首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To establish a simple definition of a malaria attack based on blood parasite density and other explanatory covariates, a cohort study was conducted from 1993 to 1996 in the Madagascar highlands undergoing a low seasonal transmission of falciparum malaria. Using logistic regression, the explanatory variables found to be significantly related to the risk of fever are parasite density, age, season, and year. However, and in contrast with other studies, we found no evidence of a clear cutoff in parasite density values consistent with the concept of "pyrogenic threshold" despite a gradual increase of the risk of fever with increasing parasite density. Furthermore, the model evidenced an individual-dependent relationship at a given age. This point was in accordance with the immunological data recorded from the participants. The investigators conclude that the parasite density to distinguish malaria attacks from other causes of fever is not reliable in a context of low falciparum transmission.  相似文献   

2.
Invasion of erythrocytes by Plasmodium falciparum is an obligatory step in the life cycle of the parasite. A major challenge is the unambiguous identification and characterization of host receptors. Because erythrocytes lack nuclei, direct genetic analyses have been limited. In this work, we combined an in vitro erythrocyte culture system, which supports P. falciparum invasion and growth, with lentiviral transduction to knock down gene expression. We genetically demonstrate, in an isogenic background, that glycophorin A is required for efficient strain-specific parasite invasion. We establish the feasibility of in vitro systematic functional analysis of essential erythrocyte determinants of malaria and erythrocyte biology.  相似文献   

3.
A M Senczuk  J C Reeder  M M Kosmala  M Ho 《Blood》2001,98(10):3132-3135
The malarial protein Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a parasite protein that is exported to the surface of the infected erythrocyte, where it is inserted into the red cell cytoskeleton in the second half of the parasite life cycle. The surface expression of PfEMP1 coincides with the occurrence of the adhesion of infected erythrocytes to vascular endothelium. This protein has been shown to interact with CD36, intercellular adhesion molecule-1 (ICAM-1) and chondroitin sulfate A (CSA). In this study, it is demonstrated by affinity purification and western blot analysis that PfEMP1 also functions as a cell surface ligand for P-selectin, an adhesion molecule that has been shown to mediate the rolling of infected erythrocytes under physiologic flow conditions, leading to a significant increase in adhesion to CD36 on activated platelets and microvascular endothelium.  相似文献   

4.
This study has examined in vitro , how exposure to the antimalarial drug artemisinin affects Plasmodium falciparum and its host erythrocytes. Factors examined include: cell morphology, intracellular haemoglobin levels, and haemoglobin catabolism (haemozoin production). To avoid uninfected erythrocytes complicating the study, P. falciparum ring-infected erythrocytes were concentrated to 99% parasitaemia, by saponin haemolysis, before the parasites were grown with or without artemisinin. Without artemisinin, the parasites completed their life cycle in the normal time (40 h), during which a mean of 980 pmol of ferriprotoporphyrin IX from haemoglobin was incorporated into haemozoin per 106 parasitized erythrocytes, and intracellular haemoglobin level decreased by 90%. Exposure of ring-infected erythrocytes to artemisinin (250 ng per ml of culture medium) inhibited parasite growth completely, haemozoin production by 95%, and decreased the intraerythrocytic haemoglobin level by 90%; the infected erythrocytes remained intact during the 64 h of study. Haemozoin production was also inhibited when the drug was administered at the trophozoite stage of parasite growth, but the infected erythrocytes haemolysed. These findings may contribute to understanding of antimalarial actions of artemisinin that promote parasite clearance.  相似文献   

