首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
It has been suggested that horizontal gene transfer (HGT) is the "essence of phylogeny." In contrast, much data suggest that this is an exaggeration resulting in part from a reliance on inadequate methods to identify HGT events. In addition, the assumption that HGT is a ubiquitous influence throughout evolution is questionable. Instead, rampant global HGT is likely to have been relevant only to primitive genomes. In modern organisms we suggest that both the range and frequencies of HGT are constrained most often by selective barriers. As a consequence those HGT events that do occur most often have little influence on genome phylogeny. Although HGT does occur with important evolutionary consequences, classical Darwinian lineages seem to be the dominant mode of evolution for modern organisms.  相似文献   

4.
5.
Use of DNA barcodes to identify flowering plants   总被引:34,自引:0,他引:34       下载免费PDF全文
Methods for identifying species by using short orthologous DNA sequences, known as "DNA barcodes," have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short ( approximately 450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.  相似文献   

6.
Some of the most damaging tree pathogens can attack woody stems, causing lesions (cankers) that may be lethal. To identify the genomic determinants of wood colonization leading to canker formation, we sequenced the genomes of the poplar canker pathogen, Mycosphaerella populorum, and the closely related poplar leaf pathogen, M. populicola. A secondary metabolite cluster unique to M. populorum is fully activated following induction by poplar wood and leaves. In addition, genes encoding hemicellulose-degrading enzymes, peptidases, and metabolite transporters were more abundant and were up-regulated in M. populorum growing on poplar wood-chip medium compared with M. populicola. The secondary gene cluster and several of the carbohydrate degradation genes have the signature of horizontal transfer from ascomycete fungi associated with wood decay and from prokaryotes. Acquisition and maintenance of the gene battery necessary for growth in woody tissues and gene dosage resulting in gene expression reconfiguration appear to be responsible for the adaptation of M. populorum to infect, colonize, and cause mortality on poplar woody stems.Domestication of forest trees, in contrast to agricultural crops, has become prevalent only during the last few centuries and often encompasses a transition from wild, complex ecosystems to homogeneous and intensively managed plantations that are frequently composed of a single tree species (1). The recent ability to use modern genetic and genomic techniques with conventional breeding promises to speed up tree domestication (2). Poplar has emerged as an extremely versatile tree with natural attributes favorable to its domestication. The ease of vegetative propagation and the breeding of interspecific hybrids with broad adaptability, improved growth, and disease resistance has contributed to the widespread use of poplar for a variety of commercial products, including lumber, paper, and bioenergy feedstock (3). One of the challenges of poplar domestication has been the emergence of pathogens that were innocuous in their natural pathosystems, but can cause severe losses in plantations. Native poplars still vastly outnumber planted trees, and this large reservoir of a naturally coevolved pathosystem in close proximity to intensively managed clonal plantations could destabilize the host–pathogen equilibrium, leading to new disease epidemics (4).A native endemic fungus on northeastern and north-central North American poplars, Mycosphaerella populorum (anamorph = Sphaerulina musiva; class Dothideomycetes) occurs in natural stands of native Populus deltoides, causing necrotic foliar lesions, but rarely resulting in early defoliation (5). With the introduction of exotic poplar species at the beginning of the 20th century and the intensification of hybrid poplar cultivation in North America, M. populorum has emerged as a stem-infecting pathogen, causing stem cankers that lead to weakening and breakage of the tree trunk, often resulting in plantation failure (Fig. 1A) (6, 7). The pathogen can attack a broad range of susceptible hybrid poplars and has also expanded its geographic range. It has recently been reported, to our knowledge, for the first time west of the Rocky Mountains and in Argentina and Brazil (68). This disease has become the most important factor limiting poplar plantations in eastern North America and could threaten the poplar industry worldwide (6, 9).Open in a separate windowFig. 1.M. populorum and M. populicola symptoms and divergence time estimate. (A, Top Left) M. populorum branch canker and leaf spots on a P. deltoides × P. trichocarpa clone. (Top Right) M. populicola leaf-spot symptoms on P. trichocarpa. (Bottom) M. populorum stem canker on P. deltoides × P. maximowiczii (Left) and P. deltoides × P. trichocarpa (Right) that caused the trunk to break at the canker. Photo provided by Harry Kope. (B) Maximum-likelihood phylogeny of M. populorum, M. populicola, and 16 other ascomycete fungi. All nodes received a bootstrap support of 100% except one, indicated with a 94% value. Colored stars: calibration points in million years (SI Appendix, Phylogenomic Analysis).A sister species to this pathogen, Mycosphaerella populicola (anamorph = S. populicola; class Dothideomycetes), is also endemic on native poplars, causing a leaf spot symptom on Populus balsamifera and Populus trichocarpa, but has a much broader geographical distribution than M. populorum (6, 10). This pathogen is considered a lower threat to poplar plantations because it does not cause stem cankers under natural conditions or in plantations and it has a narrow host range (11).To identify genetic factors underlying the canker symptom, we sequenced and compared the genomes of these two closely related pathogens with different natural host ranges and etiological characteristics. This provided a unique opportunity to contrast the evolutionary consequences of the adaptation of a tree pathogen to different hosts and the ability to gradually transition from natural to domesticated ecosystems. Our results show that the genome of M. populorum has evolved a broader battery of genes and has acquired genes through horizontal transfer that are absent in its sister species. These genes are enriched in functions that allow M. populorum to infect woody tissues.  相似文献   

