首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The affinity and efficacy at four subtypes (A(1), A(2A), A(2B) and A(3)) of human adenosine receptors (ARs) of a wide range of 2-substituted adenosine derivatives were evaluated using radioligand binding assays and a cyclic AMP functional assay in intact CHO cells stably expressing these receptors. Similar to previous studies of the N(6)-position, several 2-substituents were found to be critical structural determinants for the A(3)AR activation. The following adenosine 2-ethers were moderately potent partial agonists (K(i), nM): benzyl (117), 3-chlorobenzyl (72), 2-(3-chlorophenyl)ethyl (41), and 2-(2-naphthyl)ethyl (130). The following adenosine 2-ethers were A(3)AR antagonists: 2,2-diphenylethyl, 2-(2-norbornan)ethyl, R- and S-2-phenylbutyl, and 2-(2-chlorophenyl)ethyl. 2-(S-2-Phenylbutyloxy)adenosine as an A(3)AR antagonist right-shifted the concentration-response curve for the inhibition by NECA of cyclic AMP accumulation with a K(B) value of 212 nM, which is similar to its binding affinity (K(i) = 175 nM). These 2-substituted adenosine derivatives were generally less potent at the A(1)AR in comparison to the A(3)AR, but fully efficacious, with binding K(i) values over 100 nM. The 2-phenylethyl moiety resulted in higher A(3)AR affinity (K(i) in nM) when linked to the 2-position of adenosine through an ether group (54), than when linked through an amine (310) or thioether (1960). 2-[2-(l-Naphthyl)ethyloxy]adenosine (K(i) = 3.8 nM) was found to be the most potent and selective (>50-fold) A(2A) agonist in this series. Mixed A(2A)/A(3)AR agonists have been identified. Interestingly, although most of these compounds were extremely weak at the A(2B)AR, 2-[2-(2-naphthyl)ethyloxy]adenosine (EC(50) = 1.4 microM) and 2-[2-(2-thienyl)-ethyloxy]adenosine (EC(50) = 1.8 microM) were found to be relatively potent A(2B) agonists, although less potent than NECA (EC(50) = 140 nM).  相似文献   

2.
The present study was designed to evaluate the effects of novel and recognised compounds at human recombinant A(2B) adenosine receptors expressed in Chinese hamster ovary (hA(2B)CHO), in human embryonic kidney 293 (hA(2B)HEK-293) and at endogenous A(2B) receptors in human mast cells (HMC-1). Saturation binding experiments performed using the new high affinity A(2B) adenosine radioligand [(3)H]-N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetra hydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide ([(3)H]-MRE 2029F20) revealed a single class of binding sites in hA(2B)CHO, hA(2B)HEK-293 and HMC-1 cells with K(D) (nM) of 1.65+/-0.18, 2.83+/-0.34, 2.62+/-0.27 and B(max) (fmol/mg protein) of 36+/-4, 475+/-50 and 128+/-15, respectively. The pharmacological profile of new compounds, determined in inhibition binding experiments in hA(2B)HEK-293 cells using [(3)H]-MRE 2029F20, showed a rank order of potency typical of the A(2B) receptors with K(i) values in the range 3.2-28nM. In functional assays, recognised agonists and antagonists were studied by evaluating their capability to modulate the cAMP production in hA(2B)CHO and in HMC-1 cells. Novel compounds were able to decrease NECA-stimulated cAMP production in hA(2B)CHO and in HMC-1 cells showing a high potency. New compounds were also able to inhibit cAMP levels in the absence of NECA and in the presence of forskolin stimulation in hA(2B)CHO and in HMC-1 cells. In HEK-293 cells MRE 2029F20 reduced cAMP basal levels with an IC(50) value of 2.9+/-0.3nM. These results suggest that novel compounds are antagonists with an inverse agonist activity in recombinant and native human A(2B) receptors.  相似文献   

