首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
致心律失常性右室心肌病(arrhythmogenic right ventricular cardiomyopathy,ARVC)是青年猝死的常见原因,自19世纪70年代末至今,人们对该病的认识不断加深、更新,本文通过对ARVC疾病的定义、在心肌病分类中的发展以及诊断标准等的梳理,重点综述了近年ARVC心血管磁共振评价的最新进展。  相似文献   

2.
Many of the structures and parameters that are detected, measured and reported in cardiovascular magnetic resonance (CMR) have at least some properties that are fractal, meaning complex and self-similar at different scales. To date however, there has been little use of fractal geometry in CMR; by comparison, many more applications of fractal analysis have been published in MR imaging of the brain.This review explains the fundamental principles of fractal geometry, places the fractal dimension into a meaningful context within the realms of Euclidean and topological space, and defines its role in digital image processing. It summarises the basic mathematics, highlights strengths and potential limitations of its application to biomedical imaging, shows key current examples and suggests a simple route for its successful clinical implementation by the CMR community.By simplifying some of the more abstract concepts of deterministic fractals, this review invites CMR scientists (clinicians, technologists, physicists) to experiment with fractal analysis as a means of developing the next generation of intelligent quantitative cardiac imaging tools.  相似文献   

3.

Background

Computer simulations are important for validating novel image acquisition and reconstruction strategies. In cardiovascular magnetic resonance (CMR), numerical simulations need to combine anatomical information and the effects of cardiac and/or respiratory motion. To this end, a framework for realistic CMR simulations is proposed and its use for image reconstruction from undersampled data is demonstrated.

Methods

The extended Cardiac-Torso (XCAT) anatomical phantom framework with various motion options was used as a basis for the numerical phantoms. Different tissue, dynamic contrast and signal models, multiple receiver coils and noise are simulated. Arbitrary trajectories and undersampled acquisition can be selected. The utility of the framework is demonstrated for accelerated cine and first-pass myocardial perfusion imaging using k-t PCA and k-t SPARSE.

Results

MRXCAT phantoms allow for realistic simulation of CMR including optional cardiac and respiratory motion. Example reconstructions from simulated undersampled k-t parallel imaging demonstrate the feasibility of simulated acquisition and reconstruction using the presented framework. Myocardial blood flow assessment from simulated myocardial perfusion images highlights the suitability of MRXCAT for quantitative post-processing simulation.

Conclusion

The proposed MRXCAT phantom framework enables versatile and realistic simulations of CMR including breathhold and free-breathing acquisitions.  相似文献   

4.

Background

Current myocardial perfusion measurements make use of an ECG-gated pulse sequence to track the uptake and washout of a gadolinium-based contrast agent. The use of a gated acquisition is a problem in situations with a poor ECG signal. Recently, an ungated perfusion acquisition was proposed but it is not known how accurately quantitative perfusion estimates can be made from such datasets that are acquired without any triggering signal.

Methods

An undersampled saturation recovery radial turboFLASH pulse sequence was used in 7 subjects to acquire dynamic contrast-enhanced images during free-breathing. A single saturation pulse was followed by acquisition of 4–5 slices after a delay of ~40 msec. This was repeated without pause and without any type of gating. The same pulse sequence, with ECG-gating, was used to acquire gated data as a ground truth. An iterative spatio-temporal constrained reconstruction was used to reconstruct the undersampled images. After reconstruction, the ungated images were retrospectively binned (“self-gated”) into two cardiac phases using a region of interest based technique and deformably registered into near-systole and near-diastole. The gated and the self-gated datasets were then quantified with standard methods.

Results

Regional myocardial blood flow estimates (MBFs) obtained using self-gated systole (0.64 ± 0.26 ml/min/g), self-gated diastole (0.64 ± 0.26 ml/min/g), and ECG-gated scans (0.65 ± 0.28 ml/min/g) were similar. Based on the criteria for interchangeable methods listed in the statistical analysis section, the MBF values estimated from self-gated and gated methods were not significantly different.

