首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of isolated rat hepatocytes with menadione (2-methyl-1,4-naphthoquinone) resulted in a dose-dependent depletion of intracellular reduced glutathione (GSH), most of which was oxidized to glutathione disulfide (GSSG). Menadione metabolism was also associated with a dose- and time-dependent inhibition of glutathione reductase, impairing the regeneration of GSH from GSSG produced during menadione-induced oxidative stress. Inhibition of glutathione reductase by pretreatment of hepatocytes with 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) greatly potentiated both GSH depletion and GSSG formation during the metabolism of low concentrations of menadione. Concomitant with GSH oxidation, mixed disulfides between glutathione and protein thiols were formed. The amount of mixed disulfides produced and the kinetics of their formation were dependent on both the intracellular GSH/GSSG ratio and the activity of glutathione reductase. The mixed disulfides were mainly recovered in the cytosolic fraction and, to a lesser extent, in the microsomal and mitochondrial fractions. The removal of glutathione from protein mixed disulfides formed in hepatocytes exposed to oxidative stress was dependent on GSH and/or cysteine and appeared to occur predominantly via a thiol-disulfide exchange mechanism. However, incubation of the microsomal fraction from menadione-treated hepatocytes with purified glutathione reductase in the presence of NADPH also resulted in the reduction of a significant portion of the glutathione-protein mixed disulfides present in this fraction. Our results suggest that the formation of glutathione-protein mixed disulfides occurs as a result of increased GSSG formation and inhibition of glutathione reductase activity during menadione metabolism in hepatocytes.  相似文献   

2.
Our previous research showed that tea catechins could significantly increase the viability of lead-exposed PC12 cells. Whereas the cellular thiol status is known to be responsible for protecting against lead-induced toxicity, whether the role of tea catechins on lead-induced PC12 cell toxicity is related to the metabolism of intracellular thiol compounds remained vague. In the present study, it was found that Pb(2+) significantly decreased reduced glutathione (GSH)/oxidative glutathione (GSSG) and protein sulfhydryl groups (PSH)/glutathione-protein mixed disulfide (GSSP) ratios as well as glutathione reductase activities in a concentration-dependent manner. Both (-)-epicatechin and (-)-epicatechin gallate (ECG) supplementation resulted in an increased GSH/GSSG ratio and glutathione reductase activities. The galloylated catechins (ECG or (-)-epigallocatechin gallate) treatment significantly decreased the GSSP levels and increased the intracellular PSH/GSSP ratio in lead-exposed PC12 cells. To our surprise, as compared with the group treated by lead acetate, 100 microM EGC treatment following lead exposure significantly decreased GSH/GSSG and PSH/GSSP ratios, as well as glutathione reductase activities. The results suggested that the effect of tea catechins on the intracellular thiols status in PC12 cells was different, which may be related to their chemical structures and/or regulation of special gene expression properties.  相似文献   

3.
Mechanisms of N-acetyl-p-benzoquinone imine cytotoxicity   总被引:1,自引:0,他引:1  
N-Acetyl-p-benzoquinone imine (NAPQI), a reactive metabolite of acetaminophen, rapidly reacts at physiological pH with glutathione (GSH) forming an acetaminophen-glutathione conjugate and stoichiometric amounts of acetaminophen and glutathione disulfide (GSSG). The same reaction products are formed in isolated hepatocytes incubated with NAPQI. In hepatocytes which have been treated with 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) in order to inhibit glutathione reductase, the initial rise in GSSG concentration in the presence of NAPQI is maintained, whereas GSSG is rapidly reduced back to GSH in untreated hepatocytes. Oxidation by NAPQI of GSH to GSSG and the reduction of GSSG back to GSH by the NADPH-dependent glutathione reductase appear to be responsible for the rapid oxidation of NADPH that occurs in hepatocytes incubated with NAPQI in that the effect is blocked by pretreatment of cells with BCNU. When added to hepatocytes, NAPQI not only reacts with GSH but also causes a loss in protein thiol groups. The loss in protein thiols occurs more rapidly in cells pretreated with BCNU or diethylmaleate. Whereas both of these treatments enhance cytotoxicity caused by NAPQI, BCNU pretreatment has no effect on the covalent binding of [14C-ring]NAPQI to cellular proteins. Furthermore, dithiothreitol added to isolated hepatocytes after maximal covalent binding of [14C-ring]NAPQI but preceding cell death protects cells from cytotoxicity and regenerates protein thiols. Thus, the toxicity of NAPQI to isolated hepatocytes may result primarily from its oxidative effects on cellular proteins.  相似文献   