3.
1. Extracellular guanosine has diverse effects on many cellular components of the central nervous system, some of which may be related to its uptake into cells and others to its ability to release adenine-based purines from cells. Yet other effects of extracellular guanosine are compatible with an action on G-protein linked cell membrane receptors. 2. Specific binding sites for [(3)H]-guanosine were detected on membrane preparations from rat brain. The kinetics of [(3)H]-guanosine binding to membranes was described by rate constants of association and dissociation of 2.6122 x 10(7) M(-1) min(-1) and 1.69 min(-1), respectively. A single high affinity binding site for [(3)H]-guanosine with a K(D) of 95.4 +/- 11.9 nM and B(max) of 0.57 +/- 0.03 pmol mg(-1) protein was shown. This site was specific for guanosine, and the order of potency in displacing 50 nM [(3)H]-guanosine was: guanosine=6-thio-guanosine > inosine > 6-thio-guanine > guanine. Other naturally occurring purines, such as adenosine, hypoxanthine, xanthine caffeine, theophylline, GDP, GMP and ATP were unable to significantly displace the radiolabelled guanosine. Thus, this binding site is distinct from the well-characterized receptors for adenosine and purines. 5. The addition of GTP produced a small concentration-dependent decrease in guanosine binding, suggesting this guanosine binding site was linked to a G-protein. 6. Our results therefore are consistent with the existence of a novel cell membrane receptor site, specific for guanosine.  相似文献   

4.
Tritiation of the dopamine D(4) receptor selective agonist A-369508 ([2-[4-(2-cyanophenyl)-1-piperazinyl]-N-(3-methylphenyl) acetamide) has provided a radioligand for the characterization of dopamine D(4) receptors. [(3)H] A-369508 binds with high affinity to the major human dopamine D(4) receptor variants D(4.2), D(4.4) and D(4.7) (K(d)=1.7, 4, and 1.2 nM, respectively). It also binds to the rat dopamine D(4) receptor, (K(d)=4.4 nM), implying similar binding affinity across human and rat receptors. A-369508 shows >400-fold selectivity over D(2L), >350-fold selectivity over 5-HT(1A) and >700-1,000-fold selectivity over all other receptors tested. Agonist activity determined by inhibition of forskolin-induced cAMP in Chinese hamster ovary cells transfected with the human dopamine D(4.4) receptor (EC(50)=7.5 nM, intrinsic activity=0.71) indicates that A-369508 is a potent agonist at the human dopamine D(4) receptor. Similar data was observed in other functional assays. [(3)H] A-369508 binds to a single, high affinity site on membranes containing the human dopamine D(4.4) receptor. When compared to the D(2)-like antagonist [(3)H] spiperone, competition binding for agonists like dopamine and apomorphine were 2-10-fold more potent with [(3)H] A-369508, while the antagonists clozapine, haloperidol and L-745870 bind with similar affinity to both ligands. Binding to rat brain regions demonstrated that the most abundant area was cerebral cortex (51.2 fmol/mg protein) followed by hypothalamus, hippocampus, striatum and cerebellum. [(3)H] A-369508 is a useful tool to define the localization and physiological role of dopamine D(4) receptors in central nervous system and can facilitate measuring accurate affinities (K(i)) for structure/activity relationship studies designed to identify dopamine D(4) receptor selective agonists.  相似文献   

5.
A vesicular preparation derived from the cerebral cortex of the rat was used to obtain, under the same experimental condition, binding parameters and stimulation data for cyclic AMP. Two analogues of adenosine were employed in the binding studies: [3H]NECA, a mixed A1/A2 agonist and [3H]CHA, a more selective A1 agonist. The [3H]CHA seemed to bind to a single high affinity site (Kd = 1.31 nM, Bmax = 0.327 pmol bound); saturation data for [3H]NECA were resolved for the presence of a high and a low affinity binding site (Kd1 = 3.08 nM, Bmax1 0.115 pmol bound; Kd2 = 204 nM, Bmax2 1.59 pmol bound), but only when calcium ions were omitted from the incubation medium. At 0 degree C, [3H]NECA bound to a single, low affinity site; the presence of calcium ions (1 mM) significantly reduced the affinity of [3H]NECA (Kd 419 nM), with respect to the absence of calcium (Kd 208 nM), without affecting the Bmax value. The influence of calcium ions was also investigated on the binding of [3H]CHA and a reduction of the Bmax value (36%) was found. Regardless of the presence or the absence of calcium ions, NECA stimulated accumulation of cyclic AMP in a dose-dependent way with an EC50 of 2.79 microM; this value did not correlate with the Kd of the low affinity binding site for [3H]NECA. Thus, the purpose of establishing a correlation between binding sites for analogues of adenosine and the site in the cerebral cortex through which the accumulation of cyclic AMP is induced, was not achieved. It is concluded that the stimulatory effect of analogues of adenosine on adenylate cyclase might not be a receptor-mediated effect. The complex influence of calcium ions on affinity and binding capacity of analogues of adenosine is discussed.  相似文献   

