002,113(3):581-592
GABA has been identified as an important neurotransmitter in stress-related circuitry mediating inhibitory effects on neurosecretory neurons that comprise the central limb of the hypothalamo-pituitary-adrenocortical axis. Using combinations of pre-embedding immunostaining and postembedding immunogold methods at the ultrastructural level, direct synaptic contacts were revealed between GABA-containing terminals and neurosecretory cells that were immunoreactive for corticotropin-releasing hormone (CRH) in the hypothalamic paraventricular nucleus (PVN). The vast majority of axo-dendritic GABA synapses was symmetric (inhibitory) type, and 46% of all synaptic boutons in the medial parvocellular subdivision of the PVN were immunoreactive to GABA. Using the disector method, an unbiased stereological method on serial ultrathin sections, the total calculated number of synaptic contacts within the medial parvocellular subdivision of the PVN was 55.4 x 10(6)/mm(3). On CRH-positive profiles 20.1 x 10(6) GABAergic synaptic boutons were detected per mm(3) in control, colchicine-treated rats. In the medial parvocellular subdivision, 79% of GABAergic boutons terminated on CRH neurons. Following adrenalectomy, which increases the synthetic and secretory activities of CRH neurons, the number of GABAergic synapses that terminate on CRH-positive profiles was increased by 55%. GABA-containing boutons appeared to be swollen, while the contact surfaces of cellular membranes between GABAergic boutons and CRH-positive profiles were shorter in adrenalectomized animals than in controls.Our data provide ultrastructural evidence for direct inhibitory GABAergic control of stress-related CRH neurons and suggest a pivotal role of GABA-containing inputs in the functional plasticity of parvocellular neurosecretory neurons seen in response to adrenalectomy.  相似文献   

14.
Summary The origin of the synaptic boutons in the abducens nucleus was studied following lesions of the contralateral medial vestibular nucleus, the ipsilateral paramedian pontine reticular formation and the contralateral dorsomedial part of the reticular formation caudal to the abducens nucleus.Lesions in the rostral part of the contralateral medial vestibular nucleus resulted in degeneration of boutons located mainly on dendritic processes. On the other hand, lesions in both ipsilateral and contralateral reticular formations provoked degenerating terminals on the somata of the abducens neurones and on proximal dendrites in the abducens nucleus beneath the genu of the facial nerve.This work was supported by INSERM (U6), CNRS (GR 45), and grant DGRST 78.7.3017  相似文献   

15.
The localization of substance P-like immunoreactivity in the interpeduncular nucleus using the peroxidase-antiperoxidase technique, revealed that the median region of the interpeduncular nucleus was one area rich in substance P-like immunoreactive processes. The ultrastructural characteristics of these substance P-like immunoreactive processes and their organization within the middle zone of the median region of the interpeduncular nucleus was studied. Substance P-like immunoreactivity was found in the perikaryon of small neurons, and in proximal and small dendrites. The substance P-like immunoreactive cell bodies and proximal dendrites receive a variety of unlabeled synaptic terminals. The immunoreactive small dendrites usually formed the central component of a "rosette"-like formation with unlabeled terminals. A few immunoreactive small unmyelinated axons and boutons were also present in the neuropil. The substance P-like immunoreactive boutons contained mainly small round vesicles with some large dense-core vesicles. These substance P-like immunoreactive boutons were presynaptic to unlabeled dendritic profiles, and frequently to substance P-like immunoreactive dendritic profiles. They were also seen in apposition to unlabeled boutons. Substance P-like immunoreactive boutons were not found to synapse with the crest-like dendritic processes in this part of the interpeduncular nucleus. It is suggested on the basis of morphological features, that some of the unlabeled terminals synapsing on substance P-like immunoreactive dendrities, may be cholinergic in nature.  相似文献   