Conclusion

The self-gated technique for quantification of regional myocardial perfusion matched ECG-gated perfusion measurements well in normal subjects at rest. Self-gated systolic perfusion values matched ECG-gated perfusion values better than did diastolic values.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0109-1) contains supplementary material, which is available to authorized users.  相似文献   

5.

Background

Assessment of longitudinal function with cardiovascular magnetic resonance (CMR) is limited to measurement of systolic excursion of the mitral annulus (MAPSE) or elaborate strain imaging modalities. The aim of this study was to develop a fast assessable parameter for the measurement of long axis strain (LAS) with CMR.

Methods

40 healthy volunteers and 125 patients with different forms of cardiomyopathy were retrospectively analyzed. Four different approaches for the assessment of LAS with CMR measuring the distance between the LV apex and a line connecting the origins of the mitral valve leaflets in enddiastole and endsystole were evaluated. Values for LAS were calculated according to the strain formula.

Results

LAS derived from the distance of the epicardial apical border to the midpoint of the line connecting the mitral valve insertion points (LAS-epi/mid) proved to be the most reliable parameter for the assessment of LAS among the different approaches.LAS-epi/mid displayed the highest sensitivity (81.6 %) and specificity (97.5 %), furthermore showing the best correlation with feature tracking (FTI) derived transmural longitudinal strain (r = 0.85). Moreover, LAS-epi/mid was non-inferior to FTI in discriminating controls from patients (Area under the curve (AUC) = 0.95 vs. 0.94, p = NS). The time required for analysis of LAS-epi/mid was significantly shorter than for FTI (67 ± 8 s vs. 180 ± 14 s, p < 0.0001). Additionally, LAS-epi/mid performed significantly better than MAPSE (Delta AUC = 0.09; p < 0.005) and the ejection fraction (Delta AUC = 0.11; p = 0.0002).Reference values were derived from 234 selected healthy volunteers. Mean value for LAS-epi/mid was −17.1 ± 2.3 %. Mean values for men were significantly lower compared to women (−16.5 ± 2.2 vs. -17.9 ± 2.1 %; p < 0.0001), while LAS decreased with age.

Conclusions

LAS-epi/mid is a novel and fast assessable parameter for the analysis of global longitudinal function with non-inferiority compared to transmural longitudinal strain.  相似文献   

6.

Background

Wave intensity analysis, traditionally derived from pressure and velocity data, can be formulated using velocity and area. Flow-velocity and area can both be derived from high-resolution phase-contrast cardiovascular magnetic resonance (PC-CMR). In this study, very high temporal resolution PC-CMR data is processed using an integrated and semi-automatic technique to derive wave intensity.

Methods

Wave intensity was derived in terms of area and velocity changes. These data were directly derived from PC-CMR using a breath-hold spiral sequence accelerated with sensitivity encoding (SENSE). Image processing was integrated in a plug-in for the DICOM viewer OsiriX, including calculations of wave speed and wave intensity. Ascending and descending aortic data from 15 healthy volunteers (30 ± 6 years) data were used to test the method for feasibility, and intra- and inter-observer variability. Ascending aortic data were also compared with results from 15 patients with coronary heart disease (61 ± 13 years) to assess the clinical usefulness of the method.

Results

Rapid image acquisition (11 s breath-hold) and image processing was feasible in all volunteers. Wave speed was physiological (5.8 ± 1.3 m/s ascending aorta, 5.0 ± 0.7 m/s descending aorta) and the wave intensity pattern was consistent with traditionally formulated wave intensity. Wave speed, peak forward compression wave in early systole and peak forward expansion wave in late systole at both locations exhibited overall good intra- and inter-observer variability. Patients with coronary heart disease had higher wave speed (p <0.0001), and lower forward compression wave (p <0.0001) and forward expansion wave (p <0.0005) peaks. This difference is likely related to the older age of the patients’ cohort, indicating stiffer aortas, as well as compromised ventricular function due to their underlying condition.

