首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recent discovery of a large latent population of precursor cells in the dentate gyrus of adult mice led us to investigate whether activation of this population is regulated by synaptic activity, thereby explaining the observation that environmental signals can affect neurogenesis. Using a variety of stimulation protocols, we found that only a long-term potentiation (LTP)-inducing protocol activated the latent precursor pool, leading to increased neurogenesis in the dentate gyrus. LTP induced by high-frequency stimulation (HFS) of the perforant pathway in vivo produced a two-fold increase in the number of neurospheres cultured from the stimulated hippocampus, compared with the unstimulated hippocampus. No increase in neurosphere number or neurogenesis was observed when the HFS failed to induce LTP. These results show that LTP can activate latent neural precursor cells in the adult mouse dentate gyrus, thereby providing a direct mechanism for regulating activity-driven neurogenesis. In the future, it may be possible to utilize such learning- or stimulation-induced neurogenesis to overcome disorders characterized by neuronal loss.  相似文献   

2.
To determine whether exposure to fox odor alters granule neuron production, we examined proliferating cells and their progeny in the dentate gyrus of adult male rats exposed to trimethyl thiazoline, a component of fox feces. Additionally, to determine whether this effect is adrenal hormone-mediated, we examined animals exposed to fox odor after bilateral adrenalectomy and replacement with low levels of the endogenous glucocorticoid corticosterone. Stereologic analyses of the number of 5-bromo-2'deoxyuridine (BrdU) -labeled cells revealed that exposure to fox odor but not other, nonthreatening, odors (mint or orange) rapidly decreased the number of proliferating cells in the dentate gyrus. This effect is dependent on a stress-induced rise in adrenal hormones; exposure to fox odor resulted in an increase in circulating corticosterone levels and prevention of this increase (by means of adrenalectomy plus low-dose corticosterone replacement) eliminated the suppression of cell proliferation. Examination at longer survival times revealed that the decrease in the number of new granule cells in fox odor-exposed animals was transient; a difference was still detectable at 1 week after BrdU labeling but not at 3 weeks. In both fox and sham odor-exposed animals, many new cells acquired morphologic and biochemical characteristics of mature granule neurons. The majority of these cells expressed a marker of immature granule neurons (TuJ1) by 1 week after BrdU labeling and markers of mature granule neurons (calbindin, NeuN) by 3 weeks after labeling. These findings suggest that stressful experiences rapidly diminish cell proliferation by increasing adrenal hormone levels, resulting in a transient decrease in the number of adult-generated immature granule neurons.  相似文献   

3.
Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein-expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%-5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%-10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment.  相似文献   

4.
Hippocampal neuropathology is a recognised feature of the brain in spontaneously hypertensive rats (SHR), but similar studies are lacking in another model of hypertension, the mineralocorticoid-salt-treated rat. The present study aimed to compare changes in hippocampal parameters in 16-week-old male SHR (blood pressure approximately 190 mmHg) and their normotensive Wistar-Kyoto controls, with those of male Sprague-Dawley rats receiving (i) 10 mg deoxycorticosterone acetate (DOCA) every other day during 3 weeks and drinking 1% NaCl solution (blood pressure approximately 160 mmHg) and normotensive controls treated with (ii) DOCA and drinking water, (iii) drinking water only or (iv) 1% NaCl only. In these experimental groups, we determined: (i) cell proliferation in the dentate gyrus (DG) using the 5-bromo-2'-deoxyuridine-labelling technique; (ii) the number of glial fibrillary acidic protein (GFAP) positive astrocytes under the CA1, CA3 and DG; (iii) the number of apolipoprotein E (ApoE) positive astrocytes as a marker of potential neuronal damage; and (iv) the number of neurones in the hilus of the DG, taken as representative of neuronal density in other hippocampal subfields. Changes were remarkably similar in both models, indicating a decreased cell proliferation in DG, an increased number of astrocytes immunopositive for GFAP and ApoE and a reduced number of hilar neurones. Although hypertension may be a leading factor for these abnormalities, endocrine mechanisms may be involved, because hypothalamic-pituitary function, mineralocorticoid receptors and sensitivity to mineralocorticoid treatment are stimulated in SHR, whereas high exogenous mineralocorticoid levels circulate in DOCA-treated rats. Thus, in addition to the deleterious effects of hypertension, endocrine factors may contribute to the abnormalities of hippocampus in SHR and DOCA-treated rats.  相似文献   