4.
In oral peptide delivery, the gap between convenient administration and low blood concentration has to be minimized. We found that oral peptide drugs have not only to pass the various commonly known barriers encountered with the gastrointestinal tract but that these drugs, under certain conditions, have also to be seen as redox partners for thiol bearing substrates. The interaction of glutathione (GSH) with peptides via thiol-disulfide exchange reactions was investigated for three peptides, vasotocin, oxytocin and octreotide. The extent of thiol-disulfide exchange reactions was investigated by liquid chromatography (LC) and further confirmed by hyphenation to electrospray ionization (ESI) and MALDI-TOF mass spectrometry (MS). We found that the presence of aromatic amino acid residues in the neighbourhood of the disulfide bond minimizes the thiol-disulfide interaction: oxytocin was degraded more than 80% with 1% reduced glutathione at pH 3.0 and vasotocin more than 40% under the same conditions. In the case of octreotide no interaction with GSH was observed. The obtained results revealed that thiol-disulfide exchange reactions have an important impact on the alteration of peptide drugs and proteins in the gastrointestinal tract.  相似文献   

5.
After rats were injected with the reduced glutathione (GSH) depletor phorone (diisopropylidene acetone, 250 mg/kg, i.p.), there was a significant increase in microsomal glutathione S-transferase activity in the liver. The maximum activity was observed 24 hr after injection and was about 2-fold that of the control activity. Diethylmaleate (500 mg/kg, i.p.) had the same effect. Twenty-four hours after phorone injection (250 mg/kg, i.p.), the concentrations of GSH and oxidized glutathione (GSSG) in the liver were increased about 2-fold. Under the same conditions, the level of mixed disulfides with microsomal proteins (GSS-protein) was also increased. Further, the activity of microsomal glutathione S-transferases was increased by the in vitro addition of disulfide compounds such as GSSG, cystine and homocystine, and the activity increased by GSSG was reduced to control levels by incubating with the corresponding sulfhydryl compounds such as GSH, cysteine and homocysteine respectively. Thus, microsomal glutathione S-transferase activity appears to be regulated by the formation and/or cleavage of a mixed disulfide bond between the sulfhydryl group present in the enzyme and GSSG. Therefore, the increase of microsomal glutathione S-transferase activity after phorone injection may be due to the formation of a mixed disulfide bond between the sulfhydryl group in the enzyme and GSSG.  相似文献   

6.
The regulation of lipopolysaccharide (LPS)-mediated pro-inflammatory cytokine biosynthesis by reduction-oxidation (redox)-sensitive enzymes involved in maintaining intracellular glutathione homeostasis was investigated in fetal alveolar type II epithelial cells (fATII). Inhibition of glutathione-oxidized disulfide reductase, which recycles GSSG --> 2GSH, by the action of 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) augmented LPS-dependent secretion of interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha. BCNU increased [GSSG] concentration at the expense of [GSH], thereby favoring oxidation equilibrium. Inhibition of gamma-glutamylcysteine synthetase, the rate-limiting enzyme in the biosynthesis of GSH, by the action of L-buthionine-(S,R)-sulfoximine (BSO), potentiated LPS-induced IL-1beta, IL-6 and TNF-alpha production. Similar to BCNU, BSO depleted [GSH] and induced the accumulation of [GSSG]. BCNU and BSO reduced LPS-mediated phosphorylation of inhibitory-kappaB (IkappaB-alpha), allowing its cytosolic accumulation. This effect was associated with the inhibition of the nuclear translocation of selective nuclear factor (NF)-kappaB subunits: NF-kappaB1 (p50), RelA (p65), RelB (p68) and c-Rel (p75), but not NF-kappaB2 (p52). BCNU and BSO reduced LPS-induced NF-kappaB activation as determined by the electrophoretic mobility shift DNA-binding assay. Analytical analysis of the effect of modulating the dynamic redox ratio ([GSH]+[GSSG])/[GSSG] revealed a novel role for GSSG as a disulfhydryl compound which mediates an inhibitory effect on NF-kappaB activation. It is concluded that selective modulation of redox-sensitive enzymes has an immunopharmacological potential in regulating pro-inflammatory cytokines and that the TkappaB-alpha/NF-kappaB pathway is redox-sensitive and differentially involved in mediating redox-dependent regulation of cytokine signaling.  相似文献   