Conclusion

A non-invasive, semi-automated and reproducible method for performing wave intensity analysis is presented. Its application is facilitated by the use of a very high temporal resolution spiral sequence. A formulation of wave intensity based on area change has also been proposed, involving no assumptions about the cross-sectional shape of the vessel.  相似文献   

7.
Oxygenation-sensitive cardiovascular magnetic resonance (CMR) is a non-contrast technique that allows the non-invasive assessment of myocardial oxygenation. It capitalizes on the fact that deoxygenated hemoglobin in blood can act as an intrinsic contrast agent, changing proton signals in a fashion that can be imaged to reflect the level of blood oxygenation. Increases in O2 saturation increase the BOLD imaging signal (T2 or T2*), whereas decreases diminish it. This review presents the basic concepts and limitations of the BOLD technique, and summarizes the preclinical and clinical studies in the assessment of myocardial oxygenation with a focus on recent advances. Finally, it provides future directions and a brief look at emerging techniques of this evolving CMR field.  相似文献   

8.
UK Biobank is a prospective cohort study with 500,000 participants aged 40 to 69. Recently an enhanced imaging study received funding. Cardiovascular magnetic resonance (CMR) will be part of a multi-organ, multi-modality imaging visit in 3–4 dedicated UK Biobank imaging centres that will acquire and store imaging data from 100,000 participants (subject to successful piloting). In each of UK Biobank’s dedicated bespoke imaging centres, it is proposed that 15–20 participants will undergo a 2 to 3 hour visit per day, seven days a week over a period of 5–6 years. The imaging modalities will include brain MRI at 3 Tesla, CMR and abdominal MRI at 1.5 Tesla, carotid ultrasound and DEXA scans using carefully selected protocols. We reviewed the rationale, challenges and proposed approaches for concise phenotyping using CMR on such a large scale. Here, we discuss the benefits of this imaging study and review existing and planned population based cardiovascular imaging in prospective cohort studies. We will evaluate the CMR protocol, feasibility, process optimisation and costs. Procedures for incidental findings, quality control and data processing and analysis are also presented. As is the case for all other data in the UK Biobank resource, this database of images and related information will be made available through UK Biobank’s Access Procedures to researchers (irrespective of their country of origin and whether they are academic or commercial) for health-related research that is in the public interest.  相似文献   

9.

Background

Although echocardiography is used as a first line imaging modality, its accuracy to detect acute and chronic myocardial infarction (MI) in relation to infarct characteristics as assessed with late gadolinium enhancement cardiovascular magnetic resonance (LGE-CMR) is not well described.

Methods

One-hundred-forty-one echocardiograms performed in 88 first acute ST-elevation MI (STEMI) patients, 2 (IQR1-4) days (n = 61) and 102 (IQR92-112) days post-MI (n = 80), were pooled with echocardiograms of 36 healthy controls. 61 acute and 80 chronic echocardiograms were available for analysis (53 patients had both acute and chronic echocardiograms). Two experienced echocardiographers, blinded to clinical and CMR data, randomly evaluated all 177 echocardiograms for segmental wall motion abnormalities (SWMA). This was compared with LGE-CMR determined infarct characteristics, performed 104 ± 11 days post-MI. Enhancement on LGE-CMR matched the infarct-related artery territory in all patients (LAD 31%, LCx 12% and RCA 57%).

Results

The sensitivity of echocardiography to detect acute MI was 78.7% and 61.3% for chronic MI; specificity was 80.6%. Undetected MI were smaller, less transmural, and less extensive (6% [IQR3-12] vs. 15% [IQR9-24], 50 ± 14% vs. 61 ± 15%, 7 ± 3 vs. 9 ± 3 segments, p < 0.001 for all) and associated with higher left ventricular ejection fraction (LVEF) and non-anterior location as compared to detected MI (58 ± 5% vs. 46 ± 7%, p < 0.001 and 82% vs. 63%, p = 0.03). After multivariate analysis, LVEF and infarct size were the strongest independent predictors of detecting chronic MI (OR 0.78 [95%CI 0.68-0.88], p < 0.001 and OR 1.22 [95%CI0.99-1.51], p = 0.06, respectively). Increasing infarct transmurality was associated with increasing SWMA (p < 0.001).