5.
Although the existence of adult neurogenesis in the dentate gyrus is now almost universally accepted, it is not widely established that the new neurons perform any necessary function. However, evidence indicates that the number of new neurons that are generated and form functional synapses is clearly large enough to impact the circuitry of the hippocampus. Additionally, several treatments show parallel effects on neurogenesis and hippocampus-dependent behaviors, suggesting a possible causal relationship between new neurons and hippocampal function. Most importantly, several recent studies have found that killing or inhibiting proliferation of granule cell precursors impairs performance on several hippocampus-dependent tasks. Control experiments showing no impairment on slightly different behavioral tests suggest that the deficits are highly specific and unlikely to result from side effects of the neurogenesis-inhibiting treatments. In summary, the evidence to date strongly suggests that adult neurogenesis in the dentate gyrus plays a vital role in hippocampal function.  相似文献   

6.
Embryonic stem (ES) cells can generate neural progenitors and neurons in vitro and incorporate into the adult central nervous system (CNS) following transplantation, suggesting their therapeutic potential for treating neurological disorders. However, our understanding of the conditions that direct ES-derived neural progenitor (ESNP) migration and differentiation within different regions of the adult CNS is incomplete. Rodents treated with the chemoconvulsant kainic acid (KA) experience seizures and display hippocampal sclerosis, as well as enhanced hippocampal neurogenesis, similar to pathological findings in patients with temporal lobe epilepsy (TLE). To examine the potential for ESNPs to incorporate into the adult hippocampus and differentiate into hippocampal neurons or glia following seizure-induced damage, we compared the fates of ESNPs after they were transplanted into the CA3 region or fimbria 1 week following KA-induced seizures. After 4-8 weeks, ESNPs grafted into the CA3 region had migrated to the dentate gyrus (DG), where a small subset adopted neural stem cell fates and continued to proliferate, based on bromodeoxyuridine uptake. Others differentiated into neuroblasts or dentate granule neurons. In contrast, most ESNPs transplanted into the fimbria migrated extensively along existing fiber tracts and differentiated into oligodendrocytes or astrocytes. Hippocampal grafts in mice not subjected to seizures displayed a marked tendency to form tumors, and this effect was more pronounced in the DG than in the fimbria. Taken together, these data suggest that seizures induce molecular changes in the CA3 region and DG that promote region-specific neural differentiation and suppress tumor formation.  相似文献   

7.
Treating adult male rats with subcutaneous pellets of dehydroepiandrosterone (DHEA) increased the number of newly formed cells in the dentate gyrus of the hippocampus, and also antagonized the suppressive of corticosterone (40 mg/kg body weight daily for 5 days). Neither pregnenolone (40 mg/kg/day), a precursor of DHEA, nor androstenediol (40 mg/kg/day), a major metabolite, replicated the effect of DHEA (40 mg/kg/day). Corticosterone reduced the number of cells labelled with a marker for neurons (NeuN) following a 28-day survival period, and this was also prevented by DHEA. DHEA by itself increased the number of newly formed neurons, but only if treatment was continued throughout the period of survival. Subcutaneous DHEA pellets stimulated neurogenesis in a small number of older rats ( approximately 12 months old). These results show that DHEA, a steroid prominent in the blood and cerebral environment of humans, but which decreases markedly with age and during major depressive disorder, regulates neurogenesis in the hippocampus and modulates the inhibitory effect of increased corticoids on both the formation of new neurons and their survival.  相似文献   

8.
We reported previously that 96 h of sleep deprivation (SD) reduced cell proliferation in the dentate gyrus (DG) of the hippocampus in adult rats. We now report that SD reduces the number of new cells expressing a mature neuronal marker, neuronal nuclear antigen (NeuN). Rats were sleep-deprived for 96 h, using an intermittent treadmill system. Total sleep time was reduced to 6.9% by this method in SD animals, but total treadmill movement was equated in SD and treadmill control (CT) groups. Rats were allowed to survive for 3 weeks after 5-bromo-2-deoxyuridine (BrdU) injection. The phenotype of BrdU-positive cells in the DG was assessed by immunofluorescence and confocal microscopy. After 3 weeks the number of BrdU-positive cells was reduced by 39.6% in the SD group compared with the CT. The percentage of cells that co-localized BrdU and NeuN was also lower in the SD group (SD: 46.6 +/- 1.8% vs. CT: 71.9 +/- 2.1, P < 0.001). The percentages of BrdU-labeled cells co-expressing markers of immature neuronal (DCX) or glial (S100-beta) cells were not different in SD and CT groups. Thus, SD reduces neurogenesis in the DG by affecting both total proliferation and the percentage of cells expressing a mature neuronal phenotype. We hypothesize that sleep provides anabolic or signaling support for proliferation and cell fate determination.  相似文献   