7.
A liquid chromatography/mass spectrometric (LC/MS) method was developed for simultaneous detection and quantitation of glutathione (GSH), glutathione disulfide (GSSG), cysteine (CysSH), homocysteine (HCysSH) and homocystine in biological samples (rat brain, lung, liver, heart, kidneys, erythrocytes and plasma). Thiols were derivatized with a large excess of Ellman's reagent, a thiol-specific reagent, to ensure an instantaneous and complete derivatization. The derivatization blocked the oxidation of the thiols to disulfides, preventing errors caused by thiol oxidation. The samples were then analyzed by LC/MS. The method provides a highly selective and sensitive assay for these endogenous thiols and their corresponding disulfides. The detection limits for GSH, GSSG, CysSH, HCysSH and homocystine were 3.3, 3.3, 16.5, 29.6 and 14.9 pmol, respectively. An attempt for cystine analysis was unsuccessful due to earlier elution of the compound and strong interferences caused by other endogenous compounds. This method will be a useful tool in the investigation of the roles of these important thiol-containing compounds and their corresponding disulfides in physiological and pathological processes.  相似文献   

8.
The effect of bucillamine (BA) on glutathione (GSH) and GSH-related enzymes was investigated in C57 mouse. Administration of high doses of BA (150-400 mg/kg) produced a dose-dependent depletion (20-44%) of hepatic GSH, which was similar in magnitude to that produced by equimolar doses of other sulphydryl drugs studied previously. GSH depletion after acute BA administration correlated well with the elevation of serum glutamic-pyruvic transaminase (SGPT) (6-9-fold increase above control). The increase in SGPT after chronic administration (7 days), although significantly higher than the controls, was however much less than after acute administration. The hepatic GSH concentrations of mice given 7 days of BA were similar to the controls, again correlating well with SGPT activity. Administration of BA (150-400 mg/kg) caused also a significant dose-dependent increase in the oxidized glutathione (GSSG) in blood by 2-7-fold, as well as a dose-dependent increase in blood glutathione S-transferase (GST) activity (2-13-fold). In an in vitro experiment, hepatic GST activity was activated by various concentrations of BA (1 microM-1mM). There was little or no effect on GSSG reductase and on glutathione peroxidase (GSH-Px) after acute administration of BA. Chronic administration of BA had no effect on hepatic GSSG reductase and GSH-Px, but GSSG reductase activity in blood was increased significantly by 4-fold. It is possible that BA may affect the redox status through auto-oxidation and oxidation with endogenous thiols such as glutathione, affecting GSH concentrations and the GSH/GSSG ratio in tissues and, thus, having both metabolic and toxicological consequences. Whether or not the induction of GST activity in vivo in blood and in vitro in liver enzyme preparations shared the same underlying mechanism(s) requires further investigation.  相似文献   

9.
The effect of sodium selenite (Na2SeO3, Se) on cellular glutathione metabolism was examined, particularly with respect to its ability to alter the activities of γ-glutamylcysteine synthetase and glutathione disulfide (GSSG) reductase. The treatment of rats with Se (5, 10 and 20 μmoles/kg) caused time- and dose-dependent increases in the activities of the synthetase and the reductase in the liver. The activity of γ-glutamylcysteine synthetase, the rate-limiting enzyme of the glutathione (GSH) biosynthesis, was particularly susceptible to Se treatment. The Se-mediated increases in the activities of the above enzymes were inhibited by puromycin and the increases could not be elicited in vitro. Selenium treatment caused time-dependent perturbations in the levels and ratio of GSSG and GSH in the liver. When compared to the control animals, rats treated for 3 hr with 10 and 20 μmoles Se/kg showed increased cellular levels of GSSG; in contrast, 24 hr after Se treatment the concentration of GSH was increased significantly. The activity of γ-glutamyl transpeptidase, which catalyzes the initial reaction in GSH breakdown, was unaltered by Se treatment. Repeated administration of low doses of Se (7.0 μmoles/kg, three times) also increased the activities of the reductase and the synthetase as well as the cellular levels of hepatic GSH and GSSG. It is suggested that the Se-mediated increases in the activities of γ-glutamylcysteine synthetase and GSSG-reductase represent cellular responses to Se-mediated perturbations in the levels and ratio of GSH and GSSG.  相似文献   