Conclusions

In patients presenting with STEMI, and thus a high likelihood of SWMA, the sensitivity of echocardiography to detect SWMA was higher in the acute than the chronic phase. Undetected MI were smaller, less extensive and less transmural, and associated with non-anterior localization and higher LVEF. Further work is needed to assess the diagnostic accuracy in patients with non-STEMI.  相似文献   

10.

Background

Myocardial blood flow (MBF) varies throughout the cardiac cycle in response to phasic changes in myocardial tension. The aim of this study was to determine if quantitative myocardial perfusion imaging with cardiovascular magnetic resonance (CMR) can accurately track physiological variations in MBF throughout the cardiac cycle.

Methods

30 healthy volunteers underwent a single stress/rest perfusion CMR study with data acquisition at 5 different time points in the cardiac cycle (early-systole, mid-systole, end-systole, early-diastole and end-diastole). MBF was estimated on a per-subject basis by Fermi-constrained deconvolution. Interval variations in MBF between successive time points were expressed as percentage change. Maximal cyclic variation (MCV) was calculated as the percentage difference between maximum and minimum MBF values in a cardiac cycle.

Results

At stress, there was significant variation in MBF across the cardiac cycle with successive reductions in MBF from end-diastole to early-, mid- and end-systole, and an increase from early- to end-diastole (end-diastole: 4.50 ± 0.91 vs. early-systole: 4.03 ± 0.76 vs. mid-systole: 3.68 ± 0.67 vs. end-systole 3.31 ± 0.70 vs. early-diastole: 4.11 ± 0.83 ml/g/min; all p values <0.0001). In all cases, the maximum and minimum stress MBF values occurred at end-diastole and end-systole respectively (mean MCV = 26 ± 5%). There was a strong negative correlation between MCV and peak heart rate at stress (r = −0.88, p < 0.001). The largest interval variation in stress MBF occurred between end-systole and early-diastole (24 ± 9% increase). At rest, there was no significant cyclic variation in MBF (end-diastole: 1.24 ± 0.19 vs. early-systole: 1.28 ± 0.17 vs.mid-systole: 1.28 ± 0.17 vs. end-systole: 1.27 ± 0.19 vs. early-diastole: 1.29 ± 0.19 ml/g/min; p = 0.71).

Conclusion

Quantitative perfusion CMR can be used to non-invasively assess cyclic variations in MBF throughout the cardiac cycle. In this study, estimates of stress MBF followed the expected physiological trend, peaking at end-diastole and falling steadily through to end-systole. This technique may be useful in future pathophysiological studies of coronary blood flow and microvascular function.  相似文献   

11.

Background

Mitochondrial myopathies (MM) are a heterogeneous group of inherited conditions resulting from a primary defect in the mitochondrial respiratory chain with consecutively impaired cellular energy metabolism. Small sized studies using mainly electrocardiography (ECG) and echocardiography have revealed cardiac abnormalities ranging from conduction abnormalities and arrhythmias to hypertrophic or dilated cardiomyopathy in these patients. Recently, characteristic patterns of cardiac involvement were documented by cardiovascular magnetic resonance (CMR) in patients with chronic progressive external ophthalmoplegia (CPEO)/Kearns-Sayre syndrome (KSS) and with mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS). The present study aimed to characterize the prevalence and pattern of cardiac abnormalities and to test the additional diagnostic value of CMR in this patient population. The hypothesis that different neuromuscular MM syndromes present with different cardiac disease phenotypes was evaluated.

Methods

Sixty-four MM patients (50 ± 15 years, 44 % male) and 25 matched controls (52 ± 14 years, 36 % male) prospectively underwent cardiac evaluations including CMR (comprising cine- and late-gadolinium-enhancement (LGE) imaging). Based on the neuromuscular phenotype and genotype, the patients were grouped: a) CPEO/KSS (N = 33); b) MELAS/–like (N = 11); c) myoclonic epilepsy with ragged-red fibers (MERRF) (N = 3) and d) other non-specific MM forms (N = 17).

