首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stromal-derived factor (SDF)-1 is the main regulating factor for trafficking/homing of hematopoietic stem cells (HSC) to the bone marrow (BM). It is possible that this chemokine may also play a fundamental role in regulating the migration of HSC to several organs during extramedullary hematopoiesis. Because liver sinusoidal endothelial cells (LSEC) constitute an extramedullary niche for HSC, it is possible that these cells represent one of the main cellular sources of SDF-1 at the liver. Here, we show that LSEC express SDF-1 at the mRNA and protein level. Biological assays showed that conditioned medium from LSEC (LSEC-CM) stimulated the migration of BM progenitor lineage-negative (BM/Lin?) cells. This effect was significantly reduced by AMD3100, indicating that the SDF-1/CXCR4 axis is involved in the stimulatory migrating effect induced by LSEC-CM. Early localization of HSC in SDF-1-expressing LSEC microenvironment together with increased levels of this chemokine in hepatic homogenates was found in an experimental model of liver extramedullary hematopoiesis. Flow cytometry studies showed that LSEC express the CXCR4 receptor. Functional assays showed that activation of this receptor by SDF-1 stimulated the migration of LSEC and increased the expression of PECAM-1. Our findings suggest that LSEC through the production of SDF-1 may constitute a fundamental niche for regulation of HSC migration to the liver. To our knowledge, this is the first report showing that LSEC not only express and secrete SDF-1, but also its receptor CXCR4.  相似文献   

2.
The chemokine receptor CXCR4 and its ligand SDF-1 are essential components of hematopoiesis, organogenesis and immunomodulation in mammalian species. We cloned a cDNA encoding CXCR4 homolog of sterlet (Acipenser ruthenus), a representative of chondrostean fishes. The deduced amino acid sequence of sterlet CXCR4 is almost equally distant from mammalian and teleost CXCR4 (66–68% identical residues). Percent identity with the other chemokine receptors varies in the 30–35% range. The CXCR4 sequences from the three phylogenetically diverged lineages were compared with the sequences of the other chemokine receptors to determine the CXCR4-specific structural elements that were conserved during vertebrate evolution. The characteristic residues and/or motifs are located predominantly in the intracellular and extracellular regions and in the third, fourth and fifth transmembrane domains. The data presented may be helpful for structure-function analysis of the CXCR4 ligand binding and signal transduction.  相似文献   

3.
趋化因子基质细胞衍生因子1(SDF-1)及其受体CXCR4   总被引:8,自引:1,他引:8  
趋化因子及其受体在免疫和炎症反应、造血以及HIV感染等方面发挥重要作用,其中基质细胞衍生因子-1SDF-1及其受体CXCR4由于在造血干细胞迁移、归巢以及HIV感染中的作用而受到关注,并对其作用机制进行了探讨,现就SDF-1及其受体CXCR4的有关内容作一综述。  相似文献   

4.
To better define the role HIV-related chemokine receptor-chemokine axes play in human hematopoiesis, we investigated the function of the CXCR4 and CCR5 receptors in human myeloid, T- and B-lymphoid cell lines selected for the expression of these receptors (CXCR4(+), CXCR4(+) CCR5(+), and CCR5(+) cell lines). We evaluated the phosphorylation of MAPK p42/44, AKT, and STAT proteins and examined the ability of the ligands for these receptors (stromal-derived factor-1 [SDF-1] and macrophage inflammatory protein-1beta [MIP-1beta]) to influence cell growth, apoptosis, adhesion, and production of vascular endothelial growth factors (VEGF), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in these cell lines. We found that A) SDF-1, after binding to CXCR4, activates multiple signaling pathways and that in comparison with the MIP-1beta-CCR5 axis, plays a privileged role in hematopoiesis; B) SDF-1 activation of the MAPK p42/44 pathway and the PI-3K-AKT axis does not affect proliferation and apoptosis but modulates integrin-mediated adhesion to fibronectin, and C) SDF-1 induces secretion of VEGF, but not of MMPs or TIMPs. Thus the role of SDF-1 relates primarily to the interaction of lymphohematopoietic cells with their microenvironment and does not directly influence their proliferation or survival. We conclude that perturbation of the SDF-1-CXCR4 axis during HIV infection may affect interactions of hematopoietic cells with the hematopoietic microenvironment.  相似文献   