10.
The insecticide lindane (gamma-hexachlorocyclohexane) inhibits gap junction intercellular communication in rat myometrial cells by a mechanism involving oxidative stress. We hypothesized that oxidation of reduced glutathione (GSH) to glutathione disulfide (GSSG) and subsequent S-glutathionylation provide a mechanistic link between lindane-induced oxidative stress and lindane's inhibition of myometrial gap junction communication. Gap junction communication between cultured rat myometrial myocytes was assessed by Lucifer yellow dye transfer after microinjection. A biphasic pattern was confirmed, with dye transfer nearly abolished after 1 h of exposure to 100 microM lindane followed initially by recovery after lindane removal, and then the development 4 h after termination of lindane exposure of a delayed-onset, sustained inhibition that continued for 96 h. As measured by HPLC, cellular GSH varied over a 24-h period in a biphasic fashion that paralleled lindane-induced inhibition of dye transfer, whereas GSSG levels increased in a manner inversely related to GSH. In accordance, GSH/GSSG ratios were depressed at times when GSH and dye transfer were low. Lindane substantially increased S-glutathionylation in a concentration-dependent manner, measured biochemically by GSSG reductase-stimulated release of GSH from precipitated proteins. Furthermore, treatments that promoted accumulation of GSSG (50 microM diamide and 25 microM 1,3-bis(2-chloroethyl)-1-nitrosourea [BCNU]) inhibited Lucifer yellow dye transfer between myometrial cells. Findings that lindane induced GSH oxidation to GSSG with increased S-glutathionylation, together with the diamide and BCNU results, suggest that oxidation of GSH to GSSG is a component of the mechanism by which lindane inhibits myometrial gap junctions.  相似文献   

11.
Glutathione (GSH) plays numerous critical protective roles in the erythrocyte and GSH turnover is likely an important factor in regulating susceptibility to oxidative stress and toxins. Efflux of glutathione disulfide (GSSG) from erythrocytes is an important component in the regulation of GSH levels; however, little is known of the mechanisms involved. We hypothesize that multidrug resistance associated protein 1 (MRP1) is responsible, in part, for GSSG transport from erythrocytes. To test this, we determined the levels of MRP1 protein in erythrocyte membranes from healthy adults and compared them with intracellular levels of GSH. MRP1 levels varied substantially from person to person and were inversely correlated with levels of GSH (r = -0.39, P < 0.05). In contrast, activity levels of glutamyl cysteine ligase, the rate limiting GSH biosynthetic enzyme, were unrelated to GSH levels. To directly determine the role of MRP1 in GSSG transport, in vitro studies were conducted examining the effects of MRP1 inhibitors MK571 and verapamil on GSSG efflux. Both compounds resulted in significant but not complete inhibition (20-53%) of GSSG efflux from cells. Overall, these findings support a role for MPR1 in the regulation of erythrocyte GSH levels through the transport and elimination of GSSG from cells.  相似文献   

12.
The amount of glutathione present in hepatic protein mixed disulfides was determined to be 20–30 nmole/g liver. This was established using two specific enzymatic methods: (a) the coupled assay with DTNB and glutathione (GSSG) reductase and (b) a newly developed test using GSH transferase and 1-chloro-2,4-dinitrobenzene for the estimation of GSH released from proteins after borohydride treatment; further, these results were confirmed by HPLC analysis. Thus, authentic glutathione makes up only 2–6% of the value for total protein mixed disulfides. The latter were determined with the generally employed o-phthalaldehyde assay, which is not necessarily specific for GSH. The amount of glutathione mixed disulfides depends linearly on the content of glutathione disulfide in the liver cell in the range studied. By increasing the GSSG levels from 20 to about 60 nmole/g liver with paraquat, nitrofurantoin or t-butyl hydroperoxide, glutathione protein mixed disulfides are increased by a similar amount.  相似文献   