Results

Among the 64 MM patients, 34 (53 %) had at least one abnormal CMR finding: 18 (28 %) demonstrated an impaired left ventricular ejection-fraction (LV-EF <60 %), 14 (22 %) had unexplained LV hypertrophy and 21 (33 %) were LGE-positive. Compared to controls, MM patients showed significantly higher maximal wall thickness (10 ± 3 vs. 8 ± 2 mm, p = 0.005) and concentricity (LV mass to end-diastolic volume: 0.84 ± 0.27 vs. 0.67 ± 0.11, p < 0.0001) with frequent presence of non-ischemic LGE (30 % vs. 0 %, p = 0.001). CPEO/KSS showed a predominantly intramural pattern of LGE mostly confined to the basal LV inferolateral wall (8/10; 80 %) in addition to a tendency toward concentric remodelling. MELAS/-like patients showed the highest frequency of cardiac disease (in 10/11 (91 %)), a mostly concentric LV hypertrophy (6/9; 67 %) with or without LV systolic dysfunction and a predominantly focal, patchy LGE equally distributed among LV segments (8/11; 73 %). Patients with MERRF and non-specific MM had no particular findings. Pathological CMR findings indicating cardiac involvement were detected significantly more often than pathological ECG results or elevated cardiac serum biomarkers (34 (53 %) vs. 18 (28 %) vs. 21 (33 %); p = 0.008).

Conclusion

Cardiac involvement is a frequent finding in MM patients – and particularly present in KSS/CPEO as well as MELAS/-like patients. Despite a high variability in clinical presentation, CPEO/KSS patients typically show an intramural pattern of LGE in the basal inferolateral wall whereas MELAS patients are characterized by overt concentric hypertrophy and a rather unique, focally accentuated and diffusely distributed LGE.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0145-x) contains supplementary material, which is available to authorized users.  相似文献   

12.
A comprehensive review is undertaken of the methods available for 3D whole-heart first-pass perfusion (FPP) and their application to date, with particular focus on possible acceleration techniques. Following a summary of the parameters typically desired of 3D FPP methods, the review explains the mechanisms of key acceleration techniques and their potential use in FPP for attaining 3D acquisitions. The mechanisms include rapid sequences, non-Cartesian k-space trajectories, reduced k-space acquisitions, parallel imaging reconstructions and compressed sensing. An attempt is made to explain, rather than simply state, the varying methods with the hope that it will give an appreciation of the different components making up a 3D FPP protocol. Basic estimates demonstrating the required total acceleration factors in typical 3D FPP cases are included, providing context for the extent that each acceleration method can contribute to the required imaging speed, as well as potential limitations in present 3D FPP literature. Although many 3D FPP methods are too early in development for the type of clinical trials required to show any clear benefit over current 2D FPP methods, the review includes the small but growing quantity of clinical research work already using 3D FPP, alongside the more technical work. Broader challenges concerning FPP such as quantitative analysis are not covered, but challenges with particular impact on 3D FPP methods, particularly with regards to motion effects, are discussed along with anticipated future work in the field.  相似文献   

13.

Background

Dynamic first pass contrast-enhanced myocardial perfusion is the standard CMR method for the estimation of myocardial blood flow (MBF) and MBF reserve in man, but it is challenging in rodents because of the high temporal and spatial resolution requirements. Hyperemic first pass myocardial perfusion CMR during vasodilator stress in mice has not been reported.

Methods

Five C57BL/6 J mice were scanned on a clinical 3.0 Tesla Achieva system (Philips Healthcare, Netherlands). Vasodilator stress was induced via a tail vein catheter with an injection of dipyridamole. Dynamic contrast-enhanced perfusion imaging (Gadobutrol 0.1 mmol/kg) was based on a saturation recovery spoiled gradient echo method with 10-fold k-space and time domain undersampling (k-t PCA). One week later the mice underwent repeat anaesthesia and LV injections of fluorescent microspheres at rest and at stress. Microspheres were analysed using confocal microscopy and fluorescence-activated cell sorting.

Results

Mean MBF at rest measured by Fermi-function constrained deconvolution was 4.1 ± 0.5 ml/g/min and increased to 9.6 ± 2.5 ml/g/min during dipyridamole stress (P = 0.005). The myocardial perfusion reserve was 2.4 ± 0.54. The mean count ratio of stress to rest microspheres was 2.4 ± 0.51 using confocal microscopy and 2.6 ± 0.46 using fluorescence. There was good agreement between cardiovascular magnetic resonance CMR and microspheres with no significant difference (P = 0.84).

