首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cyclin-dependent kinase CDK11p58 is specifically expressed at G2/M phase. CDK11p58 depletion leads to different cell cycle defects such as mitotic arrest, failure in centriole duplication and centrosome maturation, and premature sister chromatid separation. We report that upon CDK11 depletion, loss of sister chromatid cohesion occurs during mitosis but not during G2 phase. CDK11p58 depletion prevents Bub1 and Shugoshin 1 recruitment but has no effect on the dimethylation of histone H3 lysine 4 at centromeres. We also report that a construct expressing a kinase dead version of CDK11p58 fails to prevent CDK11 depletion-induced sister chromatid separation, showing that CDK11p58 kinase activity is required for protection of sister chromatid cohesion at centromeres during mitosis. Thus, CDK11p58 kinase activity appears to be involved in early events in the establishment of the centromere protection machinery.  相似文献   

2.
Drosophila PIM and THR are required for sister chromatid separation in mitosis and associate in vivo. Neither of these two proteins shares significant sequence similarity with known proteins. However, PIM has functional similarities with securin proteins. Like securin, PIM is degraded at the metaphase-to-anaphase transition and this degradation is required for sister chromatid separation. Securin binds and inhibits separase, a conserved cysteine endoprotease. Proteolysis of securin at the metaphase-to-anaphase transition activates separase, which degrades a conserved cohesin subunit, thereby allowing sister chromatid separation. To address whether PIM regulates separase activity or functions with THR in a distinct pathway, we have characterized a Drosophila separase homolog (SSE). SSE is an unusual member of the separase family. SSE is only about one-third the size of other separases and has a diverged endoprotease domain. However, our genetic analyses show that SSE is essential and required for sister chromatid separation during mitosis. Moreover, we show that SSE associates with both PIM and THR. Although our work shows that separase is required for sister chromatid separation in higher eukaryotes, in addition, it also indicates that the regulatory proteins have diverged to a surprising degree, particularly in Drosophila.  相似文献   

3.
The mitotic kinetochore of the budding yeast contains a number of proteins which are required for chromosome transmission but are non-essential for vegetative growth. We show that one such protein, Iml3, is essential for meiosis, in that the absence of this protein results in reduced spore viability, precocious sister chromatid segregation of artificial and natural chromosomes in meiosis I and chromosome non-disjunction in meiosis II.  相似文献   

4.
RasD, a Dictyostelium homolog of mammalian Ras, is maximally expressed during the multicellular stage of development. Normal Dictyostelium aggregates are phototactic and thermotactic, moving towards sources of light and heat with great sensitivity. We show that disruption of the gene for rasD causes a near-total loss of phototaxis and thermotaxis in mutant aggregates, without obvious effects on undirected movement. Previous experiments had suggested important roles for RasD in development and cell-type determination. Surprisingly, rasD(-) cells show no obvious changes in these processes. These cells represent a novel class of phototaxis mutant, and indicate a role for a Ras pathway in the connections between stimuli and coordinated cell movement.  相似文献   

5.
We describe here the role of histone deacetylase 3 (HDAC3) in sister chromatid cohesion and the deacetylation of histone H3 Lys 4 (H3K4) at the centromere. HDAC3 knockdown induced spindle assembly checkpoint activation and sister chromatid dissociation. The depletion of Polo-like kinase 1 (Plk1) or Aurora B restored cohesion in HDAC3-depleted cells. HDAC3 was also required for Shugoshin localization at centromeres. Finally, we show that HDAC3 depletion results in the acetylation of centromeric H3K4, correlated with a loss of dimethylation at the same position. These findings provide a functional link between sister chromatid cohesion and the mitotic "histone code".  相似文献   

6.
The effect of pig monocytes (MNs) on the baseline frequency of sister chromatid exchanges (SCEs) and cell-cycle progression of pig lymphocytes was studied in plasma leukocyte (PLCs) and whole blood leukocyte cultures (WBCs). No variation in SCE frequency was observed between control WBC and PLC, nor did the addition of pig MNs to PLCs modify the baseline frequency of SCEs. Cell proliferation was slower in PLCs than in WBCs. Variations in cell-cycle progression of pig lymphocytes from PLC were observed both in the absence and presence of adherent cells in the culture. In MN-free cultures, lymphocytes proliferated foster than in parallel PLC cultures. However, when MNs were seeded into the cultures, cell-cycle progression gradually slowed as a function of the concentration of adherent cells present in the cultures. This finding shows that pig MNs modulate the in vitro cell-cycle progression of pig lymphocytes in a dose-dependent manner and that the low baseline SCE frequency of pig lymphocytes is independent of the presence or absence of MNs in the culture.  相似文献   