13.
Aqueous solution of S-nitrosoglutathione (GSNO) underwent spontaneous chemical transformation that generated several glutathione derivatives including glutathione sulfonic acid (GSO3H), glutathione disulfide S-oxide (GS(O)SG), glutathione disulfide S-dioxide, and glutathione disulfide. Surprisingly, GS(O)SG (also called glutathione thiosulfinate), which was not identified as a metabolite of GSNO previously, was one of the major products derived from GSNO. This compound was very reactive toward any thiol and the reaction product was a mixed disulfide. The rate of reaction of GS(O)SG with 5-mercapto-2-nitro-benzoate was nearly 20-fold faster than that of GSNO. The mechanism for the formation of GS(O)SG was believed to involve the sulfenic acid (GSOH) and thiosulfinamide (GS(O)NH2) intermediates; the former underwent self-condensation and the latter reacted with GSH to form GS(O)SG. Many reactive oxygen and nitrogen species were also capable of oxidizing GSH or GSSG to form GS(O)SG, which likely played a central role in integrating both the oxidative and nitrosative cellular responses through thionylation of thiols. Treatments of rat brain tissue slices with oxidants resulted in an enhanced thionylation of proteins with a concomitant increase in cellular level of GS(O)SG, suggesting that this compound might play a second messenger role for stimuli that produced a variety of oxidative species.  相似文献   

14.
Studies were conducted with mallard (Anas platyrhynchos) ducklings to determine the effects of excess dietary selenium (Se) on hepatic glutathione concentration and associated enzymes, and lipid peroxidation. Day-old ducklings were fed 0.1, 10, 20, or 40 ppm Se as seleno-DL-methionine or sodium selenite for 6 wk. Selenium from selenomethionine accumulated in a dose-dependent manner in the liver, resulting in a decrease in the concentration of hepatic-reduced glutathione (GSH) and total hepatic thiols (SH). These effects were accompanied by a dose-dependent increase in the ratio of oxidized glutathione (GSSG) to GSH, and an increase in malondialdehyde concentration as evidence of lipid peroxidation. Hepatic and plasma GSH peroxidase activity was initially elevated at 10 ppm Se as selenomethionine, whereas GSSG reductase activity was elevated at higher dietary concentrations of Se. Selenium from sodium selenite accumulated in the liver to an apparent maximum at 10 ppm in the diet, resulting in an increase in hepatic GSH and GSSG accompanied by a small decrease in total hepatic SH. Sodium selenite resulted in an increase in hepatic GSSG reductase activity at 10 ppm and in plasma GSSG reductase activity at 40 ppm. A small increase in lipid peroxidation occurred at 40 ppm. These findings indicate that excess dietary Se as selenomethionine has a more pronounced effect on hepatic glutathione metabolism and lipid peroxidation in ducklings than does selenite, which may be related to the pattern of accumulation. Effects of Se as selenite appear to be less pronounced in ducklings than reported in laboratory rodents. The effects of selenomethionine, which occurs in vegetation, are of particular interest with respect to the health of wild aquatic birds in seleniferous locations.  相似文献   

15.
Several incidences of adverse effects on human health have been reported in many countries, due to consumption of edible oil adulterated with argemone oil (AO). The clinical manifestation of the disease is commonly referred to as epidemic dropsy. In the present study, we determined the relationship between redox potentials (E(h)) of glutathione/glutathione disulfide (GSH/GSSG), cysteine/cysteine disulfide (Cys/CySS) couples and non-enzymatic antioxidants such as alpha-tocopherol and ascorbic acid status in plasma of dropsy patients (n=14) from an outbreak of argemone oil poisoning in Lucknow (March, 2005), India. Depleted GSH (55%) and concomitant enhancement (163%) of plasma GSSG content was observed in patients (P<0.05). Furthermore, lower content of Cys (42%) and CySS (25%) was noticed in patients (P<0.05) when compared to control subjects. Eh GSH and Eh Cys values were shifted by +46 mV and +12 mV towards more oxidizing environment in patients (P<0.05). In addition, alpha-tocopherol and ascorbic acid contents were found to be depleted significantly (P<0.05) in plasma of patients (59-58%). The alterations in redox potentials and antioxidants in plasma, which are synthesized in liver, may be responsible for histopathological changes in hepatic tissue of patients showing swelling of hepatocytes, fluid accumulation in spaces of Desci along with mild kupfur cell hyperplasia. Over all the present study shows that redox state of GSH/GSSG and Cys/CySS pools become oxidized which inturn causes depletion of alpha-tocopherol and ascorbic acid, thus providing a strategy to distinguish pro-oxidant and antioxidant events in patients.  相似文献   