5.
The destruction of erythrocytes and defects in erythropoiesis are among the most frequently observed causes of morbidity in severe Plasmodium falciparum malaria. The molecular mechanisms involved remain unclear, despite extensive investigation. We show here, for the first time, that tagging with the parasite rhoptry protein ring surface protein 2 (RSP2) is not restricted to the surfaces of normal erythrocytes, as previously reported, but that it extends to erythroid precursor cells in the bone marrow of anemic malaria patients. Monoclonal mouse antibodies and human sera from patients with severe anemia, reacting with RSP2-tagged erythrocytes, induced cell destruction by phagocytosis and complement activation in vitro. Our observations reveal a new parasite mechanism implicated in the destruction of normal erythrocytes and probably dyserythropoiesis in malaria patients. These data suggest that the tagging of host cells with RSP2 may trigger anemia in falciparum malaria.  相似文献   

6.
The human malaria parasite, P. falciparum, exhibits cytoadherence properties whereby infected erythrocytes containing mature parasite stages bind to endothelial cells both in vivo and in vitro. Another property of cytoadherence, "rosetting," or the binding of uninfected erythrocytes around an infected erythrocyte, has been demonstrated with a simian malaria parasite P. fragile which is sequestered in vivo in its natural host, Macaca sinica. In the present study we demonstrate that rosetting occurs in P. falciparum. Rosetting in P. falciparum is abolished by protease treatment and reappears on further parasite growth indicating that, as in P. fragile, it is mediated by parasite induced molecules which are protein in nature. P. vivax and P. cynomolgi, which are not sequestered in the host, did not exhibit rosetting. Rosetting thus appears to be a specific property of cytoadherence in malaria parasites.  相似文献   

7.
Magowan  C; Coppel  RL; Lau  AO; Moronne  MM; Tchernia  G; Mohandas  N 《Blood》1995,86(8):3196-3204
During intraerythrocytic growth of Plasmodium falciparum, several parasite proteins are transported from the parasite to the erythrocyte membrane, where they bind to membrane skeletal proteins. Mature- parasite-infected erythrocyte surface antigen (MESA) has previously been shown to associate with host erythrocyte membrane skeletal protein 4.1. Using a spontaneous mutant of P falciparum that has lost the ability to synthesize MESA and 4.1-deficient erythrocytes, we examined growth of MESA(+) and MESA(-) parasites in normal and 4.1-deficient erythrocytes. Viability of MESA(+) parasites was reduced in 4.1- deficient erythrocytes as compared with that for normal erythrocytes, but MESA(-) parasites grew equally well in 4.1-deficient and normal erythrocytes. Cytoadherence of MESA(+)- and MESA (-)-parasitized normal and 4.1-deficient erythrocytes to C32 melanoma cells was similar, indicating that neither protein 4.1 nor MESA plays a major role in cytoadherence of infected erythrocytes. Localization of MESA in normal and 4.1-deficient erythrocytes was examined by confocal microscopy. MESA was diffusely distributed in the cytosol of 4.1-deficient erythrocytes but was membrane-associated in normal erythrocytes. These findings suggest that MESA binding to protein 4.1 plays a major role in intraerythrocytic parasite viability.  相似文献   

8.
The malaria parasite lives within erythrocytes and depends on the binding of parasite ligands to host cell surface receptors for invasion. The most virulent human malaria parasite, Plasmodium falciparum, uses multiple ligands, including EBA-175, BAEBL, and JESEBL of the Duffy-binding-like (DBL) family of erythrocyte-binding proteins, for invasion of human erythrocytes. Region II of these parasite ligands is the erythrocyte-binding domain. Previously, we had shown that polymorphism in region II of BAEBL leads to different erythrocyte-binding specificities. We have now identified and characterized the binding specificity of six JESEBL variants. We sequenced region II of JESEBL from 20 P. falciparum clones collected from various parts of the world where malaria is endemic. We observed eight JESEBL variants that contained amino acid polymorphisms at five positions among all clones. Seven of the eight variants could be connected by a single base change that led to an amino acid change. We investigated the functional significance of these polymorphisms by transiently expressing region II from six of JESEBL variants on the surface of Chinese hamster ovary cells. We observed four erythrocyte-binding patterns to enzyme-treated erythrocytes. Thus, P. falciparum DBL ligands JESEBL and BAEBL can recognize multiple receptors on the erythrocyte surface. In contrast to Plasmodium vivax, which has disappeared from West Africa because of the Duffy-negative blood group, P. falciparum may have been successful in endemic areas because it has mutated the ligands of the DBL family to create multiple pathways of invasion, thus making selection of refractory erythrocytes unlikely.  相似文献   