6.
Adenosine A(3) receptors are promising drug targets for a number of conditions like inflammatory diseases including asthma, ischemic injury or certain types of cancer. Consequently, intense efforts are dedicated to the development of selective A(3) agonists and antagonists. The only tritiated agonist that is available for radioligand binding is the nonselective [(3)H]5'-N-ethylcarboxamidoadenosine ([(3)H]NECA). Based on a recently characterized series of 2-substituted adenosine receptor agonists we developed a tritiated selective A(3) radioligand with high affinity. From this series 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) with a K(i)-value of 1.1 nM at the human A(3) subtype was chosen. HEMADO is 300-fold selective versus the A(1) subtype, and 1100-fold and more than 25,000-fold selective compared to the adenosine A(2A) and A(2B) receptors, respectively. The tritiated derivative [(3)H]HEMADO exhibited the same affinity as the unlabeled precursor. In concentrations up to 10 nM no specific binding to adenosine A(1), A(2A) or A(2B) receptors was observed confirming the high selectivity for adenosine A(3) receptors. Characterization of [(3)H]HEMADO in radioligand binding studies revealed reversible binding to the human adenosine A(3) subtype. In saturation binding studies for the A(3) subtype a K(D)-value of 1.1 nM was determined. Nonspecific binding at a radioligand concentration of 1 nM amounted to 1-2% of total binding. Competition binding with a panel of adenosine receptor ligands clearly confirmed the correct A(3) pharmacology of the binding site labeled by [(3)H]HEMADO. With [(3)H]HEMADO we present a tritiated agonist with high affinity and A(3)-selectivity and very low nonspecific binding. [(3)H]HEMADO is a useful tool for specific screening for A(3) receptor agonists and antagonists in improved radioligand binding assays with the human subtype.  相似文献   

