首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cohesin complex establishes sister chromatid cohesion during S phase. In metazoan cells, most if not all cohesin dissociates from chromatin during mitotic prophase, leading to the formation of metaphase chromosomes with two cytologically discernible chromatids. This process, known as sister chromatid resolution, is believed to be a prerequisite for synchronous separation of sister chromatids in subsequent anaphase. To dissect this process at a mechanistic level, we set up an in vitro system. Sister chromatid resolution is severely impaired upon depletion of Wapl from Xenopus egg extracts. Exogenously added human Wapl can rescue these defects and, remarkably, it can do so in a very short time window of early mitosis. A similar set of observations is made for Pds5, a factor implicated previously in the stabilization of interphase cohesion. Characteristic amino acid motifs (the FGF motifs) in Wapl coordinate its physical and functional interactions with Pds5 and cohesin subunits. We propose that Wapl and Pds5 directly modulate conformational changes of cohesin to make it competent for dissociation from chromatin during prophase. Evidence is also presented that Sgo1 plays a hitherto underappreciated role in stabilizing cohesin along chromosome arms, which is antagonized by the mitotic kinases polo-like kinsase (Plk1) and aurora B.  相似文献   

2.
We describe a novel requirement for the condensin complex in sister chromatid cohesion in Saccharomyces cerevisiae. Strikingly, condensin-dependent cohesion can be distinguished from cohesin-based pairing by a number of criteria. First, condensin is required to maintain cohesion at several chromosomal arm sites but, in contrast to cohesin, is not required at either centromere or telomere-proximal loci. Second, condensin-dependent interlinks are established during mitosis independently of DNA replication and are reversible within a single cell cycle. Third, the loss of condensin-dependent linkages occurs without affecting cohesin levels at the separated URA3 locus. We propose that, during mitosis, robust sister chromatid cohesion along chromosome arms requires both condensinand cohesin-dependent mechanisms, which function independently of each other. We discuss the implications of our results for current models of sister chromatid cohesion.  相似文献   

3.
Proper cohesion of sister chromatids is prerequisite for correct segregation of chromosomes during cell division. The cohesin multiprotein complex, conserved in eukaryotes, is required for sister chromatid cohesion. Human cohesin is composed of a stable heterodimer of the structural maintenance of chromosomes (SMC) family proteins, hSMC1 and hSMC3, and non-SMC components, hRAD21 and SA1 (or SA2). In yeast, cohesin associates with chromosomes from late G1 to metaphase and is required for the establishment and maintenance of both chromosome arm and centromeric cohesion. However, in human cells, the majority of cohesin dissociates from chromosomes before mitosis. Although it was recently shown that a small amount of hRAD21 localizes to the centromeres during metaphase, the presence of other cohesin components at the centromere has not been demonstrated in human cells. Here we report the mitosis-specific localization of hSMC1 to the kinetochores. hSMC1 is targeted to the kinetochore region during prophase concomitant with kinetochore assembly and remains through anaphase. Importantly, hSMC1 is targeted only to the active centromere on dicentric chromosomes. These results suggest that hSMC1 is an integral component of the functional kinetochore structure during mitosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
The loss of sister chromatid cohesion triggers anaphase spindle movement. The budding yeast Mcd1/Scc1 protein, called cohesin, is required for associating chromatids, and proteins homologous to it exist in a variety of eukaryotes. Mcd1/Scc1 is removed from chromosomes in anaphase and degrades in G1. We show that the fission yeast protein, Mis4, which is required for equal sister chromatid separation in anaphase is a different chromatid cohesion molecule that behaves independent of cohesin and is conserved from yeast to human. Its inactivation in G1 results in cell lethality in S phase and subsequent premature sister chromatid separation. Inactivation in G2 leads to cell death in subsequent metaphase–anaphase progression but missegregation occurs only in the next round of mitosis. Mis4 is not essential for condensation, nor does it degrade in G1. Rather, it associates with chromosomes in a punctate fashion throughout the cell cycle. mis4 mutants are hypersensitive to hydroxyurea (HU) and UV irradiation but retain the ability to restrain cell cycle progression when damaged or sustaining a block to replication. The mis4 mutation results in synthetic lethality with a DNA ligase mutant. Mis4 may form a stable link between chromatids in S phase that is split rather than removed in anaphase.  相似文献   