Conclusion

First-pass myocardial stress perfusion CMR in a mouse model is feasible at 3 Tesla. Rest and stress MBF values were consistent with existing literature and perfusion reserve correlated closely to microsphere analysis. Data were acquired on a 3 Tesla scanner using an approach similar to clinical acquisition protocols, potentially facilitating translation of imaging findings between rodent and human studies.  相似文献   

14.

Background

Serial surveillance endomyocardial biopsies are performed in patients who have recently undergone heart transplantation in order to detect acute cardiac allograft rejection (ACAR) before symptoms occur, however the biopsy process is associated with a number of limitations. This study aimed to prospectively and longitudinally evaluate the performance of multiparametric cardiovascular magnetic resonance (CMR) for detecting and monitoring ACAR in the early phase post-transplant, and characterize graft recovery following transplantation.

Methods

All patients receiving a heart transplant at a single UK centre over a period of 25 months were approached within one month of transplantation. Multiparametric CMR was prospectively performed on the same day as biopsy on four separate occasions (6 weeks, 10 weeks, 15 weeks and 20 weeks post-transplant). CMR included assessment of global and regional ventricular function, myocardial tissue characterization (T1 mapping, T2 mapping, extracellular volume, LGE) and pixel-wise absolute myocardial blood flow quantification. CMR parameters were compared with biopsy findings. As is standard, grade 2R or higher ACAR was considered significant.

Results

88 CMR-matched biopsies were performed in 22 patients. Eight (9%) biopsies in 5 patients demonstrated significant ACAR. Significant ACAR was associated with a reduction in circumferential strain (−12.7 ± 2.5% vs. -13.7 ± 3.6%, p = 0.047) but there was considerable overlap between groups. Whilst trends were observed between ACAR and proposed CMR markers of oedema, particularly after adjusting for primary graft dysfunction, differences were not significant. Significant improvements were seen in markers of graft structure and contractility, oedema and microvascular function over the period studied, although few parameters normalised.

Conclusions

This study provides novel insight into the myocardial injury associated with transplantation, and its recovery, however multiparametric CMR was not able to accurately detect ACAR during the early phase post-transplantation.  相似文献   

15.

Background

Needle access or drainage of pericardial effusion, especially when small, entails risk of bystander tissue injury or operator uncertainty about proposed trajectories. Cardiovascular magnetic resonance (CMR) might allow enhanced imaging guidance.

Methods and results

We used real-time CMR to guide subxiphoid pericardial access in naïve swine using commercial 18G titanium puncture needles, which were exchanged for pericardial catheters. To test the value of CMR needle pericardiocentesis, we also created intentional pericardial effusions of a range of volumes, via a separate transvenous-transatrial catheter. We performed these procedures in 12 animals.Pericardiocentesis was performed in 2:47 ± 1:43 minutes; pericardial access was performed in 1:40 ± 4:34 minutes. The procedure was successful in all animals. Moderate and large effusions required only one needle pass. There were no complications, including pleural, hepatic or myocardial transit.

Conclusions

CMR guided pericardiocentesis is attractive because the large field of view and soft tissue imaging depict global anatomic context in arbitrary planes, and allow the operator to plan trajectories that limit inadvertent bystander tissue injury. More important, CMR provides continuous visualization of the needle and target throughout the procedure. Using even passive needle devices, CMR enabled rapid pericardial needle access and drainage. We believe this experience supports clinical testing of real-time CMR guided needle access or drainage of the pericardial space. We suspect this would be especially helpful in “difficult” pericardial access, for example, in distorted thoracic anatomy or loculated effusion.  相似文献   

16.

Background

Regadenoson is a vasodilator stress agent that selectively activates the A2A receptor. Compared to adenosine, regadenoson is easier to administer and results in fewer side effects. Although extensively studied in patients undergoing nuclear perfusion imaging (MPI), its use for perfusion cardiovascular magnetic resonance (CMR) is not well described. The aim of this study was to determine the prognostic value of a normal regadenoson perfusion CMR in patients with known or suspected coronary artery disease.