9.
Sequestration of malaria-infected erythrocytes in the peripheral circulation has been associated with the virulence of Plasmodium falciparum. Defining the adhesive phenotypes of infected erythrocytes may therefore help us to understand how severe disease is caused and how to prevent or treat it. We have previously shown that malaria-infected erythrocytes may form apparent autoagglutinates of infected erythrocytes. Here we show that such autoagglutination of a laboratory line of P. falciparum is mediated by platelets and that the formation of clumps of infected erythrocytes and platelets requires expression of the platelet surface glycoprotein CD36. Platelet-dependent clumping is a distinct adhesive phenotype, expressed by some but not all CD36-binding parasite lines, and is common in field isolates of P. falciparum. Finally, we have established that platelet-mediated clumping is strongly associated with severe malaria. Precise definition of the molecular basis of this intriguing adhesive phenotype may help to elucidate the complex pathophysiology of malaria.  相似文献   

10.
The pathophysiology of severe falciparum malaria is complex, but evidence is mounting that its central feature is the old concept of a mechanical microcirculatory obstruction. Autopsy studies, but also in vivo observations of the microcirculation, demonstrate variable obstruction of the microcirculation in severe malaria. The principal cause of this is cytoadherence to the vascular endothelium of erythrocytes containing the mature forms of the parasite, leading to sequestration and obstruction of small vessels. Besides, parasitized red cells become rigid, compromising their flow through capillaries whose lumen has been reduced by sequestered erythrocytes. Adhesive forces between infected red cells (auto-agglutination), between infected and uninfected red cells (rosetting) and between uninfected erythrocytes (aggregation) could further slow down microcirculatory flow. A more recent finding is that uninfected erythrocytes also become rigid in severe malaria. Reduction in the overall red cell deformability has a strong predictive value for a fatal outcome. Rigidity may be caused by oxidative damage to the red blood cell membrane by malaria pigment released at the moment of schizont rupture. Anti-oxidants, such as N-acetylcysteine can reverse this effect and are promising as adjunctive treatment in severe malaria.  相似文献   

11.
由疟原虫感染引起的疟疾是一种严重危害人体健康的寄生虫病,在发展中国家造成巨大的经济损失.恶性疟原虫基因组测序的完成,使实验室可以更进一步研究恶性疟原虫的基本生物学过程,其中恶性疟原虫基因表达调控受到重视.严格的基因表达模式控制着疟原虫的分化,随着一些假定转录因子的鉴定,恶性疟原虫的基因表达调节机制可能与真核生物不一样.该文对恶性疟原虫基因调节的最新研究进展进行了综述.  相似文献   

12.
Plasmodium spp. parasites cause malaria in 300 to 500 million individuals each year. Disease occurs during the blood-stage of the parasite's life cycle, where the parasite is thought to replicate exclusively within erythrocytes. Infected individuals can also suffer relapses after several years, from Plasmodium vivax and Plasmodium ovale surviving in hepatocytes. Plasmodium falciparum and Plasmodium malariae can also persist after the original bout of infection has apparently cleared in the blood, suggesting that host cells other than erythrocytes (but not hepatocytes) may harbor these blood-stage parasites, thereby assisting their escape from host immunity. Using blood stage transgenic Plasmodium berghei-expressing GFP (PbGFP) to track parasites in host cells, we found that the parasite had a tropism for CD317(+) dendritic cells. Other studies using confocal microscopy, in vitro cultures, and cell transfer studies showed that blood-stage parasites could infect, survive, and replicate within CD317(+) dendritic cells, and that small numbers of these cells released parasites infectious for erythrocytes in vivo. These data have identified a unique survival strategy for blood-stage Plasmodium, which has significant implications for understanding the escape of Plasmodium spp. from immune-surveillance and for vaccine development.  相似文献   