5.
Proteins of the cohesin complex are essential for sister chromatid cohesion and proper chromosome segregation during both mitosis and meiosis. Cohesin proteins are also components of axial elements/lateral elements (AE/LEs) of synaptonemal complexes (SCs) during meiosis, and cohesins are thought to play an important role in meiotic chromosome morphogenesis and recombination. Here, we have examined the cytological behavior of four cohesin proteins (SMC1, SMC3, SCC3, and REC8/SYN1) during early prophase I in tomato microsporocytes using immunolabeling. All four cohesins are discontinuously distributed along the length of AE/LEs from leptotene through early diplotene. Based on current models for the cohesin complex, the four cohesin proteins should be present at the same time and place in equivalent amounts. However, we observed that cohesins often do not colocalize at the same AE/LE positions, and cohesins differ in when they load onto and dissociate from AE/LEs of early prophase I chromosomes. Cohesin labeling of LEs from pachytene nuclei is similar through euchromatin, pericentric heterochromatin, and kinetochores but is distinctly reduced through the nucleolar organizer region of chromosome 2. These results indicate that the four cohesin proteins may form different complexes and/or perform additional functions during meiosis in plants, which are distinct from their essential function in sister chromatid cohesion.  相似文献   

6.
Cohesin complex acts in the formation and maintenance of sister chromatid cohesion during and after S phase. Budding yeast Scc1p/Mcd1p, an essential subunit, is cleaved and dissociates from chromosomes in anaphase, leading to sister chromatid separation. Most cohesin in higher eukaryotes, in contrast, is dissociated from chromosomes well before anaphase. The universal role of cohesin during anaphase thus remains to be determined. We report here initial characterization of four putative cohesin subunits, Psm1, Psm3, Rad21, and Psc3, in fission yeast. They are essential for sister chromatid cohesion. Immunoprecipitation demonstrates stable complex formation of Rad21 with Psm1 and Psm3 but not with Psc3. Chromatin immunoprecipitation shows that cohesin subunits are enriched in broad centromere regions and that the level of centromere-associated Rad21 did not change from metaphase to anaphase, very different from budding yeast. In contrast, Rad21 containing similar cleavage sites to those of Scc1p/Mcd1p is cleaved specifically in anaphase. This cleavage is essential, although the amount of cleaved product is very small (<5%). Mis4, another sister chromatid cohesion protein, plays an essential role for loading Rad21 on chromatin. A simple model is presented to explain the specific behavior of fission yeast cohesin and why only a tiny fraction of Rad21 is sufficient to be cleaved for normal anaphase.  相似文献   

7.
During meiotic prophase, cohesin complexes mediate cohesion between sister chromatids and promote pairing and synapsis of homologous chromosomes. Precisely how the activity of cohesin is controlled to promote these events is not fully understood. In metazoans, cohesion establishment between sister chromatids during mitotic divisions is accompanied by recruitment of the cohesion-stabilizing protein Sororin. During somatic cell division cycles, Sororin is recruited in response to DNA replication-dependent modification of the cohesin complex by ESCO acetyltransferases. How Sororin is recruited and acts in meiosis is less clear. Here, we have surveyed the chromosomal localization of Sororin and its relationship to the meiotic cohesins and other chromatin modifiers with the objective of determining how Sororin contributes to meiotic chromosome dynamics. We show that Sororin localizes to the cores of meiotic chromosomes in a manner that is dependent on synapsis and the synaptonemal complex protein SYCP1. In contrast, cohesin, with which Sororin interacts in mitotic cells, shows axial enrichment on meiotic chromosomes even in the absence of synapsis between homologs. Using high-resolution microscopy, we show that Sororin is localized to the central region of the synaptonemal complex. These results indicate that Sororin regulation during meiosis is distinct from its regulation in mitotic cells and may suggest that it interacts with a distinctly different partner to ensure proper chromosome dynamics in meiosis.  相似文献   

8.
A tDNA establishes cohesion of a neighboring silent chromatin domain   总被引:2,自引:0,他引:2  
DNA replication generates sister chromatid pairs that are bound to one another until anaphase onset. The process, termed sister chromatid cohesion, requires the multisubunit cohesin complex that resides at centromeres and sites where genes converge. At the HMR mating-type locus of budding yeast, cohesin associates with a heterochromatin-like structure known as silent chromatin. In this report, we show that silent chromatin is necessary but not sufficient for cohesion of the replicating locus. A tRNA gene (tDNA) that delimits the silent chromatin domain is also required, as are subunits of the TFIIIB and RSC complexes that bind the gene. Non-tDNA boundary elements do not substitute for tDNAs in cohesion, suggesting that barrier activity is not responsible for the phenomenon. The results reveal an unexpected role for tDNAs and RNA polymerase III-associated proteins in establishment of sister chromatid cohesion.  相似文献   