16.
Immunocytochemical studies were carried out on the morphological relation between primary afferent central terminals (C-terminals) and GABAergic neurons in the mouse superficial dorsal horn. The superficial dorsal horn is composed of many synaptic glomeruli comprising two types: Type I with centrally located CI-terminals surrounded by several dendrites and few axonal endings, and Type II with centrally located CII-terminals surrounded by several dendrites and a few axonal endings. The CI-terminals are sinuous or scalloped with densely packed agranular synaptic vesicles, a few granular synaptic vesicles and mitochondria, and show an electron dense axoplasm, whereas the CII-terminals are large and round or rectangular with evenly distributed agranular synaptic vesicles, a number of granular synaptic vesicles and mitochondria, and show an electron opaque axoplasm. The immunoreaction of GABA was remarkable in the superficial laminae of the dorsal horn. Many interneuronal somata in the substantia gelatinosa showed GABAergic immunoreactivity. The immunoreaction was seen in the entire GABAergic neuroplasm, but not in the nucleus and its envelope. Most GABAergic features appeared as dendrites making postsynaptic contact with CI- or CII-terminals; i.e., numerous C-terminals made presynaptic contact with GABAergic dendrites. GABA immunoreactivity was seen over round synaptic vesicles and mitochondrial membranes. A few CII-terminals made presynaptic contact with GABAergic interneuronal somata. Previous physiological and anatomical studies have suggested that not only the cutaneous nociceptive primary afferent C-terminals but also mechanoreceptive primary afferent C-terminals make presynaptic contact with the GABAergic dendrites, boutons and soma. The presynaptic relation of these primary afferents with GABAergic neurons seems to provide morphological support for the essential feature of the gate control theory: primary afferent fibers may play a part in the modulation of nociceptive information via GABAergic neurons in the superficial dorsal horn. Small GABAergic terminals were found to make contact with blood capillaries suggesting the release of GABA into circulation.  相似文献   

17.
The type of synaptic terminals from the cochlear nucleus and inferior colliculus that terminate in the contralateral ventral cochlear nucleus are not known. These terminals were studied with the electron microscope and immunogold after injection of wheat germ agglutinin conjugated to horseradish peroxidase into the inferior colliculus or into the cochlear nucleus. The tracer anterogradely labelled boutons onto the main neurons of the contralateral ventral cochlear nucleus. Most of these cells (95%) were glycine immuno-negative and represent excitatory neurons. After injection of the tracer into the contralateral inferior colliculus few anterogradely labelled boutons were seen on spherical and multipolar cells of type II in the anteroventral cochlear nucleus. Rare labelled boutons were present on multipolar cells of type I and II, globular neurons and octopus cells in the posteroventral cochlear nucleus. After injection into the contralateral dorsal and ventral cochlear nucleus labelled boutons were seen more frequently than after injection into the inferior colliculus. These terminals contacted most of large neurons, especially multipolar cells of type II and less frequently of type I. Also globular and spherical cells were contacted by commissural terminals. Octopus cells received less frequently putative commissural terminals. Most boutons contained pleomorphic vesicles and stored GABA. A lower number of boutons with pleomorphic and flat vesicles contained glycine and sometimes GABA, both inhibitory neurotransmitters. Few boutons containing round vesicles were immuno-negative for both glycine and GABA, and were considered putative commissural excitatory terminals. The latter often contacted glycinergic neurons of type II so that also these terminals might elicit an inhibition with at least a disynaptic mechanism after contralateral stimulation.  相似文献   

18.
Synaptic mechanisms of spike suppression of vestibular neurons during quick phases of vestibular nystagmus were investigated by intracellular recording in the rostrolateral part of the cat medial vestibular nucleus. When repetitive spike discharges of vestibular neurons were abruptly suppressed at the quick phase, the membrane potential shifted steeply in the hyperpolarizing direction. After the commissural IPSP was inverted into depolarization by intracellular injection of Cl? ions, the hyperpolarizing deflection of the membrane potential at the quick phase was also inverted into a depolarizing potential. The results indicate that an abrupt generation of IPSPs in vestibular neurons underlies the quick phase suppression of spike activity in these neurons.  相似文献   