16.
Introduction:?The present study was designed to understand the effects of organophosphate (OP) insecticide and avicide fenthion on cellular redox status and the role of reduced glutathione (GSH) on fenthion toxicity in the liver and kidney of Oreochromis niloticus as a model organism. N-acetylcysteine (NAC) and buthionine sulfoximine (BSO) were injected intraperitoneally to fenthion-exposed fish as modulators of GSH metabolism. GSH redox status, GSH-related enzyme activities, and thiobarbituric acid reactive substances (TBARS) contents were then measured spectrophotometrically at 24, 48, and 96 hours. To assess recovery from fenthion exposure, similar analyses were performed on fish transferred to non-treated water for 24, 48, and 96 hours.

Results:?Fenthion increased glutathione S-transferase (GST; EC 2.5.1.18) activity and caused changes in total GSH (tGSH), GSH and oxidized glutathione (GSSG) contents and glutathione peroxidase (GPx; EC 1.11.1.9) specific activity in the liver tissue over time. Increases observed in tGSH and GSSG contents at 24 hours were decreased by fenthion treatment at 96 hours. BSO caused a sharp decline in liver tGSH, GSH, and GSSG contents and an elevation in GST and γ-glutamyl transpeptidase (γ-GT; EC 2.3.2.2) enzyme activities. A significant decrease was observed in tGSH and GSH contents and, also, GST enzyme activities in the kidney at 48-hour fenthion treatment. On the contrary to the liver, a significant increase was observed in tGSH and GSH contents in the kidney by BSO injection. NAC application eliminated the decreasing effects of fenthion on GST activity in this tissue. NAC injection caused decreases in lipid peroxidation (LPO) levels. Decline in tGSH and GSH contents were maintained in the liver during the recovery period, and elevations in LPO levels in the kidney were observed during the same period.

Conclusions:?In conclusion, tissue-specific and time-dependent GSH redox status disturbance of fenthion were observed. BSO revealed the significance of GST-mediated GSH conjugation on the detoxification process of fenthion. NAC seemed useful to avoid the fenthion-related oxidative toxicity.  相似文献   

17.
An improved spectrophotometric procedure for oxidized and reduced glutathione determination in erythrocytes is described. The method is based upon a reaction using Ellman's reagent. It gave recoveries of 99 and 90% for both GSH and GSSG. The use of oxidized glutathione as an internal standard makes it accurate for simultaneous assay. The method offers the advantage of not having to use alkylation products to prevent oxidation of GSH during protein precipitation. Data are presented to demonstrate reliability and simplicity of rapid estimation of GSH and GSSG.  相似文献   