9.
During female meiosis, bivalent chromosomes are thought to be held together from birth until ovulation by sister chromatid cohesion mediated by cohesin complexes whose ring structure depends on kleisin subunits, either Rec8 or Scc1. Because cohesion is established at DNA replication in the embryo, its maintenance for such a long time may require cohesin turnover. To address whether Rec8- or Scc1-containing cohesin holds bivalents together and whether it turns over, we created mice whose kleisin subunits can be cleaved by TEV protease. We show by microinjection experiments and confocal live-cell imaging that Rec8 cleavage triggers chiasmata resolution during meiosis I and sister centromere disjunction during meiosis II, while Scc1 cleavage triggers sister chromatid disjunction in the first embryonic mitosis, demonstrating a dramatic transition from Rec8- to Scc1-containing cohesin at fertilization. Crucially, activation of an ectopic Rec8 transgene during the growing phase of Rec8(TEV)(/TEV) oocytes does not prevent TEV-mediated bivalent destruction, implying little or no cohesin turnover for ≥2 wk during oocyte growth. We suggest that the inability of oocytes to regenerate cohesion may contribute to age-related meiosis I errors.  相似文献   

10.
Shugoshin-2 (SGOL2) is one of the two mammalian orthologs of the Shugoshin/Mei-S322 family of proteins that regulate sister chromatid cohesion by protecting the integrity of the multiprotein cohesin complexes. This protective system is essential for faithful chromosome segregation during mitosis and meiosis, which is the physical basis of Mendelian inheritance. Regardless of its evolutionary conservation from yeast to mammals, little is known about the in vivo relevance and specific role that SGOL2 plays in mammals. Here we show that disruption of the gene encoding mouse SGOL2 does not cause any alteration in sister chromatid cohesion in embryonic cultured fibroblasts and adult somatic tissues. Moreover, mutant mice develop normally and survive to adulthood without any apparent alteration. However, both male and female Sgol2-deficient mice are infertile. We demonstrate that SGOL2 is necessary for protecting centromeric cohesion during mammalian meiosis I. In vivo, the loss of SGOL2 promotes a premature release of the meiosis-specific REC8 cohesin complexes from anaphase I centromeres. This molecular alteration is manifested cytologically by the complete loss of centromere cohesion at metaphase II leading to single chromatids and physiologically with the formation of aneuploid gametes that give rise to infertility.  相似文献   

11.
The lampbrush chromosomes present in the nuclei of amphibian oocytes offer unique biological approaches for study of the mechanisms that regulate chromatin structure with high spatial resolution. We discuss fundamental aspects of the remarkable organization and plasticity exhibited by lampbrush chromosomes. We then utilize lampbrush chromosomes to characterize the chromosomal distribution and dynamics of cohesin, the four-protein complex (RAD21/MCD1/SCC1, SMC1, SMC3, SCC3/SA2) responsible for sister chromatid cohesion. We find that endogenous SMC3 and newly expressed hRAD21 co-localize on chromosomal axes, sites where sister chromatids are tightly paired. We present evidence suggesting that hRAD21 recruitment to lampbrush chromosomes is modulated by chromosomal SMC1 and SMC3. Notably, using a technique for de novo chromosome assembly, we demonstrate that both SMC3 and hRAD21 are recruited to single, unreplicated lampbrush chromatids. Finally, we used our novel method of analyzing the oocyte nucleus under oil combined with fluorescence recovery after photobleaching, to provide direct evidence that cohesin is highly dynamic at discrete, condensed chromosomal regions. Collectively, these data demonstrate that lampbrush chromosomes provide a unique and powerful tool for combining biochemical and cytological analyses for dissection of complex chromosomal processes.  相似文献   

12.
The chromosome scaffold model in which loops of chromatin are attached to a central, coiled chromosome core (scaffold) is the current paradigm for chromosome structure. Here we present a modified version of the chromosome scaffold model to describe chromosome structure and behavior through the mitotic and meiotic cell cycles. We suggest that a salient feature of chromosome structure is established during DNA replication when sister loops of DNA extend in opposite directions from replication sites on nuclear matrix strands. This orientation is maintained into prophase when the nuclear matrix strand is converted into two closely associated sister chromatid cores with sister DNA loops extending in opposite directions. We propose that chromatid cores are contractile and show, using a physical model, that contraction of cores during late prophase can result in coiled chromatids. Coiling accounts for the majority of chromosome shortening that is needed to separate sister chromatids within the confines of a cell. In early prophase I of meiosis, the orientation of sister DNA loops in opposite directions from axial elements assures that DNA loops interact preferentially with homologous DNA loops rather than with sister DNA loops. In this context, we propose a bar code model for homologous presynaptic chromosome alignment that involves weak paranemic interactions of homologous DNA loops. Opposite orientation of sister loops also suppresses crossing over between sister chromatids in favor of crossing over between homologous non-sister chromatids. After crossing over is completed in pachytene and the synaptonemal complex breaks down in early diplotene (= diffuse stage), new contractile cores are laid down along each chromatid. These chromatid cores are comparable to the chromatid cores in mitotic prophase chromosomes. As an aside, we propose that leptotene through early diplotene represent the missing G2 period of the premeiotic interphase. The new chromosome cores, along with sister chromatid cohesion, stabilize chiasmata. Contraction of cores in late diplotene causes chromosomes to coil in a configuration that encourages subsequent syntelic orientation of sister kinetochores and amphitelic orientation of homologous kinetochore pairs on the spindle at metaphase I.  相似文献   