9.
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.  相似文献   

10.
Granule cells in the hippocampal dentate gyrus are generated throughout adulthood of mammals, and recent studies indicate that they are incorporated into neural circuitry and mature into functional neurons. To determine whether newly generated granule cells form dendritic growth cones during this process of synaptogenesis, we used the immunocytochemical method to localize doublecortin, a protein associated with microtubules in newborn neurons. Here we show that both dendritic growth cones and recurrent basal dendrites are common features of newly generated granule cells. This study is the first to show dendritic growth cones in the dentate gyrus of the adult nervous system and suggests that dendrites in adult brains grow in a similar way as those found in immature brains.  相似文献   

11.
The dentate gyrus region retains the ability to generate neurons throughout adulthood. A few studies have examined the neurotransmitter regulation of adult hippocampal neurogenesis and have shown that this process is regulated by serotonin and glutamate. Given the strong noradrenergic innervation of the adult hippocampus and the ability of norepinephrine to influence proliferation during development, we examined the influence of norepinephrine on adult hippocampal neurogenesis. Our study indicates that depletion of norepinephrine by the selective noradrenergic neurotoxin, N-(2-chloroethyl)-N-ethyl-2-bromo benzylamine hydrochloride (DSP-4), results in a 63% reduction in the proliferation of dentate gyrus progenitor cells identified through 5-bromo-2'-deoxyuridine (BrdU) labelling. In contrast, the survival of BrdU-positive cells labelled prior to treatment with DSP-4 is not influenced by norepinephrine depletion. The differentiation of BrdU labelled progenitors into neurons or glia was also not sensitive to noradrenergic depletion. These results indicate that the proliferation, but not the survival or differentiation, of adult hippocampal granule cell progenitors is affected by norepinephrine depletion.  相似文献   

12.
The N‐methyl‐D‐aspartate (NMDA) receptor, one of the ionotropic glutamate receptor, plays important physiological and pathological roles in learning and memory, neuronal development, acute and chronic neurological diseases, and neurogenesis. This work examines the contribution of the NR2B NMDA receptor subunit to adult neurogenesis/cell proliferation under physiological conditions and following an excitotoxic insult. We have previously shown in vitro that a discrete NMDA‐induced, excitotoxic injury to the hippocampus results in an increase in neurogenesis within the dentate gyrus. Here we have characterized adult neurogenesis or proliferation, using BrdU, in an in vivo model of excitotoxic injury to the CA1 subfield of the hippocampus. We demonstrate a peak in neural stem cell proliferation/neurogenesis between 6 and 9 days after the excitotoxic insult. Treatment with ifenprodil, an NR2B subunit‐specific NMDA receptor antagonist, without prior injury induction, also increased the number of BrdU‐positive cells within the DG and posterior periventricle, indicating that ifenprodil itself could modulate the rate of proliferation. Interestingly, though, the increased level of cell proliferation did not change significantly when ifenprodil was administered following an excitotoxic insult. In conclusion, our results suggest and add to the growing evidence that NR2B subunit‐containing NMDA receptors play a role in neural stem cell proliferation. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
New neurons are produced continually in the dentate gyrus of the hippocampus. Numerous factors modulate the rate of neuron production. One of the most important is the adrenal-derived corticoids. Raised levels of corticoids suppress proliferation of progenitor cells, while removal of corticoids by adrenalectomy reverses this. The exact mechanisms by which corticoids mediate such regulation are unknown, but corticoids are believed to act through the receptors for mineralocorticoids (MR) and glucocorticoids (GR). Previous reports regarding the roles of these receptors in regulating cell proliferation came to contrasting conclusions. Here we use both agonists and antagonists to these receptors in adult male rats to investigate and clarify their roles. Blockade of MR with spironolactone in adrenalectomised male rats implanted with a corticosterone pellet to reproduce basal levels enhanced proliferation, whereas treatment with the GR antagonist mifepristone had no effect. However, mifepristone reversed the suppressive effect of additional corticosterone in intact rats. Both aldosterone and RU362, agonists of MR and GR, respectively, reduced proliferation in adrenalectomised rats, and combined treatment with both agonists had an additional suppressive action. These results clearly show that occupancies of both receptors act in the same direction on progenitor proliferation. The existence of two receptors with different affinities for corticoids may ensure that proliferation of progenitor cells in the adult dentate gyrus is regulated across the range of adrenal corticoid activity, including both basal and stressful contexts. Although a small proportion of newly formed cells may express GR and MR, corticosterone probably regulates proliferation indirectly through other local cells.  相似文献   