5.
The CXC chemokine SDF-1 and its receptor CXCR4 mediate myelopoiesis, presumably by regulating the homing of hematopoietic progenitor cells. We used the inducible HL-60 cell line as a model system for comparative analysis of CXCR4 expression during differential maturation into the granulocytic or monocytic phenotypes. Five different measures of CXCR4 expression and functional coupling: mRNA and surface expression, SDF-1-mediated [(35)S]GTPgammaS binding, calcium flux, and chemotaxis were examined simultaneously. Granulocytic differentiation with dimethyl sulfoxide induced surface expression of CXCR4 as well as SDF-1-mediated [(35)S]GTPgammaS binding and chemotaxis, whereas calcium flux was attenuated by twofold to threefold in HL-60 cells. Conversely, monocytic differentiation with vitamin D(3) inhibited surface expression and SDF-1-mediated chemotaxis, even as it induced [(35)S]GTPgammaS binding and calcium flux by more than twofold. Sodium butyrate up-regulated all parameters of CXCR4 expression studied. Together, these results demonstrate that CXCR4 expression undergoes complex regulation at multiple checkpoints, with the likely involvement of different G-proteins for signal transduction during cellular differentiation and following activation with SDF-1.  相似文献   

6.
We found that the murine cell lines C2C12 and G7 derived from muscle satellite cells, which are essential for muscle regeneration, express the functional CXCR4 receptor on their surface and that the specific ligand for this receptor, alpha-chemokine stromal-derived factor 1 (SDF-1), is secreted in muscle tissue. These cell lines responded to SDF-1 stimulation by chemotaxis, phosphorylation of mitogen-activated protein kinase (MAPK) p42/44 and AKT serine-threonine kinase, and calcium flux, confirming the functionality of the CXCR4 receptor. Moreover, supernatants derived from muscle fibroblasts chemoattracted both satellite cells and human CD34(+) hematopoietic stem/progenitor cells. In a similar set of experiments, supernatants from bone marrow fibroblasts were found to chemoattract CXCR4(+) satellite cells just as they chemoattract CD34(+) cells. Moreover, preincubation of both muscle satellite cells and hematopoietic stem/progenitor CD34(+) cells before chemotaxis with T140, a specific CXCR4 inhibitor, resulted in a significantly lower chemotaxis to media conditioned by either muscle- or bone marrow-derived fibroblasts. Based on these observations, we postulate that the SDF-1-CXCR4 axis is involved in chemoattracting circulating CXCR4(+) muscle stem/progenitor and circulating CXCR4(+) hematopoietic CD34(+) cells to both muscle and bone marrow tissues. Thus, it appears that tissue-specific stem cells circulating in peripheral blood could compete for SDF-1(+) niches, and this would explain, without invoking the concept of stem cell plasticity, why hematopoietic colonies can be cultured from muscles and early muscle progenitors can be cultured from bone marrow.  相似文献   

7.
Homing and engraftment of hematopoietic stem/progenitor cells (HSPCs) in bone marrow is the major determining factor in success of hematopoietic stem cell transplantation. This is a complex, multistep process orchestrated by the coordinated interplay between adhesion molecules, cytokines, growth factors, and regulatory cofactors, many of which remain to be defined. Recent studies have highlighted the pivotal role of unique stromal-derived factor-1 (SDF-1)/CXCR4 signaling in the regulation of HSPC homing and subsequent engraftment. In addition, studies suggest that SDF-1/CXCR4 signaling acts as an essential survival-promoting factor of transplanted HSPCs as well as maintenance of quiescent HSCs in bone marrow niche. These pleiotropic effects exerted by SDF-1/CXCR4 axis make this unique signaling initiator very promising, not only for optimal hematopoietic reconstitution but also for the development of innovative approaches to achieve restoration, regeneration, or repair of other damaged tissues potentially amendable to reversal by stem cell transplantation. This goal can only be achieved when the role of SDF-1/CXCR4 axis in hematopoietic transplantation is clearly defined. Hence, this review presents current knowledge of the mechanisms through which SDF-1/CXCR4 signaling promotes restoration of hematopoiesis by regulating the homing and engraftment of HSPCs.  相似文献   