Methods

Patients with known or suspected coronary artery disease were prospectively enrolled to receive perfusion CMR (Philips 1.5 T) with regadenoson. Three short-axis slices of the left ventricle (LV) were obtained during first pass of contrast using a hybrid GRE-EPI pulse sequence (0.075 mmol/kg Gadolinium-DTPA-BMA at 4 ml/sec). Imaging was performed 1 minute after injection of regadenoson (0.4 mg) and repeated 15 minutes after reversal of hyperemia with aminophylline (125 mg). Perfusion defects were documented if they persisted for ≥2 frames after peak enhancement of the LV cavity. CMR was considered abnormal if there was a resting wall motion abnormality, decreased LVEF (<40%), presence of LGE, or the presence of a perfusion defect during hyperemia. All patients were followed for a minimum of 1 year for major adverse cardiovascular event (MACE) defined as coronary revascularization, non-fatal myocardial infarction, and cardiovascular death.

Results

149 patients were included in the final analysis. Perfusion defects were noted in 43/149 (29%) patients; 59/149 (40%) had any abnormality on CMR. During the mean follow-up period of 24 ± 9 months, 17/149 (11.4%) patients experienced MACE. The separation in the survival distributions for those with perfusion defects and those without perfusion defects was highly significant (log-rank p = 0.0001). When the absence of perfusion defects was added to the absence of other resting CMR abnormalities, the negative predictive value improved from 96% to 99%.

Conclusion

Regadenoson perfusion CMR provides high confidence for excellent prognosis in patients with normal perfusion.  相似文献   

17.

Background

Despite increasing clinical use, there is limited data regarding regadenoson in stress perfusion cardiovascular magnetic resonance (CMR). In particular, given its long half-life the optimal stress protocol remains unclear. Although Myocardial Perfusion Reserve (MPR) may provide additive prognostic information, current techniques for its measurement are cumbersome and challenging for routine clinical practice.The aims of this study were: 1) To determine the feasibility of MPR quantification during regadenoson stress CMR by measurement of Coronary Sinus (CS) flow; and 2) to investigate the role of aminophylline reversal during regadenoson stress-CMR.

Methods

117 consecutive patients with possible myocardial ischemia were prospectively enrolled. Perfusion imaging was performed at 1 minute and 15 minutes after administration of 0.4 mg regadenoson. A subgroup of 41 patients was given aminophylline (100 mg) after stress images were acquired. CS flow was measured using phase-contrast imaging at baseline (pre CS flow), and immediately after the stress (peak CS flow) and rest (post CS flow) perfusion images.

Results

CS flow measurements were obtained in 92% of patients with no adverse events. MPR was significantly underestimated when calculated as peak CS flow/post CS flow as compared to peak CS flow/pre CS flow (2.43 ± 0.20 vs. 3.28 ± 0.32, p = 0.03). This difference was abolished when aminophylline was administered (3.35 ± 0.44 vs. 3.30 ± 0.52, p = 0.95). Impaired MPR (peak CS flow/pre CS flow <2) was associated with advanced age, diabetes, current smoking and higher Framingham risk score.

Conclusions

Regadenoson stress CMR with MPR measurement from CS flow can be successfully performed in most patients. This measurement of MPR appears practical to perform in the clinical setting. Residual hyperemia is still present even 15 minutes after regadenoson administration, at the time of resting-perfusion acquisition, and is completely reversed by aminophylline. Our findings suggest routine aminophylline administration may be required when performing stress CMR with regadenoson.  相似文献   

18.

Background

Following acute myocardial infarction (AMI), microvascular obstruction (MO) and intramyocardial hemorrhage (IMH) adversely affect left ventricular remodeling and prognosis independently of infarct size. Whether this is due to infarct zone remodeling, changes in remote myocardium or other factors is unknown. We investigated the role of MO and IMH in recovery of contractility in infarct and remote myocardium.