14.
Leuner B  Mirescu C  Noiman L  Gould E 《Hippocampus》2007,17(6):434-442
Motherhood is accompanied by alterations in numerous nonreproductive behaviors, including learning and memory, as well as anxiety and stress regulation. These functions have been linked to adult neurogenesis in the hippocampus, but the effect of maternal experience on this brain region has not been completely explored. To determine whether the production of new hippocampal granule cells is altered during the postpartum period, we examined the number of proliferating cells and their progeny in the dentate gyrus of primiparous female rats at various time points during the postpartum period while they were caring for their offspring, as well as after weaning. Additionally, we investigated whether cell proliferation in the postpartum female is affected by the presence of offspring and nursing-induced increases in glucocorticoids. Analysis of the number of BrdU-labeled cells revealed that cell proliferation in the dentate gyrus was suppressed in lactating postpartum females until the time of weaning. This effect was temporary; a difference was detectable at 1 week after BrdU-labeling, when the majority of cells expressed a marker of immature and mature granule neurons (TuJ1) but not at 2 weeks, when most cells expressed a marker of mature neurons (NeuN). The decrease in cell proliferation was dependent on elevated basal glucocorticoid levels associated with lactation; removal of nursing pups reduced basal corticosterone levels and prevented the decrease in the number of BrdU-labeled cells. Moreover, preventing increased basal corticosterone levels by means of adrenalectomy and low-dose corticosterone replacement eliminated the reduction in cell proliferation. These findings indicate that offspring interactions inhibit adult neurogenesis through changes in adrenal steroids, and further suggest a potential mechanism for alterations in hippocampal function during the postpartum period.  相似文献   

15.
Brain injuries often result in the promotion of cell proliferation in the hippocampal dentate gyrus(DG),but the number of newborn cells declines with time.However,the cause of this decline remains poorly understood.Elucidation of the fate of these newborn cells will further the understanding of the pathological process and treatment of brain injury.In the present study,the number of newborn cells was quantitatively analyzed using an unbiased stereological method following hippocampal lesion by kainic acid,i...  相似文献   

16.
An astrocyte-like cell population corresponding to residual radial glia represents the neuronal progenitors of the adult mammalian hippocampus. We show that radial glia-like cells of the dentate gyrus express surface-located ATP-hydrolyzing activity and are immunopositive for NTPDase2. This enzyme hydrolyzes extracellular nucleoside triphosphates such as ATP and UTP to their nucleoside diphosphates and is thus involved in the control of signaling via P2 receptors. NTPDase2 is expressed from embryonic day 17 onward. In the hippocampus, the embryonic pattern of NTPDase2 expression mirrors that of the dentate migration of neuroblasts. Double-immunolabeling revealed that NTPDase2 is associated with subpopulations of glial fibrillary acidic protein-, nestin- and doublecortin-positive radial cells. It is absent from mature granule cells or S100-positive astrocytes. NTPDase2-positive cells proliferate. Furthermore, after mitosis, progenitor cells preferentially reveal an NTPDase2-positive phenotype. Patch-clamp analysis demonstrates functional nucleotide receptors in progenitor cells expressing nestin promotor-driven green fluorescent protein. Our results identify the ecto-nucleotidase NTPDase2 and functional P2X receptors at hippocampal progenitor cells. We infer that signaling pathways via extracellular nucleotides may play a role in the control of hippocampal neurogenesis.  相似文献   