8.
Loss of SDF-1 receptor expression during positive selection in the thymus   总被引:3,自引:0,他引:3  
SDF-1 is a member of the CXC chemokines. In contrast to other chemokines that are induced by inflammation, SDF-1 is constitutively produced by stromal cells. In order to investigate the physiological roles of SDF-1, we constructed a fusion protein, SDF-1-Cgamma1, composed from murine SDF-1alpha and the constant region of human IgG. SDF-1-Cgamma1 stained EL-4 T lymphoma cells and the staining was blocked by rhSDF-1beta. The expression levels of SDF-1R altered along with the T cell maturation. Most c-kit+ hematopoietic precursors in fetal liver in gestational day (GD) 14.5 embryo were SDF-1R-, while c- kit+ double-negative (DN) thymocytes in the embryo were positive for SDF-1R. The receptor expression increased along with T cell maturation up to double-positive (DP) cell stage. Interestingly, SDF-1R expression was down-modulated after positive selection; CD69+CD3hi DP and CD3hi single-positive thymocytes were SDF-1R-/lo. Northern blot analysis demonstrated that SDF-1 and CXCR4 mRNAs were abundantly expressed in the thymuses of embryo and adult mice. These results demonstrate that SDF-1R expression is involved in T cell development in the thymus, particularly in positive selection.   相似文献   

9.
Stromal-cell derived factor or SDF-1 is a CXC chemokine constitutively expressed by stromal bone marrow cell cultures that binds to the G-protein-coupled receptor CXCR4. SDF-1/CXCR4 represents a unique, nonpromiscuous ligand/receptor pair that plays an essential role in prenatal myelo- and lymphopoiesis as well as in cardiovascular and neural development. SDF-1 prevents entry of CXCR4-dependent (X4) HIV viruses in T lymphocytes, by binding and internalizing CXCR4. The expression pattern of SDF-1 protein in normal tissues is not known. Here we describe an analysis of SDF-1 mRNA and protein in normal and inflamed skin by in situ hybridization and immunohistochemistry, using a novel anti-SDF-1 monoclonal antibody. We also describe the expression pattern of CXCR4 receptor by immunohistochemistry. Our results show that SDF-1 protein and mRNA are normally expressed by endothelial cells, pericytes, and either resident or explanted CD1a+ dendritic cells. Epithelial cells of sweat glands but not keratinocytes also express SDF-1. In various inflammatory skin diseases, a large number of mononuclear cells and fibroblasts in close contact with CXCR4-positive lymphocytic infiltrates also express SDF-1. CXCR4 was also detected in many different normal cell types, including endothelial and epithelial cells, which points to a role for SDF-1/CXCR4 cell signaling in vascular and epithelial homeostasis. The demonstration of SDF-1 expression in dendritic and endothelial cells provides new insights into the mechanisms of normal and pathological lymphocyte circulation and makes it possible to envisage a role for locally secreted SDF-1 in the selective incapacity of mucosal dendritic cells to support and propagate infection by X4 HIV isolates.  相似文献   

10.
Recently, it has been suggested that chemokine/receptor interactions determine the destination of the invasive tumor cells in several types of cancer. It has also been proposed that the stromal cell-derived factor-1 (SDF-1; CXCL12)/CXCR4 system might be involved lymph node metastasis in oral squamous cell carcinoma (SCC). In order to further clarify the role of the SDF-1/CXCR4 system in oral SCC, we generated CXCR4 stable transfectants (IH-CXCR4) using oral SCC cells, and compared them to IH, which did not express CXCR4 and which did not have lymph node metastatic potentials in vivo. We introduced enhanced green fluorescent protein (GFP) fused-CXCR4 into IH cells, and detected the GFP fluorescence in the cytoplasm and cell membrane in approximately 60% of the G418-resistant cells. This bulk-transfectant expressed a high level of CXCR4 mRNA and protein, and exhibited the characteristic calcium fluxes and chemotactic activity observed in treatment with SDF-1. SDF-1 biphasically activated extracellular signal-regulated kinase (ERK)1/2, but continuously activated Akt/protein kinase B (PKB) in IH-CXCR4 cells. Most importantly, IH-CXCR4 cells frequently metastasized to the cervical lymph node, but not to the distant organs in the orthotopic inoculation of nude mice. Furthermore, these lymph node metastases were inhibited by the treatment of a mitogen-activated protein kinase/ERK kinase inhibitor, U0126, or a phosphatidylinositol 3 kinase inhibitor, wortmannin. These results indicate that SDF-1/CXCR4 signaling mediates the establishment of lymph node metastasis in oral SCC via ERK1/2 or Akt/PKB pathway.  相似文献   