7.
The importance of gene gain through duplication has long been appreciated. In contrast, the importance of gene loss has only recently attracted attention. Indeed, studies in organisms ranging from plants to worms and humans suggest that duplication of some genes might be better tolerated than that of others. Here we have undertaken a large-scale study to investigate the existence of duplication-resistant genes in the sequenced genomes of 20 flowering plants. We demonstrate that there is a large set of genes that is convergently restored to single-copy status following multiple genome-wide and smaller scale duplication events. We rule out the possibility that such a pattern could be explained by random gene loss only and therefore propose that there is selection pressure to preserve such genes as singletons. This is further substantiated by the observation that angiosperm single-copy genes do not comprise a random fraction of the genome, but instead are often involved in essential housekeeping functions that are highly conserved across all eukaryotes. Furthermore, single-copy genes are generally expressed more highly and in more tissues than non–single-copy genes, and they exhibit higher sequence conservation. Finally, we propose different hypotheses to explain their resistance against duplication.  相似文献   

8.
9.
10.
Somatostatin-like material is present in flowering plants   总被引:1,自引:0,他引:1  
Extracts of spinach contain somatostatin (SRIF)-related material (6-80 pg/g wet wt). The SRIF-related material, when purified on HPLC, was recovered as two major mol wt forms; one that eluted with a retention time similar to that of synthetic SRIF-28 and reacted in both N- and C-terminal-specific immunoassays, and a second peak that eluted with a retention time similar to that of SRIF-14 and reacted only in the C-terminal immunoassays. The purified material was active in a sensitive bioassay, and the bioactivity was neutralized in the presence of anti-SRIF antiserum. Since we have previously described the presence of similar material in bacteria, we also tested extracts of the flowering plant Lemna gibba G3, which was grown under sterile conditions. The Lemna extracts also had SRIF-related material (3.0 pg/g wet wt). Since plants are probably derived evolutionarily from unicellular organisms, the presence of SRIF-like material in higher plants gives support for the hypothesis that vertebrate-type peptide hormones have early evolutionary origins.  相似文献   

11.
The phylogeny of flowering plants is now rapidly being disclosed by analysis of DNA sequence data, and currently, many Cretaceous fossils of flowering plants are being described. Combining molecular phylogenies with reference fossils of known minimum age makes it possible to date the nodes of the phylogenetic tree. The dating may be done by counting inferred changes in sequenced genes along the branches of the phylogeny and calculating change rates by using the reference fossils. Plastid DNA rbcL sequences and eight reference fossils indicate that approximately 14 of the extant monocot lineages may have diverged from each other during the Early Cretaceous >100 million years B.P. The lineages are very different in size and geographical distribution and provide perspective on flowering plant evolution.  相似文献   