17.
It has been well-established that cell proliferation and neurogenesis in the adult mouse dentate gyrus (DG) can be regulated by voluntary exercise. Recent evidence has suggested that the effects of voluntary exercise can in turn be influenced by environmental factors that regulate the amount of stress an animal is exposed to. In this study, we use bromodeoxyuridine and proliferating cell nuclear antigen immunohistochemistry to show that voluntary exercise produces a significant increase in cell proliferation in the adult mouse DG in both isolated and socially housed mice. This effect on proliferation translates into an increase in neurogenesis and neuronal branching of new neurons in the mice that exercised. Although social condition did not regulate proliferation in young adult mice, an effect of social housing could be observed in mice exposed to acute restraint stress. Surprisingly, only exercising mice housed in isolated conditions showed an increase in cellular proliferation following restraint stress, whereas socially housed, exercising mice, failed to show a significant increase in proliferation. These findings indicate that social housing may increase the effects of any stressful episodes on hippocampal neurogenesis in the mouse DG.  相似文献   

18.
Recent evidence showed that epileptic seizures increase hippocampal neurogenesis in the adult rat, but prolonged seizures result in the aberrant hippocampal neurogenesis that often leads to a recurrent excitatory circuitry and thus contributes to epileptogenesis. However, the mechanism underlying the aberrant neurogenesis after prolonged seizures remains largely unclear. In this study, we examined the role of activated astrocytes and microglia in the aberrant hippocampal neurogenesis induced by status epilepticus. Using a lithium‐pilocarpine model to mimic human temporal lobe epilepsy, we found that status epilepticus induced a prominent activation of astrocytes and microglia in the dentate gyrus 3, 7, 14, and 20 days after the initial seizures. Then, we injected fluorocitrate stereotaxicly into the dentate hilus to inhibit astrocytic metabolism and found that fluorocitrate failed to prevent the seizure‐induced formation of ectopic hilar basal dendrites but instead promoted the degeneration of dentate granule cells after seizures. In contrast, a selective inhibitor of microglia activation, minocycline, inhibited the aberrant migration of newborn neurons at 14 days after status epilepticus. Furthermore, with stereotaxic injection of lipopolysaccharide into the intact dentate hilus to activate local microglia, we found that lipopolysaccharide promoted the development of ectopic hilar basal dendrites in the hippocampus. These results indicate that the activated microglia in the epileptic hilus may guide the aberrant migration of newborn neurons and that minocycline could be a potential drug to impede seizure‐induced aberrant migration of newborn neurons. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Although thousands of new neurons are continuously produced in the dentate gyrus of rodents each day, the function of these newborn cells remains unclear. An increasing number of reports have provided correlational evidence that adult hippocampal neurogenesis is involved in learning and memory. Exposure of animals to an enriched environment leads to improvement of performance in several learning tasks and enhances neurogenesis specifically in the hippocampus. These data raise the question of whether new neurons participate in memory improvement induced by enrichment. To address this issue, we have examined whether the increase in the number of surviving adult-generated cells following environmental enrichment contributes to improved memory function. To this end, neurogenesis was substantially reduced throughout the environmental enrichment period using the antimitotic agent methylazoxymethanol acetate (MAM). Recognition memory performance of MAM-treated enriched rats was evaluated in a novel object recognition task and compared with that of naive and nontreated enriched rats. Injections of 5-bromo-2'-deoxyuridine were used to label dividing cells, together with double immunofluorescent labelling using glial or neuronal cell-specific markers. We found that enrichment led to improved long-term recognition memory and increased hippocampal neurogenesis, and that MAM treatment during environmental enrichment completely prevented both the increase in neurogenesis and enrichment-induced long-term memory improvement. These results establish that newborn cells in the dentate gyrus contribute to the expression of the promnesic effects of behavioural enrichment, and they provide further support for the idea that adult-generated neurons participate in modulating memory function.  相似文献   

20.
《中国神经再生研究》2016,(12):1869-1883
The phenomenon of adult neurogenesis is now an accepted occurrence in mammals and also in humans.At least two discrete places house stem cells for generation of neurons in adult brain. These are olfactory system and the hippocampus. In animals, newly generated neurons have been directly or indirectly demonstrated to generate a significant amount of new neurons to have a functional role. However, the data in humans on the extent of this process is still scanty and such as difficult to comprehend its functional role in humans. This paper explores the available data on as extent of adult hippocampal neurogenesis in humans and makes comparison to animal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号