11.
The alpha-chemokine stromal-derived factor (SDF)-1 and the G-protein-coupled seven-span transmembrane receptor CXCR4 axis regulates the trafficking of various cell types. In this review, we present the concept that the SDF-1-CXCR4 axis is a master regulator of trafficking of both normal and cancer stem cells. Supporting this is growing evidence that SDF-1 plays a pivotal role in the regulation of trafficking of normal hematopoietic stem cells (HSCs) and their homing/retention in bone marrow. Moreover, functional CXCR4 is also expressed on nonhematopoietic tissue-committed stem/progenitor cells (TCSCs); hence, the SDF-1-CXCR4 axis emerges as a pivotal regulator of trafficking of various types of stem cells in the body. Furthermore, because most if not all malignancies originate in the stem/progenitor cell compartment, cancer stem cells also express CXCR4 on their surface and, as a result, the SDF-1-CXCR4 axis is also involved in directing their trafficking/metastasis to organs that highly express SDF-1 (e.g., lymph nodes, lungs, liver, and bones). Hence, we postulate that the metastasis of cancer stem cells and trafficking of normal stem cells involve similar mechanisms, and we discuss here the common molecular mechanisms involved in these processes. Finally, the responsiveness of CXCR4+ normal and malignant stem cells to an SDF-1 gradient may be regulated positively/primed by several small molecules related to inflammation which enhance incorporation of CXCR4 into membrane lipid rafts, or may be inhibited/blocked by small CXCR4 antagonist peptides. Consequently, strategies aimed at modulating the SDF-1-CXCR4 axis could have important clinical applications both in regenerative medicine to deliver normal stem cells to the tissues/organs and in clinical hematology/oncology to inhibit metastasis of cancer stem cells.  相似文献   

12.
Stromal cell-derived factor-1 (SDF-1 or CXCL12) is the physiologic ligand for the chemokine receptor CXCR4. CXCR4-mediated signalling regulates cell migration and apoptosis in certain haematopoietic and neuronal cells. Using gene profiling, we determined that CXCR4 is the only chemokine receptor for which mRNA expression is regulated during trophoblast differentiation in vitro. Based on the known effects of CXCR4 ligation, we hypothesized that CXCR4 activation may regulate placental trophoblast cell survival (i.e. protection from apoptosis), an important mechanism for the establishment and maintenance of the uteroplacental barrier. Human cytotrophoblasts (CTBs) were cultured in defined media and treated with graded doses of SDF-1 (10-100 ng/ml) or with an anti-CXCR4 neutralizing antibody. Exposure to anti-CXCR4 antibody reduced CTB cell numbers by 25-40%. Treatment with SDF-1 decreased the proportions of apoptotic terminal deoxynucleotidyl transferase-mediated dUTP-FITC nick-end labelling(+) cells (apoptotic index [AI] of 2.79+/-0.61% [control] versus 1.88+/-0.56% [SDF-1]; P<0.05) and caspase-activated cells (AI of 7.95+/-2.49% [control] versus 3.81+/-1.49% [SDF-1]; P<0.05). We determined that SDF-1 also activated the triple MAP Kinase isoforms ERK1/2 and p38 in trophoblasts. Immunocytochemistry confirmed SDF-1-induced nuclear translocation of phosphorylated ERK1/2. Blocking of ERK1/2 signalling with the specific inhibitor PD98059 reversed SDF-1-mediated inhibition of apoptosis (AI of 1.65+/-0.34 [SDF-1] versus 3.50+/-0.5 [SDF-1 + PD98059]; P<0.05), suggesting that SDF-1 acts through this pathway as a trophoblast survival factor. These results indicate that SDF-1/CXCR4 signalling stimulates anti-apoptotic pathways in cultured trophoblasts. This chemotactic ligand/receptor system may promote trophoblast survival during pregnancy. Alterations in SDF-1 and/or CXCR4 expression or function may be associated with specific pregnancy disorders.  相似文献   