13.
Erythrocyte remodeling by malaria parasites   总被引:2,自引:0,他引:2  
PURPOSE OF REVIEW: Plasmodium falciparum causes the most virulent form of human malarias. It is a protozoan parasite that infects human erythrocytes and the erythrocytic stages are responsible for all symptoms and pathologies of the disease. Critical to infection is the formation of a parasitophorous vacuolar membrane at the time of entry and within which the intracellular parasite proliferates. Since erythrocytes lack endocytic machinery, it is surprising that they can be infected by pathogens. This review summarizes recent studies of the erythrocyte-malaria interaction that have provided insights into properties of erythrocyte membranes as well as parasite mechanisms that remodel the erythrocyte. RECENT FINDINGS: Themes revealed by recent literature suggest that both parasite and erythrocyte components regulate parasite entry and intracellular growth by extensively remodeling host membranes. These remodeling events include the invagination of the host cell membrane during parasite entry that results in the creation and maintenance of a vacuole that surrounds the intracellular organism, and the development of antigenic, structural and transport alterations during intracellular parasite development. SUMMARY: The implications are that malarial erythrocyte remodeling events occur at a significant cost to the human host since many of the associated virulence events have been linked to severe disease pathologies.  相似文献   

14.
Antigenic variation in Plasmodium falciparum.   总被引:8,自引:4,他引:8       下载免费PDF全文
Antigenic variation of infectious organisms is a major factor in evasion of the host immune response. However, there has been no definitive demonstration of this phenomenon in the malaria parasite Plasmodium falciparum. In this study, cloned parasites were examined serologically and biochemically for the expression of erythrocyte surface antigens. A cloned line of P. falciparum gave rise to progeny that expressed antigenically distinct forms of an erythrocyte surface antigen but were otherwise identical. This demonstrates that antigenic differences on the surface of P. falciparum-infected erythrocytes can arise by antigenic variation of clonal parasite populations. The antigenic differences were shown to result from antigenic variation of the parasite-encoded protein, the P. falciparum erythrocyte membrane protein 1.  相似文献   

15.
IgG from a donor clinically immune to Plasmodium falciparum malaria strongly inhibited reinvasion in vitro of human erythrocytes by the parasite. When added to monolayers of glutaraldehyde-fixed and air-dried erythrocytes infected with the parasite, this IgG also displayed a characteristic immunofluorescence restricted to the surface of infected erythrocytes. Elution of the IgG adsorbed to such monolayers gave an antibody fraction that was 40 times more efficient in the reinvasion inhibition assay (50% inhibition titer, less than 1 microgram/ml) than the original IgG preparation. The major antibody in this eluate was directed against a parasite-derived antigen of Mr 155,000 (Pf 155) deposited by the parasite in the erythrocyte membrane in the course of invasion. A detailed study of IgG fractions from 11 donors with acute P. falciparum malaria or clinical immunity revealed the existence of an excellent correlation between their capacities to stain the surface of infected erythrocytes, their titers in reinvasion inhibition, and the presence of antibodies to Pf 155 as detected by immunoblotting. No such correlations were seen when the IgG fractions were analyzed for immunofluorescence of intracellular parasites or for the presence of antibodies to other parasite antigens as detected by immunoprecipitation of [35S]methionine-labeled and NaDodSO4/PAGE-separated parasite extracts. The results suggest that Pf 155 has an important role in the process of erythrocyte infection and that host antibodies to this antigen may efficiently interfere with this process.  相似文献   