7.
The loss of sister chromatid cohesion triggers anaphase spindle movement. The budding yeast Mcd1/Scc1 protein, called cohesin, is required for associating chromatids, and proteins homologous to it exist in a variety of eukaryotes. Mcd1/Scc1 is removed from chromosomes in anaphase and degrades in G1. We show that the fission yeast protein, Mis4, which is required for equal sister chromatid separation in anaphase is a different chromatid cohesion molecule that behaves independent of cohesin and is conserved from yeast to human. Its inactivation in G1 results in cell lethality in S phase and subsequent premature sister chromatid separation. Inactivation in G2 leads to cell death in subsequent metaphase–anaphase progression but missegregation occurs only in the next round of mitosis. Mis4 is not essential for condensation, nor does it degrade in G1. Rather, it associates with chromosomes in a punctate fashion throughout the cell cycle. mis4 mutants are hypersensitive to hydroxyurea (HU) and UV irradiation but retain the ability to restrain cell cycle progression when damaged or sustaining a block to replication. The mis4 mutation results in synthetic lethality with a DNA ligase mutant. Mis4 may form a stable link between chromatids in S phase that is split rather than removed in anaphase.  相似文献   

8.
9.
Poly(ADP-ribose) is synthesized in response to DNA strand breaks and covalently modifies numerous intracellular proteins. We have proposed that this modification regulates, i.e., inhibits, the activity of these enzymes, e.g., topoisomerases and proteases, which could otherwise cause additional DNA damage or alterations in chromatin structure. Inhibition of poly(ADP-ribose) polymerase by 3-amino-benzamide (3AB) in cells exposed to DNA-damaging agents would, according to this proposal, eliminate the regulatory role of ADP-ribosylation. When Chinese hamster ovary cells are cultured with methyl methanesulfonate (MMS) and 3AB, a synergistic increase in sister chromatid exchange frequency is observed. We investigated the regulatory role of poly(ADP-ribose) polymerase to see if topoisomerases or proteases are involved in this synergistic increase. Cells were exposed to MMS or the intercalating agent 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA), 3AB, and either the topoisomerase inhibitor novobiocin or the protease inhibitor antipain. Neither novobiocin nor antipain affected the synergistic response of MMS and 3AB or the additive response of m-AMSA and 3AB. These results suggest that topoisomerases or proteases do not account for the effect of 3AB on sister chromatid exchange frequency after DNA damage.  相似文献   

10.
11.
Brain-derived neurotrophic factor (BDNF) acting through the tyrosine kinase B receptor (TrkB) is thought to be a critical mediator of learning. As there are no available selective antagonists of TrkB, we used a lentivirus encoding a dominant-negative TrkB (TrkB.t1) to antagonize BDNF signaling during extinction of conditioned fear. Whereas TrkB.t1-infected rats showed normal within-session extinction, their retention of extinction was impaired, suggesting that amygdala TrkB activation is required for the consolidation of stable extinction memories.  相似文献   

12.
Nakae S  Asano M  Horai R  Iwakura Y 《Immunology》2001,104(4):402-409
Interleukin-1 (IL-1) consists of two molecules, IL-1 alpha and IL-1 beta, and IL-1 receptor antagonist (IL-1Ra) is a natural inhibitor of these molecules. Although the adjuvant effects of exogenously administered IL-1 in the humoral immune response are well known, the roles of endogenous IL-1 and the functional discrimination between IL-1 alpha and IL-1 beta have not been elucidated completely. In this report, we investigated the role of IL-1 in the humoral immune response using gene-targeted mice. Both primary and secondary antibody production against T-dependent antigen, sheep red blood cells (SRBC), was significantly reduced in IL-1 alpha/beta-/- mice, and was enhanced in IL-1Ra-/- mice. The intrinsic functions of B cells, such as antibody production against type 1 T-independent antigen, trinitrophenyl-lipopolysaccharide and proliferative responses against mitogenic stimuli, were normal in IL-1 alpha/beta-/- mice. The proliferative response of T cells and cytokine production upon stimulation with anti-CD3 monoclonal antibody were also normal, as was the phagocytotic ability of antigen-presenting cells (APCs). However, SRBC-specific proliferative response and cytokine production of T cells through the interaction with APCs were markedly impaired in IL-1 alpha/beta-/- mice, and enhanced in IL-1Ra-/- mice. Moreover, we show that SRBC-specific antibody production was reduced in IL-1 beta-/- mice, but not in IL-1 alpha-/- mice. These results show that endogenous IL-1 beta, but not IL-1 alpha, is involved in T-cell-dependent antibody production, and IL-1 promotes the antigen-specific T-cell helper function through the T-cell-APC interaction.  相似文献   