7.
N-Ethylmaleimide (NEM) differentially modified Ri adenosine receptors in rat fat cells and Ra adenosine receptors in human platelets. Pretreatment of rat fat cell membranes with NEM inhibited the binding of the agonist (-)N6-phenylisopropyl[3H]adenosine [( 3H]PIA), but did not affect the binding of the antagonist 1,3-diethyl-8-[3H]phenylxanthine [( 3H]DPX). The IC50-value for inhibition of [3H]PIA binding was 0.067 mM. Saturation of [3H]PIA binding revealed that NEM converts the high affinity form of the Ri receptor into a low affinity form. NEM also decreased the potency of agonists to displace [3H]DPX binding, as shown by a 74-fold shift of the Ki-value for (-)PIA, whereas antagonist-induced displacement remained unchanged. In addition, low concentrations of NEM (0.01-0.1 mM) attenuated the (-)PIA-induced inhibition of adenylate cyclase activity of rat fat cells. At higher concentrations (0.1-1 mM) NEM reduced basal and stimulated adenylate cyclase activities in rat fat cells and human platelets, presumably by inactivation of the catalytic unit. Radioligand binding of 5'-N-ethylcarboxamido[3H]-adenosine [( 3H]NECA) to Ra adenosine receptors of human platelet membranes was not changed by NEM at low radioligand concentrations. Saturation analysis of [3H]-NECA binding showed that NEM led to an apparent increase of agonist affinity with a concomitant decrease in total [3H]NECA binding sites. These results suggest that NEM reduces the affinity of Ri adenosine receptors, probably by affecting the inhibitory guanine nucleotide binding protein (Ni), whereas [3H]NECA binding sites are inversely affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Adenosine receptors in the smooth muscle cell line DDT1 MF-2 were studied by radioligand binding using the A1 receptor-selective antagonist [3H]8-cyclopentyl-1,3-dipropylxanthine [( 3H]DPCPX) as the ligand. Binding characteristics were similar in intact cells and in membranes (KD value of approximately 1 nM). The maximum binding amounted to 183 fmol/10(6) intact cells or 344 fmol/mg of membranes. To characterize the receptor, competition experiments were performed by inhibiting [3H]DPCPX binding with several adenosine agonists and antagonists. Adenosine receptor antagonists appeared to bind to a single class of binding site, both in membranes and intact cells. The order of potency was DPCPX = CGS 15943A greater than 8-cyclopentyl-1,3-dimethylxanthine greater than 8-(p-sulfophenyl)-theophylline greater than 3-isobutyl-1-methylxanthine greater than theophylline. Competition curves with adenosine agonists in membranes were best described by a two-site rather than a one-site model. At equilibrium in intact cells, only a single site was detected at both 4 degrees and 25 degrees. However, short term incubations (1-4 min) at 25 degrees showed biphasic binding curves in intact cells. The equilibrium KD values for intact cells were similar to the low affinity KD values in membranes (KL). The order of potency was N6-cyclopentyladenosine greater than or equal to (-)-(R)-N6-phenylisopropyladenosine[(R)-PIA] greater than or equal to N6-cyclohexyl adenosine greater than 5'-N-ethylcarboxamidoadenosine (NECA) greater than 2-chloroadenosine greater than adenosine (intact cells only) greater than 2-phenylaminoadenosine (CV 1808). Treatment of cells with pertussis toxin ADP-ribosylated GTP-binding proteins and eliminated the high affinity agonist binding in membranes but did not affect binding to intact cells. The addition of GTP (100 microM) also shifted the competition curves from bi- to monophasic curves in membranes. Adenosine receptor agonists inhibited the formation of cAMP induced by isoprenaline (IC50 for (R)-PIA, 0.4 nM). This inhibition could be prevented with adenosine receptor antagonists. Pretreatment with pertussis toxin also reversed these effects and actually revealed functional A2 receptors, as shown by the formation of cAMP induced by NECA. In conclusion, the equilibrium binding of A1 receptor agonists to intact smooth muscle cells is similar to the low affinity binding observed in membranes. In addition, it is suggested that agonists may transiently convert the A1 receptor from a "resting" low affinity state to a high affinity state coupled to a GTP-binding protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Binding of the novel adenosine A(2A) receptor-selective antagonist radioligand [2-(3)H]-4-(2-[7-amino-2-(2-furyl)(1,2,4)triazolo(2,3-a)(1,3,5,)triazin-5-yl amino]ethyl)phenol ([(3)H]ZM241385) was examined using particulate preparations and frozen sections of rat brain. In membranes from the rat striatum, binding was saturable, reversible and temperature-dependent. Analysis of saturation isotherms indicated that [(3)H]ZM241385 bound with high affinity (K(d) of 0.84 nM), high density (1680 fmol mg protein(-1)) and with a high proportion of specific binding (93% at 1 nM radioligand). Examination of competition profiles indicated that [(3)H]ZM241385 bound to sites with an A(2A) adenosine receptor-like rank order. The presence of guanosine 5'-(3-thio)-triphosphate failed to alter either [(3)H]ZM241385 binding or agonist competition for [(3)H]ZM241385 binding. Autoradiographic analysis of [(3)H]ZM241385 binding to frozen sections of rat brain indicated specific binding to the rat striatum of similar affinity (K(d) of 0.43 nM) and susceptibility to adenosine receptor ligands. At 2 nM [(3)H]ZM241385, specific binding comprised 95+/-1% total binding. In the hippocampus and frontal cortex, binding of [(3)H]ZM241385 failed to saturate and was of lower density. Taken together, these results indicate that [(3)H]ZM241385 should prove to be a useful radioligand in the characterisation of adenosine A(2A) receptors.  相似文献   

10.
Until recently, the characterization of adenosine A(2B) receptors has been hampered by the lack of high affinity radioligands. This study describes the synthesis and in vitro characterization of the radiolabeled derivative of OSIP339391, a novel, potent, and selective pyrrolopyrimidine A(2B) antagonist. OSIP339391 had a selectivity of greater than 70-fold for A(2B) receptors over other human adenosine receptor subtypes. The radiolabel was introduced by hydrogenation of the acetylenic precursor with tritium gas resulting in the incorporation (on average) of three tritium atoms in the molecule, yielding a ligand with specific activity of 87Ci/mmol (3.2TBq/mmol). Using membranes from HEK-293 cells expressing the human recombinant A(2B) receptor, [3H]OSIP339391 was characterized in kinetic, saturation, and competition binding experiments. From the association and dissociation rate studies, the affinity was 0.41nM and in close agreement with that found in saturation binding experiments (0.17nM). In competition, binding studies using 0.5nM [3H]OSIP339391, the affinity of a range of agonists and antagonists was consistent with previously reported data. Thus, [3H]OSIP339391 is a novel, selective, and high affinity radioligand that can be a useful tool in the further exploration and characterization of recombinant and endogenous adenosine A(2B) receptors.  相似文献   