13.
BACKGROUND: In mammals, proteins containing BIR domains (IAPs and survivin) are implicated in inhibiting apoptosis and sister chromatid separation. In the nematode, Bir1 is required for a proper localization of aurora kinase, which moves from the mitotic chromosome in metaphase to the spindle midzone in anaphase as a passenger. Fission yeast Bir1/Pbh1 is essential for normal mitosis. RESULTS: A temperature sensitive mutant cut17-275 exhibits the defect in condensation and spindle elongation at 36 degrees C, while securin is degraded. Gene cloning shows that the cut17+ gene is identical to bir1+/pbh1+. At 26 degrees C, cut17-275 is UV sensitive as the repair of DNA damage is severely compromised. Bir1/Cut17 is a nuclear protein in interphase, which is then required for recruiting condensin to the mitotic nucleus, and concentrates to form a discrete number of dots from prometaphase to metaphase. Once the chromatids are separated, Bir1/Cut17 no longer binds to kinetochores and instead moves to the middle of spindle. Chromatin immunoprecipitation suggested that Bir1/Cut17 associates with the outer repetitious centromere region in metaphase. Following the initiation of anaphase the protein switches from being a chromosomal protein to a spindle protein. This transit is stringently regulated by the state of sister chromatid cohesion proteins Mis4 and Rad21. Ark1, is an aurora kinase homologue whose mitotic distribution is identical to, and under the control of Bir1/Cut17. CONCLUSIONS: Bir1/Cut17 and Ark1 act as "passengers" but they may play a main role as a recruitment factor, essential for condensation, spindle elongation and DNA repair. Bir1/Cut17 should have roles both in mitotic and in interphase chromosome. The proper location of Ark1 requires Bir1/Cut17, and the mitotic localization of Bir1/Cut17 requires sister cohesion.  相似文献   

14.
The Shugoshin/Aurora circuitry that controls the timely release of cohesins from sister chromatids in meiosis and mitosis is widely conserved among eukaryotes, although little is known about its function in organisms whose chromosomes lack a localized centromere. Here we show that Caenorhabditis elegans chromosomes rely on an alternative mechanism to protect meiotic cohesin that is shugoshin-independent and instead involves the activity of a new chromosome-associated protein named LAB-1 (Long Arm of the Bivalent). LAB-1 preserves meiotic sister chromatid cohesion by restricting the localization of the C. elegans Aurora B kinase, AIR-2, to the interface between homologs via the activity of the PP1/Glc7 phosphatase GSP-2. The localization of LAB-1 to chromosomes of dividing embryos and the suppression of mitotic-specific defects in air-2 mutant embryos with reduced LAB-1 activity support a global role of LAB-1 in antagonizing AIR-2 in both meiosis and mitosis. Although the localization of a GFP fusion and the analysis of mutants and RNAi-mediated knockdowns downplay a role for the C. elegans shugoshin protein in cohesin protection, shugoshin nevertheless helps to ensure the high fidelity of chromosome segregation at metaphase I. We propose that, in C. elegans, a LAB-1-mediated mechanism evolved to offset the challenges of providing protection against separase activity throughout a larger chromosome area.  相似文献   

15.
The condensin complex is essential for sister chromatid segregation in eukaryotic mitosis. Nevertheless, in budding yeast, condensin mutations result in massive mis-segregation of chromosomes containing the nucleolar organizer, while other chromosomes, which also contain condensin binding sites, remain genetically stable. To investigate this phenomenon we analyzed the mechanism of the cell-cycle arrest elicited by condensin mutations. Under restrictive conditions, the majority of condensin-deficient cells arrest in metaphase. This metaphase arrest is mediated by the spindle checkpoint, particularly by the spindle-kinetochore tension-controlling pathway. Inactivation of the spindle checkpoint in condensin mutants resulted in frequent chromosome non-disjunction, eliminating the bias in chromosome mis-segregation towards rDNA-containing chromosomes. The spindle tension defect in condensin-impaired cells is likely mediated by structural defects in centromere chromatin reflected by the partial loss of the centromere histone Cse4p. These findings show that, in addition to its essential role in rDNA segregation, condensin mediates segregation of the whole genome by maintaining the centromere structure in Saccharomyces cerevisiae.  相似文献   