13.
14.
The chemokine signaling system, which coordinates the basal and emergency trafficking of leukocytes, presumably coevolved with the hematopoietic system. To study its phylogenetic origins, we used the open reading frame (ORF) of the human chemokine receptor CXCR4 as a genomic probe, since in mammals it is the most highly conserved chemokine receptor known. CXCR4 cross-hybridized to genomic DNA from mouse and chicken, but not zebrafish, Drosophila, or Caenorhabditis elegans. Accordingly, we cloned the corresponding chicken cDNA. The ORF is 359 codons long versus 352 for human CXCR4, and encodes a protein 82% identical to human CXCR4. In a calcium flux assay of receptor function, CHO-K1 cells stably transfected with the chicken cDNA responded specifically to human SDF-1, the specific ligand for CXCR4, but not to a panel of other chemokines tested at 100 nM. SDF-1 activated the cells in a dose-dependent manner (EC50 approximately 5 nM), whereas parental CHO-K1 cells did not respond. The CHO-K1 cell transfectants also bound 125I-SDF-1 specifically. Leukocytes from chicken peripheral blood expressed chCXCR4 mRNA and responded to human SDF-1 in a calcium flux assay with an EC50 similar to that for chCXCR4-transfected CHO cells, suggesting that this response is mediated by native chCXCR4. Analysis of chicken genomic DNA with the chicken cDNA as probe revealed a pattern consistent with a single copy gene, and the absence of any closely related genes. mRNA was detected in brain, bursa, liver, small and large intestine, embryonal fibroblasts, and blood leukocytes, but not in stomach or pancreas. These results, which identify the first functional non-viral, non-mammalian chemokine receptor, suggest that the origins of a functional chemokine system extend at least to birds and suggest that, as in mammals, CXCR4 functions in many avian tissues.  相似文献   

15.
Stromal cell-derived factor-1alpha (SDF-1alpha) has pleiotropic effects on hematopoietic progenitor cells (HPCs). We have monitored podia formation, migration, proliferation, and cell-cell adhesion of human HPC under the influence of SDF-1alpha, a peptide agonist of CXCR4 (CTCE-0214), a peptide antagonist (CTCE-9908), and a nonpeptide antagonist (AMD3100). Whereas SDF-1alpha induced migration of CD34(+) cells in a dose-dependent manner, CTCE-0214, CTCE-9908, and AMD3100 did not induce chemotaxis in this concentration range albeit the peptides CTCE-0214 and CTCE-9908 increased podia formation. Cell-cell adhesion of HPC to human mesenchymal stromal cells was impaired by the addition of SDF-1alpha, CTCE-0214, and AMD3100. Proliferation was not affected by SDF-1alpha or its analogs. Surface antigen detection of CXCR4 was reduced upon treatment with SDF-1alpha or AMD3100 and it was enhanced by CTCE-9908. Despite the fact that all these molecules target the same CXCR4 receptor, CXCR4 agonists and antagonists have selective effects on different functions of the natural molecule.  相似文献   

16.
The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis   总被引:14,自引:0,他引:14  
Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4(+) BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4(+)VEGFR1(+) hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1-CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively.  相似文献   

17.
Proteoglycan 4 (PRG4), a critical protective factor in articular joints, is implicated in hematopoietic progenitor cell expansion and megakaryopoiesis. PRG4 loss-of-function mutations result in camptodactyly-arthropathy-coxa vara-pericarditis (CACP) syndrome, which is characterized primarily by precocious joint failure. PRG4 was identified as a novel parathyroid hormone (PTH) responsiveness gene in osteoblastic cells in bone, and was investigated as a potential mediator of PTH actions on hematopoiesis. Sixteen-week-old Prg4(-/-) mutant and Prg4(+/+) wild-type mice were treated daily with intermittent PTH (residues 1-34) or vehicle for 6 weeks. At 22 weeks of age, Prg4 mutant mice had increased peripheral blood neutrophils and decreased marrow B220(+) (B-lymphocytic) cells, which were normalized by PTH. The PTH-induced increase in marrow Lin(-)Sca-1(+)c-Kit(+) (hematopoietic progenitor) cells was blunted in mutant mice. Basal and PTH-stimulated stromal cell-derived factor-1 (SDF-1) was decreased in mutant mice, suggesting SDF-1 as a candidate regulator of proteoglycan 4 actions on hematopoiesis in vivo. PTH stimulation of IL-6 mRNA was greater in mutant than in wild-type calvaria and bone marrow, suggesting a compensatory mechanism in the PTH-induced increase in marrow hematopoietic progenitor cells. In summary, proteoglycan 4 is a novel PTH-responsive factor regulating immune cells and PTH actions on marrow hematopoietic progenitor cells.  相似文献   