12.
13.
Horizontal gene transfer (HGT) can radically alter the genomes of microorganisms, providing the capacity to adapt to new lifestyles, environments, and hosts. However, the extent of HGT between eukaryotes is unclear. Using whole-genome, gene-by-gene phylogenetic analysis we demonstrate an extensive pattern of cross-kingdom HGT between fungi and oomycetes. Comparative genomics, including the de novo genome sequence of Hyphochytrium catenoides, a free-living sister of the oomycetes, shows that these transfers largely converge within the radiation of oomycetes that colonize plant tissues. The repertoire of HGTs includes a large number of putatively secreted proteins; for example, 7.6% of the secreted proteome of the sudden oak death parasite Phytophthora ramorum has been acquired from fungi by HGT. Transfers include gene products with the capacity to break down plant cell walls and acquire sugars, nucleic acids, nitrogen, and phosphate sources from the environment. Predicted HGTs also include proteins implicated in resisting plant defense mechanisms and effector proteins for attacking plant cells. These data are consistent with the hypothesis that some oomycetes became successful plant parasites by multiple acquisitions of genes from fungi.  相似文献   

14.
Flowering plants have evolved various genetic mechanisms to circumvent the tendency for self-fertilization created by the close proximity of male and female reproductive organs in a bisexual flower. One such mechanism is gametophytic self-incompatibility, which allows the female reproductive organ, the pistil, to distinguish between self pollen and non-self pollen; self pollen is rejected, whereas non-self pollen is accepted for fertilization. The Solanaceae family has been used as a model to study the molecular and biochemical basis of self/non-self-recognition and self-rejection. Discrimination of self and non-self pollen by the pistil is controlled by a single polymorphic locus, the S locus. The protein products of S alleles in the pistil, S proteins, were initially identified based on their cosegregation with S alleles. S proteins have recently been shown to indeed control the ability of the pistil to recognize and reject self pollen. S proteins are also RNases, and the RNase activity has been shown to be essential for rejection of self pollen, suggesting that the biochemical mechanism of self-rejection involves the cytotoxic action of the RNase activity. S proteins contain various numbers of N-linked glycans, but the carbohydrate moiety has been shown not to be required for the function of S proteins, suggesting that the S allele specificity determinant of S proteins lies in the amino acid sequence. The male component in self-incompatibility interactions, the pollen S gene, has not yet been identified. The possible nature of the pollen S gene product and the possible mechanism by which allele-specific rejection of pollen is accomplished are discussed.  相似文献   

15.
Eukaryotic cells arose through endosymbiotic uptake of free-living bacteria followed by massive gene transfer from the genome of the endosymbiont to the host nuclear genome. Because this gene transfer took place over a time scale of hundreds of millions of years, direct observation and analysis of primary transfer events has remained difficult. Hence, very little is known about the evolutionary frequency of gene transfer events, the size of transferred genome fragments, the molecular mechanisms of the transfer process, or the environmental conditions favoring its occurrence. We describe here a genetic system based on transgenic chloroplasts carrying a nuclear selectable marker gene that allows the efficient selection of plants with a nuclear genome that carries pieces transferred from the chloroplast genome. We can select such gene transfer events from a surprisingly small population of plant cells, indicating that the escape of genetic material from the chloroplast to the nuclear genome occurs much more frequently than generally believed and thus may contribute significantly to intraspecific and intraorganismic genetic variation.  相似文献   