18.
Prospective type 1 and type 2 disulfides of Keap1 protein   总被引:1,自引:0,他引:1  
Experiments were carried out to detect cysteine residues on human Keap1 protein that may be sensors of oxidative stress that gives rise to changes in the GSH/GSSG redox couple. Human Keap1 protein, at a final concentration of 6 microM, was incubated for two hours in aqueous buffer containing 0.010 M GSH, pH 8, in an argon atmosphere. Subsequently, excess iodoacetamide and trypsin were added to generate a peptide map effected by LCMS analysis. Peptides containing all 27 carboxamidomethylated cysteines were identified. Replacement of GSH by 0.010 M GSSG yielded a map in which 13 of the original carboxamidomethylated peptides were unperturbed, while other caboxamidomethylated cysteine-containing peptides were undetected, and a number of new cysteine-containing peptide peaks were observed. By mass analysis, and in some cases, by isolation, reduction, carboxamidomethylation, and reanalysis, these were identified as S-glutathionylated (Type 1) or Cys-Cys (Type 2) disulfides. Such peptides derived from the N-terminal, dimerization, central linker, Kelch repeat and C-terminal domains of Keap1. Experiments were carried out in which Keap1 was incubated similarly but in the presence of various GSH/GSSG ratios between 100 and 1 ([GSH + GSSG] = 0.010 M), with subsequent caraboxamidomethylation and trypsinolysis to determine differences in sensitivities of the different cysteines to the type 1 and type 2 modifications. Cysteines most sensitive to S-glutathionylation include Cys77, Cys297, Cys319, Cys368, and Cys434, while cysteine disulfides most readily formed are Cys23-Cys38 and Cys257-Cys297. The most reducing conditions at which these modifications are at GSH/GSSG = 10, which computes to an oxidation potential of E h = -268.5 mV, a physiologically relevant value. Under somewhat more oxidizing, but still physiologically relevant, conditions, GSH/GSSG = 1 ( E h = -231.1 mV), a Cys319-Cys319 disulfide is detected far from the dimerization domain of the Keap1 homodimer. The potential impact on protein structure of the glutathionylation of Cys434 and Cys368, the two modified residues in the Kelch repeat domain, was analyzed by docking and energy minimizations of glutathione residues attached to the Kelch repeat domain, whose coordinates are known. The energy minimizations indicated marked alterations in structure with a substantial constriction of Neh2 binding domain of the Keap1 Kelch repeat domain. This alteration appears to be enforced by an extended hydrogen-bonding network between residues on the glutathione moiety attached to Cys434 and amino acid side chains that have been shown to be essential for repression of Nrf2 by Keap1. The modifications of Keap1 detected in the present study are discussed in the context of previous work of others who have examined the sensitivity of cysteines on Keap1 to electrophile assault.  相似文献   

19.
Factors implicated in changes of the hepatic glutathione concentration following acute ethanol administration were examined in rats. Adult female rats were treated with either ethanol (4 g/kg, p.o.) or an isocaloric glucose solution. The hepatic reduced glutathione (GSH) concentration decreased rapidly after ethanol intake with a maximum diminution, approximately 50% of the control value, being observed at t = 6 h. The hepatic GSH concentration gradually increased, and finally rebounded at 24 h after ethanol ingestion. The dose of ethanol induced a transient increase in the oxidized glutathione (GSSG)/GSH ratio, which was associated with a significant reduction in GSH rather than elevation in GSSG [corrected]. The activity of gamma-glutamylcysteine synthetase (GCS), the rate-limiting enzyme for glutathione synthesis, and the cysteine concentration in liver were also measured. The GCS activity was depressed to approximately 80% of the control value at t = 2.5 h followed by rapid recovery, but no difference in the hepatic cysteine concentration between control and ethanol treated rats was observed for 24 h, suggesting that the reduction in glutathione synthesis may not play a major role in the significant depletion of this tripeptide in liver. The total glutathione concentration was measured both in prehepatic and posthepatic inferior vena cava blood. The glutathione concentration in posthepatic blood was approximately twice as high as that of prehepatic blood in control rats. Acute ethanol administration doubled the elevation of glutathione in posthepatic blood measured at t = 2.5 h. The sinusoidal efflux of glutathione estimated from the increase in blood glutathione concentration was greater than the total amount of its depletion in the liver of rats treated with ethanol. The results suggest that in the liver of rats treated acutely with ethanol, glutathione efflux plays the most important role in the reduction of this tripeptide, which would be aggravated by a transient decrease in glutathione synthesis and by increased consumption in association with its metabolism.  相似文献   

20.
Contrary to a previous report [J. Viña, R. Hems and H. A. Krebs, Biochem. J.170, 627 (1978)], we have observed that incubation of isolated rat hepatocytes in a medium containing high concentrations of cysteine did not deplete intracellular glutathione (GSH), but instead caused a net increase of GSH. Hepatocyte-dependent accumulation of the mixed disulfide of cysteine and GSH (CYSSG) in incubation media within a 2-hr period was increased several-fold in medium containing cysteine or cystine compared to methionine-containing medium. Hepatocytes (106 cells/ml) placed in medium containing normal levels of cysteine, cystine, or methionine established about a 1:1 ratio of extracellular GSH to GSSG at a concentration of about 6μM each. These results indicate a possible intracellular-extracellular relationship for glutathione and an intracellular response to the extracellular status of glutathione and cyst(e)ine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号