18.
BACKGROUND: The CXC chemokine receptor 4 (CXCR4) is predominantly expressed on inactivated naive T lymphocytes, B lymphocytes, dendritic cells, and endothelial cells. CXC chemokine stromal cell-derived factor 1alpha (SDF-1alpha) is the only known ligand for CXCR4. To date, the CXCR4 expression and function of SDF-1alpha in basophils are unknown. OBJECTIVE: The purpose of this study was to investigate the expression of CXCR4 and functions of SDF-1alpha in basophils and to characterize the role of the CXCR4-SDF-1alpha receptor ligand pair in the allergic inflammation. METHODS: Basophil purification, flow cytometry, real-time quantitative RT-PCR assay, Northern blotting, intracellular free Ca(2+) change, chemotaxis assay, and histamine release assay were used. RESULTS: CXCR4 is abundantly expressed on peripheral blood resting basophils (91%). Likewise, CXCR4 messenger (m)RNA is expressed in resting basophils (3.2 x 10(3) copies per 2 x 10(2) cells). The existence of CXCR4 mRNA was also confirmed in basophils by means of Northern blot analysis. SDF-1alpha induces an increase in intracellular free Ca(2+) in basophils. SDF-1alpha activates basophils to chemotaxis (chemotactic index = 3.8) and histamine release (36% of total content) through CXCR4 on the cells. The chemokines SDF-1alpha, eotaxin, RANTES, monocyte chemoattractant protein (MCP) 1, and macrophage inflammatory protein (MIP) 1alpha have been demonstrated at different potencies in induction of chemotaxis (eotaxin > SDF-1alpha > RANTES congruent with MCP-1 > MIP-1alpha) and histamine release (MCP-1 congruent with SDF-1alpha > eotaxin > RANTES > MIP-1alpha). The optimal concentration seen for SDF-1alpha effects (chemotaxis and histamine release) on basophils was 100 ng/mL. CONCLUSION: These results indicate that the CXCR4-SDF-1alpha receptor ligand pair may be important for the recruitment and activation of the basophils, which is a characteristic effector cell of the allergic inflammation.  相似文献   

19.
Although stromal cell-derived factor-1 (SDF-1) plays an important role in hematopoiesis in the fetal liver, the role after birth remains to be clarified. We investigated the role of SDF-1 and its receptor, CXCR4, in 75 patients; this included controls and patients with viral hepatitis, liver cirrhosis, primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. Interestingly, SDF-1 appeared up-regulated in biliary epithelial cells (BEC) of inflammatory liver disease. Furthermore, in inflammatory liver diseases, SDF-1 was expressed by BEC of interlobular and septal bile ducts and by proliferated bile ductules. The message expression of SDF-1 in BEC was confirmed at a single-cell level by RT-PCR and laser capture microdissection. The plasma levels of SDF-1 were significantly higher in patients with liver diseases than in normal controls. Flow cytometric analysis of the surface expression of CXCR4 showed that most liver-infiltrating lymphocytes express CXCR4 and the intensity was up-regulated more significantly in liver-infiltrating lymphocytes than in peripheral blood lymphocytes. These results suggest that increased SDF-1 production by BEC may play an important role in the recruitment of CXCR4-positive inflammatory cells into the diseased livers. These data are significant because modulation of the SDF-1/CXCR4 interaction has therapeutic implications for inflammatory liver diseases.  相似文献   

20.
Stromal derived factor-1 alpha (SDF-1 alpha), the high-affinity ligand of CXC-chemokine receptor 4 (CXCR4), was added to human CD34(+) hematopoietic progenitor cells that can be induced to differentiate along the monocytic or megakaryocytic lineages. In control liquid cell cultures supplemented with two different cytokine cocktails: stem cell factor (SCF), interleukin-3 (IL-3), macrophage-colony stimulating factor (M-CSF), and 10% fetal calf serum (FCS), or, SCF and thrombopoietin (TPO), the expression of surface CXCR4 progressively increased in both the CD14(+) monocytic and CD41(+) megakaryocytic lineages. While SDF-1 alpha caused only modest effects on cells of the monocytic lineage, it induced profound down-regulation of CXCR4 in megakaryocytic cells at all stages of differentiation. Moreover, while SDF-1 alpha initially up-regulated the early megakaryocytic antigen CD41, at later time points (days 12-16) it induced down-regulation of the late megakaryocytic antigen CD42b. Consistently, at day 16, the number of mature megakaryocytes was significantly decreased in cultures supplemented with SDF-1 alpha. These findings indicate that, besides its primary role in regulating the retention of precursor cells in hematopoietic tissues, the SDF-1 alpha/CXCR4 system participates in the regulation of megakaryocytic development by stimulating the formation of immature megakaryoblasts and inhibiting the formation of mature megakaryocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号