19.
The GABAergic cerebello-olivary projection in the rat   总被引:1,自引:0,他引:1  
Summary Immunocytochemical detection of glutamate decarboxylase (GAD), the predominant biosynthetic enzyme of gamma-aminobutyric acid (GABA), reveals the presence of a dense GABAergic innervation in all parts of the inferior olive. One brain center that provides a substantial projection to the inferior olive is the cerebellar nuclei, which contain many small GABAergic neurons. These neurons were tested as a source of GABAergic olivary afferents by combining retrograde tract tracing with GAD immunocytochemistry. As expected from previous studies, injections of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) into the inferior olive retrogradely label many small neurons in the interposed and lateral cerebellar nuclei and the dorsal part of the lateral vestibular nucleus, and fewer neurons in the ventro-lateral region of the medial cerebellar nucleus. These projections are predominantly crossed and are topographically arranged. The vast majority, if not all, of these projection neurons are also GAD-positive. The relative contribution of this projection to the GABAergic innervation of the inferior olive was tested by lesion of the cerebellar nuclei, or the superior cerebellar peduncle. Within 10 days the lesion eliminates most GAD-immunoreactive boutons in the principal olive, the rostral lamella of the medial accessory olive, the ventrolateral outgrowth, and the lateral part of the dorsal accessory olive ventral fold. Thus, the effectiveness of this depletion demonstrates that the cerebellar nuclei provide most of the GABAergic innervation to regions of the inferior olive known to receive a cerebellar projection. Moreover, when the lateral vestibular nucleus is damaged, the dorsal fold of the dorsal accessory olive is depleted of GABAergic boutons. The synaptic relations that boutons of the GABAergic cerebello-olivary projection share with olivary neurons were investigated at the electron microscopic level by GAD-immunocytochemistry, anterograde degeneration of the cerebellar axons or anterograde transport of WGA-HRP. All of these methods confirm that GABAergic, cerebello-olivary axon terminals contain pleomorphic vesicles, and synapse on various portions of olivary neurons, and especially on dendritic spines within glomeruli, often in very close proximity to the gap junctions that characteristically couple the dendritic profiles. These results demonstrate four major points: that virtually all of the GABAergic, and presumably inhibitory, neurons of the cerebellar and dorsal lateral vestibular nuclei are projection neurons; that a large portion of the inferior olive receives GABAergic afferents from the cerebellar nuclei; that a portion of the dorsal accessory olive receives GABAergic afferents from the dorsal lateral vestibular nucleus; and that cerebello-olivary fibers often synapse near gap junctions, and therefore could influence electrical coupling of olivary neurons.Abbreviations aMAO subnucleus a of MAO - beta beta nucleus - bMAO subnucleus b of MAO - cMAO subnucleus c of MAO - dc dorsal cap - DC dorsal cochlear nucleus - dfDAO dorsal fold of DAO - dlh dorsal lateral hump of cerebellar nuclei - dIPO dorsal lamella of PO - Gia gigantocellular reticular nucleus - dmcc dorsomedial cell column - GABA gamma-aminobutyric acid - GAD glutamate decarboxylase - HRP horseradish peroxidase - icp inferior cerebellar peduncle - IC inferior colliculus - Inf infracerebellar nucleus - IntA anterior interposed cerebellar nucleus - IntP posterior interposed cerebellar nucleus - Lat lateral cerebellar nucleus - LRt lateral reticular nucleus - LSO lateral superior olive - LVe lateral vestibular nucleus - MAO medial accessory olive - Med medial cerebellar nucleus - Me5 mesencephalic trigeminal nucleus - MVe medial vestibular nucleus - PFl paraflocculus of the cerebellar cortex - PO principle olive - RMg raphe magnus - rMAO rostral lamella of MAO - rs rubrospinal tract - scp superior cerebellar peduncle - SuVe spinal vestibular nucleus - SuVe superior vestibular nucleus - vfDAO ventral fold of DAO - vlo ventrolateral outgrowth - vlPO ventral lamella of PO - Y Y, y vestibular nucleus - WGA wheatgerm agglutinin This paper is dedicated to Professor Fred Walberg on the occasion of his 70th hirthdav  相似文献   

20.
In the visual, auditory and somatosensory systems, insight into the synaptic arrangements of specific types of neurons has proven useful in understanding how sensory processing within that system occurs. The neurotransmitter GABA is present in the nucleus of the solitary tract and based on the fact that the vast majority of cells respond to GABA, its agonists and antagonists, and that over 45% of synaptic terminals in the rostral subdivision of the nucleus of the solitary tract are GABA-immunoreactive, GABA is thought to play an important role in gustatory processing. The following study was carried out to establish the distribution of GABA-immunoreactive terminals within the nucleus of the solitary tract. Specifically, the distribution on to physiologically-identified gustatory neurons was determined using post-embedding electron immuno-histochemistry. GABA-immunoreactive terminals synapse with gustatory neuronal somata and all portions of their dendrites, but non-GABAergic terminals synapse only with distal dendrites of the gustatory cells and on to correspondingly small unidentified dendritic profiles in the neuropil. There is a differential distribution of two subtypes of GABA-immunoreactive terminals on to proximal and distal portions of the gustatory neurons as well. Finally, a model for the synaptic arrangements involving gustatory and GABAergic neurons is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号