16.
To understand how chromosome shapes are determined by actions of condensins and cohesin, we devised a series of protocols in which their levels are precisely changed in Xenopus egg extracts. When the relative ratio of condensin I to II is forced to be smaller, embryonic chromosomes become shorter and thicker, being reminiscent of somatic chromosomes. Further depletion of condensin II unveils its contribution to axial shortening of chromosomes. Cohesin helps juxtapose sister chromatid arms by collaborating with condensin I and counteracting condensin II. Thus, chromosome shaping is achieved by an exquisite balance among condensin I and II and cohesin.  相似文献   

17.
Chromosome segregation and X-chromosome gene regulation in Caenorhabditis elegans share the component MIX-1, a mitotic protein that also represses X-linked genes during dosage compensation. MIX-1 achieves its dual roles through interactions with different protein partners. To repress gene expression, MIX-1 acts in an X-chromosome complex that resembles the mitotic condensin complex yet lacks chromosome segregation function. Here we show that MIX-1 interacts with a mitotic condensin subunit, SMC-4, to achieve chromosome segregation. The SMC-4/MIX-1 complex positively supercoils DNA in vitro and is required for mitotic chromosome structure and segregation in vivo. Thus, C. elegans has two condensin complexes, one conserved for mitosis and another specialized for gene regulation. SMC-4 and MIX-1 colocalize with centromere proteins on condensed mitotic chromosomes and are required for the restricted orientation of centromeres toward spindle poles. This cell cycle-dependent localization requires AIR-2/AuroraB kinase. Depletion of SMC-4/MIX-1 causes aberrant mitotic chromosome structure and segregation, but not dramatic decondensation at metaphase. Moreover, SMC-4/MIX-1 depletion disrupts sister chromatid segregation during meiosis II but not homologous chromosome segregation during meiosis I, although both processes require chromosome condensation. These results imply that condensin is not simply required for compaction, but plays a more complex role in chromosome architecture that is essential for mitotic and meiotic sister chromatid segregation.  相似文献   

18.
Cohesin component dynamics during meiotic prophase I in mammalian oocytes   总被引:7,自引:0,他引:7  
Cohesins are chromosomal proteins that form complexes involved in the maintenance of sister chromatid cohesion during division of somatic and germ cells. Three meiosis-specific cohesin subunits have been reported in mammals, REC8, STAG3 and SMC1 beta; their expression in mouse spermatocytes has also been described. Here we studied the localization of different meiotic and mitotic cohesin components during prophase I in human and murine female germ cells. In normal and atretic human fetal oocytes, from leptotene to diplotene stages, REC8 and STAG3 colocalize in fibers. In murine oocytes, SMC1beta, SMC3 and STAG3 are localized along fibers that correspond first to the chromosome axis and then to the synaptonemal complex in pachytene. Mitotic cohesin subunit RAD21 is also found in fibers that decorate the SC during prophase I in mouse oocytes, suggesting a role for this cohesin in mammalian sister chromatid cohesion in female meiosis. We observed that, unlike human oocytes, murine synaptonemal complex protein SYCP3 localizes to nucleoli throughout prophase I stages, and centromeres cluster in discrete locations from leptotene to dictyate. At difference from meiosis in male mice, the cohesin axis is progressively lost during the first week after birth in females with a parallel destruction of the axial elements at dictyate arrest, demonstrating sexual dimorphism in sister chromatid cohesion in meiosis.  相似文献   

19.
Chromosome segregation is triggered by separase, an enzyme that cleaves cohesin, the protein complex that holds sister chromatids together. Separase activation requires the destruction of its inhibitor, securin, which occurs only upon the correct attachment of chromosomes to the spindle. However, other mechanisms restrict separase activity to the appropriate window in the cell cycle because cohesin is cleaved in a timely manner in securin-deficient cells. We investigated the mechanism by which the protector protein Shugoshin counteracts cohesin cleavage in budding yeast. We show that Shugoshin can prevent separase activation independently of securin. Instead, PP2ACdc55 is essential for Shugoshin-mediated inhibition of separase. Loss of both securin and Cdc55 leads to premature sister chromatid separation, resulting in aneuploidy. We propose that Cdc55 is a separase inhibitor that acts downstream from Shugoshin under conditions where sister chromatids are not under tension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号