16.
17.
The evolutionary origin of the angiosperms (flowering plants sensu stricto) is still enigmatic. Answers to the question of angiosperm origins are intimately connected to the identification of their sister group among extinct and extant taxa. Most phylogenetic analyses based on morphological data agree that among the groups of extant seed plants, the gnetophytes are the sister group of the angiosperms. According to this view, angiosperms and gnetophytes are the only extant members of a clade called "anthophytes" to emphasize their shared possession of flower-like reproductive structures. However, most phylogeny reconstructions based on molecular data so far did not support an anthophyte clade, but also could not clarify the case because support for alternative groupings has been weak or controversial. We have isolated 13 different homologs of MADS-type floral homeotic genes from the gnetophyte Gnetum gnemon. Five of these genes fall into monophyletic gene clades also comprising putatively orthologous genes from flowering plants and conifers, among them orthologs of floral homeotic B and C function genes. Within these clades the Gnetum genes always form distinct subclades together with the respective conifer genes, to the exclusion of the angiosperm genes. This provides strong molecular evidence for a sister-group relationship between gnetophytes and conifers, which is in contradiction to widely accepted interpretations of morphological data for almost a century. Our phylogeny reconstructions and the outcome of expression studies suggest that complex features such as flower-like reproductive structures and double-fertilization arose independently in gnetophytes and angiosperms.  相似文献   

18.
The virB operon of the Agrobacterium tume-faciens pTiA6NC plasmid likely plays a role in directing T-DNA transfer events at the bacterial membrane, as determined previously by mutagenesis and cellular fractionation studies and by DNA sequence analysis of the approximately 12-kilobase-pair operon. The DNA sequence analysis also revealed consensus mononucleotide binding domains in the deduced virB5 and virB11 gene products, suggesting that one or both of these proteins couple energy, by means of nucleotide triphosphate (NTP) hydrolysis, to T-DNA transport. In this report, the product of virB11, an essential virulence gene, was overproduced in Escherichia coli and purified by using immunoaffinity chromatography. The immunoaffinity purified protein, as well as NaDodSO4/polyacrylamide gel-eluted protein, bound and hydrolyzed ATP in the absence of DNA effectors. VirB11 protein also demonstrated in vitro autophosphorylation activity. VirB11 protein was localized primarily to the cytoplasmic membrane by immunoblot analysis of membrane fractions. The deduced VirB11 protein exhibits sequence similarity to comG ORF1, a protein required for uptake of DNA by competent Bacillus subtilis cells. These findings suggest that phosphorylation may serve to activate a component(s) of the A. tumefaciens T-DNA transport apparatus and may also represent a general activation mechanism of other bacterial DNA transport systems.  相似文献   

19.
Ngrol genes (NgrolB, NgrolC, NgORF13, and NgORF14) that are similar in sequence to genes in the left transferred DNA (TL-DNA) of Agrobacterium rhizogenes have been found in the genome of untransformed plants of Nicotiana glauca. It has been suggested that a bacterial infection resulted in transformation of Ngrol genes early in the evolution of the genus Nicotiana. Although the corresponding four rol genes in TL-DNA provoked hairy-root syndrome in plants, present-day N. glauca and plants transformed with Ngrol genes did not exhibit this phenotype. Sequenced complementation analysis revealed that the NgrolB gene did not induce adventitious roots because it contained two point mutations. Single-base site-directed mutagenesis at these two positions restored the capacity for root induction to the NgrolB gene. When the NgrolB, with these two base substitutions, was positioned under the control of the cauliflower mosaic virus 35S promoter (P35S), transgenic tobacco plants exhibited morphological abnormalities that were not observed in P35S-RirolB plants. In contrast, the activity of the NgrolC gene may have been conserved after an ancient infection by bacteria. Discussed is the effect of the horizontal gene transfer of the Ngrol genes and mutations in the NgrolB gene on the phenotype of ancient plants during the evolution of N. glauca.  相似文献   

20.
Complete and partial sequences of mariner-like elements (MLEs) have been reported for hundreds of species of animals, but only two have been identified in plants. On the basis of these two plant MLEs and several related sequences identified by database searches, plant-specific degenerate primers were derived and used to amplify a conserved region of MLE transposase genes from a variety of plant genomes. Positive products were obtained for 6 dicots and 31 monocots of 54 plant species tested. Phylogenetic analysis of 68 distinct MLE transposase sequences from 25 grass species is consistent with vertical transmission and rapid diversification of multiple lineages of transposases. Surprisingly, the evolution of MLEs in grasses was accompanied by repeated and independent acquisition of introns in a localized region of the transposase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号