Methods

Thirty-nine patients underwent cardiovascular magnetic resonance (CMR) with T2-weighted and T2* imaging, late gadolinium enhancement (LGE) and myocardial tagging at 2, 7, 30 and 90 days following primary percutaneous coronary intervention for AMI. Circumferential strain in infarct and remote zones was stratified by presence of MO and IMH.

Results

Overall, infarct zone strain recovered with time (p < 0.001). In the presence of MO with IMH and without IMH, epicardial strain recovered (p = 0.03, p < 0.01 respectively), but mid-myocardial or endocardial strain did not (mid-myocardium: p = 0.05, p = 0.12; endocardium: p = 0.27, p = 0.05, respectively). By day 90, infarcts with MO had more attenuated strain in all myocardial layers compared to infarcts without MO (p < 0.01); those with IMH were attenuated further (p < 0.01). Remote myocardial strain was similar across groups at all time-points (p > 0.2). Infarct transmural extent did not correlate with strain (p > 0.05 at each time point). In multivariable logistic regression, MO and IMH were the only significant independent predictors of attenuated 90-day infarct zone strain (p = 0.004, p = 0.011, respectively).

Conclusions

Strain improves within the infarct zone overall following reperfusion with or without MO or IMH. Mid-myocardial and endocardial infarct contractility is diminished in the presence of MO, and further in the presence of IMH. MO and IMH are greater independent predictors of infarct zone contractile recovery than infarct volume or transmural extent.  相似文献   

19.

Background

In Cardiovascular Magnetic Resonance (CMR), the synchronization of image acquisition with heart motion is performed in clinical practice by processing the electrocardiogram (ECG). The ECG-based synchronization is well established for MR scanners with magnetic fields up to 3 T. However, this technique is prone to errors in ultra high field environments, e.g. in 7 T MR scanners as used in research applications. The high magnetic fields cause severe magnetohydrodynamic (MHD) effects which disturb the ECG signal. Image synchronization is thus less reliable and yields artefacts in CMR images.

Methods

A strategy based on Independent Component Analysis (ICA) was pursued in this work to enhance the ECG contribution and attenuate the MHD effect. ICA was applied to 12-lead ECG signals recorded inside a 7 T MR scanner. An automatic source identification procedure was proposed to identify an independent component (IC) dominated by the ECG signal. The identified IC was then used for detecting the R-peaks. The presented ICA-based method was compared to other R-peak detection methods using 1) the raw ECG signal, 2) the raw vectorcardiogram (VCG), 3) the state-of-the-art gating technique based on the VCG, 4) an updated version of the VCG-based approach and 5) the ICA of the VCG.

Results

ECG signals from eight volunteers were recorded inside the MR scanner. Recordings with an overall length of 87 min accounting for 5457 QRS complexes were available for the analysis. The records were divided into a training and a test dataset. In terms of R-peak detection within the test dataset, the proposed ICA-based algorithm achieved a detection performance with an average sensitivity (Se) of 99.2%, a positive predictive value (+P) of 99.1%, with an average trigger delay and jitter of 5.8 ms and 5.0 ms, respectively. Long term stability of the demixing matrix was shown based on two measurements of the same subject, each being separated by one year, whereas an averaged detection performance of Se = 99.4% and +P = 99.7% was achieved.Compared to the state-of-the-art VCG-based gating technique at 7 T, the proposed method increased the sensitivity and positive predictive value within the test dataset by 27.1% and 42.7%, respectively.

Conclusions

The presented ICA-based method allows the estimation and identification of an IC dominated by the ECG signal. R-peak detection based on this IC outperforms the state-of-the-art VCG-based technique in a 7 T MR scanner environment.  相似文献   

20.
Morphological and functional parameters such as chamber size and function, aortic diameters and distensibility, flow and T1 and T2* relaxation time can be assessed and quantified by cardiovascular magnetic resonance (CMR). Knowledge of normal values for quantitative CMR is crucial to interpretation of results and to distinguish normal from disease. In this review, we present normal reference values for morphological and functional CMR parameters of the cardiovascular system based on the peer-reviewed literature and current CMR techniques and sequences.

Electronic supplementary material

The online version of this article (doi:10.1186/s12968-015-0111-7) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号