13.
DNA synthesis in Chinese hamster cells was blocked partially by treating the cells with either fluorodeoxyuridine (FUdR) or cycloheximide (CHM) for various lengths of time. Analyses of the population kinetics and measurement of incorporation of labeled nucleosides during the FUdR block strongly suggested that the number of growing points was accumulated by the treatment while the rate of chain growth was greatly reduced. No evidence for such an accumulation was obtained in the CHM-treated cells. To study the relation between DNA replication and sister chromatid exchange (SCE), bromodeoxyuridine-labeled cells were exposed to blue fluorescent light while DNA synthesis was blocked. The frequency of SCE induced by the light treatment appeared to increase as the number of growing points increased, implying that the site of exchange is confined to the replication forks. The induction of SCE by fluorescent light was inhibited completely by CHM-treatment. The reason for this finding remains to be elucidated.  相似文献   

14.
The role of nitric oxide in long-term potentiation of the nicotinic pathway of synaptic transmission in the isolated superior cervical ganglia of rat was studied. Long-term potentiation was induced by a brief tetanizing pulse (tetanus, 20 Hz/20 s) to the preganglionic nerve. The amplitude of the extracellularly recorded postganglionic compound action potential was used as an index of synaptic transmission. Pretreatment with the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester (10 microM) or L-N(G)-nitro-arginine (10 microM) 30 min before tetanus, inhibited long-term potentiation. The inactive enantiomer of the nitric oxide synthase inhibitor, N(G)-nitro-D-arginine methyl ester (10 microM), failed to inhibit the long-term potentiation when given 30 min before the tetanus. Washout of L-N(G)-nitro-arginine, but not N(G)-nitro-L-arginine methyl ester, resulted in complete recovery of long-term potentiation. The nitric oxide synthase inhibitor had no significant effect on the basal ganglionic neurotransmission or post-tetanic potentiation. Furthermore, established long-term potentiation was blocked by superfusion of ganglia with N(G)-nitro-L-arginine methyl ester 1 h after a tetanus. Pretreatment of ganglia with the nitric oxide donor, sodium nitroprusside (100 microM), or the nitric oxide synthase substrate, L-arginine (1 mM), completely prevented the inhibitory effects of N(G)-nitro-L-arginine methyl ester on the tetanus-induced long-term potentiation. These findings present evidence for a requirement of nitric oxide for the maintenance but not induction of long-term potentiation in rat isolated superior cervical ganglia.  相似文献   

15.
The aim of this study was to investigate the role of immunoglobulin E (IgE) in the late phase reaction (LPR) of murine experimental asthma. Our model consisted of an implant of DNP-conjugated, heat-coagulated hen's egg white (DNP-EWI), followed 14 days later by an intratracheal challenge with aggregated DNP-ovalbumin. Airway inflammation was analyzed 48 h after challenge and compared with a similarly immunized group of mice with highly suppressed humoral response due to anti-micro and anti-delta antibody treatment. Total number of cells in the bronchoalveolar lavage (BAL) (with predominance of eosinophils) and EPO activity in the lung homogenate were increased in the DNP-EWI-immunized group compared with immunosuppressed or nonimmunized mice. However, the cellular infiltration and EPO activity observed in the immunosuppressed group were still significantly above those obtained in the nonimmunized group, indicating that inhibition of antibody production did not completely prevent the inflammatory manifestations in BAL and lung. Airway hyperresponsiveness to methacoline was obtained in DNP-EWI-immunized mice, but the respiratory mechanical parameters returned to normal levels in the immunosuppressed group. When these mice were reconstituted with monoclonal anti-DNP antibodies, only IgE, but not IgG1, restored lung inflammation and decreased the conductance of the respiratory system, therefore, increasing hyperresponsiveness. These results indicate that antibodies are not essential for induction of LPR in the lung. However, IgE enhances pulmonary inflammation and hyperresponsiveness.  相似文献   