11.
BACKGROUND AND PURPOSE: High-affinity, subtype-selective antagonists of the neurosteroid binding sites of GABA(A) receptors are not available. We have characterized an allopregnanolone derivative as an antagonist of cerebellar GABA(A) receptors with nanomolar affinity. EXPERIMENTAL APPROACH: Receptor binding and electrophysiological methods were used for the allosteric modulation of cerebellar GABA(A) receptors by an allopregnanolone derivative, (20R)-17beta-(1-hydroxy-2,3-butadienyl)-5alpha-androstane-3alpha-ol (HBAO). GABA(A) receptors of rat cerebellar membranes were labelled with the chloride channel blocker [(3)H]ethynylbicycloorthobenzoate (EBOB). The ionophore function of GABA(A) receptors was studied by whole-cell patch clamp electrophysiology in cultured rat cerebellar granule and cortical cells. KEY RESULTS: Partial displacement of cerebellar [(3)H]EBOB binding by nanomolar HBAO was attenuated by 0.1 mM furosemide, an antagonist of alpha(6) and beta(2-3) subunit-containing GABA(A) receptors. Displacement curves of HBAO were reshaped by 30 nM GABA and shifted to the right. However, the micromolar potency of full displacement by allopregnanolone was not affected by 0.1 mM furosemide or 30 nM GABA. The nanomolar, but not the micromolar phase of displacement of [(3)H]EBOB binding by GABA was attenuated by 100 nM HBAO. Submicromolar HBAO did not affect [(3)H]EBOB binding to cortical and hippocampal GABA(A) receptors. HBAO up to 1 microM did not affect chloride currents elicited by 0.3-10 microM GABA, while it abolished potentiation by 1 microM allopregnanolone with nanomolar potency in cerebellar but not in cortical cells. Furosemide attenuated cerebellar inhibition by 100 nM HBAO. CONCLUSIONS AND IMPLICATIONS: HBAO is a selective antagonist of allopregnanolone, a major endogenous positive modulator via neurosteroid sites of cerebellar (probably alpha(6)beta(2-3)delta) GABA(A) receptors.  相似文献   

12.
BACKGROUND AND PURPOSE: Kinins have an important role in inflammatory cystitis and in animal pathophysiological models, by acting on epithelium, fibroblasts, sensory innervation and smooth muscle. The aim of this study was to characterize the receptors responsible for direct motor responses induced by kinins on human detrusor. EXPERIMENTAL APPROACH: Human detrusor cells from biopsies were isolated and maintained in culture. B(1) and B(2) kinin receptors were characterized by means of radioligand and functional experiments (PI accumulation and PGE(2) release). KEY RESULTS: [(3)H]-[desArg(9)]-Lys-BK and [(3)H]-BK saturation studies indicated receptor density (B(max)) and K (d) values of 19 or 113 fmol mg(-1), and 0.16 or 0.11 nM for the B(1) or B(2) receptors, respectively. Inhibition binding studies indicated the selectivity of the B(1) receptor antagonist [desArg(9)Leu(8)]-Lys-BK and of the B(2) receptor antagonists Icatibant and MEN16132. [DesArg(9)]-Lys-BK and BK induced PI accumulation with an EC(50) of 1.6 and 1.4 nM and different maximal responses (E(max) of [desArg(9)]-Lys-BK was 10% of BK). BK also induced prostaglandin E(2) release (EC(50) 2.3 nM), whereas no response was detected with the B(1) receptor agonist. The incubation of detrusor smooth muscle cells with interleukin 1beta (IL-1beta) or tumour necrosis factor-alpha (TNF-alpha) (10 ng ml(-1)) induced a time-dependent increase in radioligand-specific binding, which was greater for the B(1) than for the B(2) receptor. CONCLUSIONS AND IMPLICATIONS: Human detrusor smooth muscle cells in culture retain kinin receptors, and represent a suitable model to investigate the mechanisms and changes that occur under chronic inflammatory conditions.  相似文献   