16.
17.
Previous work has shown that human donors vary in the magnitude and pattern of cytokines induced when peripheral blood mononuclear cells (PBMCs) are co‐cultured with Plasmodium falciparum–infected erythrocytes. Whether P. falciparum strains vary in their ability to induce cytokines has not been studied in detail and is an important question, because variation in cytokine induction could affect parasite virulence and patterns of clinical disease. We investigated the early inflammatory cytokine response to four P. falciparum laboratory strains and five field isolates. Initial studies showed that parasite strain, parasitaemia and PBMC donor all had significant effects on the magnitude of pro‐inflammatory cytokine responses (IFN‐γ, GM‐CSF, IL‐1β, TNF‐α, IL‐6, P < 0·005 in all cases). However, we noticed that the most highly inducing parasite strain consistently reached schizont rupture more rapidly than the other strains. When timing of schizont rupture was taken into account, parasite strains no longer differed in their cytokine induction (P = 0·383), although donor effects remained significant (P < 0·001). These data do not support the hypothesis that P. falciparum strains vary in induction of early innate cytokine responses from PBMCs, and instead are consistent with the suggestion that conserved parasite products such as haemozoin or GPI‐anchors are the parasite‐derived stimuli for cytokine induction.  相似文献   

18.
Falciparum malaria is characterized by cytoadherence of host erythrocytes containing mature asexual-stage parasites and the consequent sequestration of these forms in tissue microvasculature. A postmortem study of pediatric malaria provided us with the opportunity to compare the genetic complexity of circulating and sequestered Plasmodium falciparum populations, in patients with fatal cerebral malaria (CM) versus control subjects with incidental P. falciparum parasitemia who died of causes other than malaria. Parasite genotypes identified in peripheral blood collected at the time of admission to the hospital constituted a subset of those detected in the tissues at death. Despite a higher tissue burden of parasitized erythrocytes in patients with CM than in parasitemic control subjects, parasite populations in tissues from patients with CM were less genetically complex, and the genotypes were more homogeneously distributed throughout the body, than in patients with incidental infection. Our findings support the notion that CM is associated with the emergence of a small number of dominant genotypes in an infected individual.  相似文献   

19.
Glycophorin both in solution and inserted into liposomes blocks invasion of erythrocytes by the malaria parasite Plasmodium falciparum. Furthermore, one sugar, N-acetyl-D-glucosamine (GlcNAc), completely blocks invasion of the erythrocyte by this parasite. GlcNAc coupled to bovine serum albumin to prevent the sugar entering infected erythrocytes was at least 100,000 times more effective than GlcNAc alone. Bovine serum albumin coupled to lactose or bovine serum albumin alone had no effect on invasion. These results suggest that the binding of P. falciparum to erythrocytes is lectin-like and is determined by carbohydrates on glycophorin.  相似文献   

20.
Ultrastructural changes of the human erythrocytes infected with Plasmodium ovale were studied, and differences of P. ovale from other human malarial parasites were discussed. Four characteristic morphological alterations were observed on the host cells: caveola-vesicle complex, excrescence, nodule, and cytoplasmic cleft. Caveola-vesicle complexes consisted of caveolae surrounded by vesicles in an alveolar fashion and were formed along the host cell plasmalemma. Similar complexes have been reported previously in P. vivax but not in P. falciparum and P. malariae. This complex probably corresponds to a Schüffner's dot. Excrescences similar to those observed by others on the host cell membrane in P. falciparum and P. malariae were observed also in P. ovale. The excrescences in P. ovale, as in P. falciparum, were limited to the erythrocytes infected by asexual parasites, whereas the excrescences in P. malariae have been demonstrated on erythrocytes with asexual parasites and gametocytes. Nodules were observed on the erythrocytes infected with asexual parasites of P. ovale. Structures such as the nodule have not been described previously in the erythrocytes infected with any other species of malarial parasite. Clefts within the cytoplasm of the host erythrocytes were present in P. ovale, as in all other malarial parasites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号