首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
We compared plasma viral load values obtained with COBAS AMPLICOR human immunodeficiency virus type 1 (HIV-1) MONITOR version 1.5 and with COBAS TaqMan HIV-1 assays. Mean values were 4.2 and 2.9 log(10) copies/ml, respectively, showing the lack of agreement between the two assays.  相似文献   

2.
3.
Quantification of human immunodeficiency virus type 1 (HIV-1) RNA as a measure of viral load has greatly improved the monitoring of therapies for infected individuals. With the significant reductions in viral load now observed in individuals treated with highly active anti-retroviral therapy (HAART), viral load assays have been adapted to achieve greater sensitivity. Two commercially available ultrasensitive assays, the Bayer Quantiplex HIV-1 bDNA version 3.0 (bDNA 3.0) assay and the Roche Amplicor HIV-1 Monitor Ultrasensitive version 1.5 (Amplicor 1.5) assay, are now being used to monitor HIV-1-infected individuals. Both of these ultrasensitive assays have a reported lower limit of 50 HIV-1 RNA copies/ml and were developed from corresponding older generation assays with lower limits of 400 to 500 copies/ml. However, the comparability of viral load data generated by these ultrasensitive assays and the relative costs of labor, disposables, and biohazardous wastes were not determined in most cases. In this study, we used matched clinical plasma samples to compare the quantification of the newer bDNA 3.0 assay with that of the older bDNA 2.0 assay and to compare the quantification and costs of the bDNA 3.0 assay and the Amplicor 1.5 assay. We found that quantification by the bDNA 3.0 assay was approximately twofold higher than that by the bDNA 2.0 assay and was highly correlated to that by the Amplicor 1.5 assay. Moreover, cost analysis based on labor, disposables, and biohazardous wastes showed significant savings with the bDNA 3.0 assay as compared to the costs of the Amplicor 1.5 assay.  相似文献   

4.
The sensitivities of the version 1.5 and 1.0 Roche UltraSensitive AMPLICOR HIV-1 MONITOR tests were compared using panels of coded samples of subtype B human immunodeficiency virus type 1 spiked into plasma at predetermined concentrations. Results indicate that the version 1.5 kit is more sensitive than the version 1.0 kit.  相似文献   

5.
The performance and characteristics of Roche COBAS AMPLICOR HIV-1 MONITOR version 1.5 (CA MONITOR 1.5) UltraSensitive (usCA MONITOR 1. 5) and Standard (stCA MONITOR 1.5) procedures, Organon Teknika NucliSens HIV-1 RNA QT with Extractor (NucliSens), and Bayer Quantiplex HIV RNA version 3.0 (bDNA 3.0) were compared in a multicenter trial. Samples used in this study included 460 plasma specimens from human immunodeficiency virus (HIV) type 1 (HIV-1)-infected persons, 100 plasma specimens from HIV antibody (anti-HIV)-negative persons, and culture supernatants of HIV-1 subtype A to E isolates diluted in anti-HIV-negative plasma. Overall, bDNA 3.0 showed the least variation in RNA measures upon repeat testing. For the Roche assays, usCA MONITOR 1.5 displayed less variation in RNA measures than stCA MONITOR 1.5. NucliSens, at an input volume of 2 ml, showed the best sensitivity. Deming regression analysis indicated that the results of all three assays were significantly correlated (P < 0.0001). However, the mean difference in values between CA MONITOR 1.5 and bDNA 3.0 (0.274 log(10) RNA copies/ml; 95% confidence interval, 0.192 to 0.356) was significantly different from 0, indicating that CA MONITOR 1.5 values were regularly higher than bDNA 3.0 values. Upon testing of 100 anti-HIV-negative plasma specimens, usCA MONITOR 1.5 and NucliSens displayed 100% specificity, while bDNA 3.0 showed 98% specificity. NucliSens quantified 2 of 10 non-subtype B viral isolates at 1 log(10) lower than both CA MONITOR 1.5 and bDNA 3.0. For NucliSens, testing of specimens with greater than 1,000 RNA copies/ml at input volumes of 0.1, 0.2, and 2.0 ml did not affect the quality of results. Additional factors differing between assays included specimen throughput and volume requirements, limit of detection, ease of execution, instrument work space, and costs of disposal. These characteristics, along with assay performance, should be considered when one is selecting a viral load assay.  相似文献   

6.
We evaluated the effects of time, temperature, freezing, and thawing on the cerebrospinal fluid viral load by using the Roche AMPLICOR HIV-1 MONITOR test, version 1.5 (ultrasensitive). While a statistically significant decrease from the baseline was observed at 24 h, but not at 6 or 12 h, and with one freeze-thaw cycle, all changes were within the range of intra-assay variability.  相似文献   

7.
The effect of the addition of a coprecipitant during the RNA isolation step on the analytical performance of the COBAS AMPLICOR human immunodeficiency virus type 1 (HIV-1) Monitor (version 1.5; Roche) viral load test was tested. Thirty-six specimens including patient samples, positive control samples, and negative control samples were processed in the presence and absence of the Pellet Paint coprecipitant. Specimens processed without the coprecipitant had lower RNA yields, as evidenced by a lower signal for the quantitation standard (QS). In addition, the results for all samples processed with the coprecipitant were acceptable on the basis of the optical density (OD) reading for the QS, whereas the result for one specimen processed without the coprecipitant was unacceptable on the basis of the OD reading for the QS, which required the assay to be repeated. Furthermore, the use of the coprecipitant improved the overall precision of the assay.  相似文献   

8.
The ultrasensitive COBAS AMPLICOR HIV-1 Monitor test was complemented with automated RNA purification on the MagNA Pure LC instrument. This enabled entirely automated ultrasensitive assessment of viral loads in human immunodeficiency virus type 1 (HIV-1)-infected individuals. The detection limit of the fully automated assay and the viral load measurements in 80 clinical samples were found to be in good agreement with those of the conventional ultrasensitive COBAS AMPLICOR HIV-1 Monitor test. The fully automated assay showed markedly reduced hands-on time and was found to be suitable for the routine assessment of HIV-1 viral loads in a clinical diagnostic laboratory.  相似文献   

9.
The performance of the LCx HIV RNA Quantitative (LCx HIV), AMPLICOR HIV-1 MONITOR version 1.5 (MONITOR v1.5), and Quantiplex HIV-1 RNA version 3.0 (bDNA v3.0) viral load assays was evaluated with 39 viral isolates (3 A, 7 B, 6 C, 4 D, 8 E, 4 F, 1 G, 4 mosaic, and 2 group O). Quantitation across the assay dynamic ranges was assessed using serial fivefold dilutions of the viruses. In addition, sequences of gag-encoded p24 (gag p24), pol-encoded integrase, and env-encoded gp41 were analyzed to assign group and subtype and to assess nucleotide mismatches at primer and probe binding sites. For group M isolates, quantification was highly correlated among all three assays. In contrast, only the LCx HIV assay reliably quantified group O isolates. The bDNA v3.0 assay detected but consistently underquantified group O viruses, whereas the MONITOR v1.5 test failed to detect group O viruses. Analysis of target regions revealed fewer primer or probe mismatches in the LCx HIV assay than in the MONITOR v1.5 test. Consistent with the high level of nucleotide conservation is the ability of the LCx HIV assay to quantify efficiently human immunodeficiency virus type 1 group M and the genetically diverse group O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号