16.
STAT3 has been described as an essential component of G-CSF-driven cell proliferation and granulopoiesis. This notion was tested by conditional gene ablation in transgenic mice. Contrary to expectation, granulocytes developed from STAT3 null bone marrow progenitors, and STAT3 null neutrophils displayed mature effector functions. Rather than a deficit in granulopoiesis, mice lacking STAT3 in their hematopoietic progenitors developed neutrophilia, and bone marrow cells were hyperresponsive to G-CSF stimulation. These studies provide direct evidence for STAT3-independent granulopoiesis and suggest that STAT3 directs a negative feedback loop necessary for controlling neutrophil numbers, possibly through induced expression of the signaling inhibitor, SOCS3.  相似文献   

17.
Changes in visual cortical responses that are induced by monocular visual deprivation are a widely studied example of competitive, experience-dependent neural plasticity. It has been thought that the deprived-eye pathway will fail to compete against the open-eye pathway for limited amounts of brain-derived neurotrophic factor, which acts on TrkB and is needed to sustain effective synaptic connections. We tested this model by using a chemical-genetic approach in mice to inhibit TrkB kinase activity rapidly and specifically during the induction of cortical plasticity in vivo. Contrary to the model, TrkB kinase activity was not required for any of the effects of monocular deprivation. When the deprived eye was re-opened during the critical period, cortical responses to it recovered. This recovery was blocked by TrkB inhibition. These findings suggest a more conventional trophic role for TrkB signaling in the enhancement of responses or growth of new connections, rather than a role in competition.  相似文献   

18.
Asthma is characterized by immunoglobulin (Ig) E production, infiltration of the respiratory mucosa by eosinophils (EOSs) and mononuclear cells, and bronchial hyperresponsiveness (BHR). Interaction of CD40 on B cells and antigen presenting cells, with its ligand (CD40L) expressed transiently on activated T cells, is known to augment both T cell-driven inflammation and humoral immune responses, especially IgE production. Considering both the prominent role of inflammation in asthma and the association of the disease with IgE, we hypothesized that CD40-CD40L interactions would be important in pathogenesis. To test this hypothesis, we subjected wild-type (WT) mice and animals lacking either CD40 or CD40L to repeated inhalation of Aspergillus fumigatus (Af ) antigen. Af-treated WT mice displayed elevated IgE levels, bronchoalveolar lavage and pulmonary tissue eosinophilic inflammation, and BHR. IgE production was markedly suppressed in both the CD40 -/- and CD40L -/- strains. However, pulmonary inflammation did not appear to be inhibited by either of these mutations. Paradoxically, development of BHR was prevented by the lack of CD40L but not by the absence of CD40. We conclude that CD40/CD40L interactions, although critical in the induction of IgE responses to inhaled allergen, are not required for the induction of EOS-predominant inflammation. CD40L, but not CD40, is necessary for the development of allergen-induced BHR.  相似文献   

19.
20.
Bone regeneration is a complex event that requires the interaction of numerous growth factors. Fibroblast growth factor (Fgf)-ligands have been previously described for their importance in osteogenesis during development. In the current study, we investigated the role of Fgf-18 during bone regeneration. By utilizing a unicortical tibial defect model, we revealed that mice haploinsufficient for Fgf-18 have a markedly reduced healing capacity as compared with wild-type mice. Reduced levels of Runx2 and Osteocalcin but not Vegfa accompanied the impaired bone regeneration. Interestingly, our data indicated that upon injury angiogenesis was not impaired in Fgf-18(+/-) mice. Moreover, other Fgf-ligands and Bmp-2 could not compensate for the loss of Fgf-18. Finally, application of FGF-18 protein was able to rescue the impaired healing in Fgf-18(+/-) mice. Thus, we identified Fgf-18 as an important mediator of bone regeneration, which is required during later stages of bone regeneration. This study provides hints on how to engineering efficiently programmed bony tissue for long bone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号