13.
LY395153 is a member of a newly described class of arylpropylsulfonamide AMPA receptor potentiators. Here, we characterize and compare [(3)H]LY395153 binding to native AMPA receptors from rat cerebral cortex and recombinant human GluR4(flip) receptors expressed in HEK293 cells. L-Glutamate and AMPA increased [(3)H]LY395153 binding to both native and recombinant AMPA receptors in a concentration dependent and stereoselective manner; this effect of AMPA receptor agonists reflects an apparent increase in ligand affinity. In the presence of L-glutamate (500 microM), [(3)H]LY395153 binding is saturable; the affinity of this radioligand is slightly, albeit statistically significantly higher at human GluR4(flip) (K(d)=55.6+/-5.3nM) than rat cortical receptors (K(d)=110+/-15.1nM). NBQX competitively inhibited L-glutamate-induced increases in [(3)H]LY395153 binding in both native and recombinant receptors, whilst LY303070 (the active isomer of GYKI53655) noncompetitively inhibited this effect in native, but not recombinant receptors. The prototypic AMPA receptor potentiator cyclothiazide competitively inhibited [(3)H]LY395153 binding with a potency (K(i) approximately 7 microM) comparable to EC(50) values reported in electrophysiological studies. In contrast, the structurally unrelated AMPA receptor potentiator CX 516 did not inhibit [(3)H]LY395153 binding at concentrations of up to 600 microM. Further, at concentrations reported to facilitate AMPA receptor desensitization, thiocyanate acts as a competitive inhibitor of [(3)H]LY395153 binding. [(3)H]LY395153 binding was unaffected by a variety of structurally (and mechanistically) diverse compounds tested at a concentration of 10 microM. These data indicate [(3)H]LY395153 is a useful probe for labeling a unique modulatory site on both native and recombinant AMPA receptors.  相似文献   

14.
Here we determine for norepinephrine, (5-bromo-6-(2-imidazolin-2-ylamino)quinoxaline) (UK14,304), 5,6,7,8-tetrahydro-6-(2-propenyl)-4H-thiazolo[4,5-d]azepin-2-amine dihydrochloride (BHT-920), (2-[3-hydroxy-2,6-dimethyl-4-t-butylbenzyl]-2-imidazoline) (oxymetazoline), and ((R)-3-Hydroxy-alpha-[(methylamino)methyl]-benzenemethanol hydrochloride) (phenylephrine), affinities using a radiolabeled agonist and antagonist, and potency and efficacy values in membrane [(35)S]guanosine-5'-O-(3-thiotriphosphate) ([(35)S]GTP gamma S) binding and cAMP cellular inhibition assays, in Chinese hamster ovary cells (CHO-K1) expressing the human alpha(2c)-adrenoceptor. These cells express a high ratio of receptor to G-protein because each agonist, but not several antagonists, displaced [(3)H]UK14,304 with higher affinity than [(3)H]rauwolscine. The rank order of potency of high affinity K(i) and EC(50) in both functional assays was norepinephrine > or =UK14,304>BHT-920>oxymetazoline>phenylephrine. The receptor reserve of G-protein activation and cAMP responses was measured with the irreversible antagonist, benextramine; K(A) values of norepinephrine or UK14,304 were similar (289, 271 or 150, 163 nM, respectively). A 20-fold greater receptor occupancy was required for agonist-induced half-maximal [(35)S]GTP gamma S binding compared to cAMP inhibition, indicating significant signal amplification in cells. Therefore, the G-protein activation assay is better at distinguishing full and partial agonists.  相似文献   

15.
Caloporoside is a natural active fungal metabolite, which was isolated from Caloporous dichrous and was described to exhibit antibacterial, antifungal and phospholipase C inhibitory activity. We have previously reported evidence that related beta-linked compounds, lactose and octyl-beta-d-mannoside, bind and functionally modulate rodent GABA(A) receptors, respectively. We have characterized the binding pharmacology of synthetic caloporoside and two further congeners, 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid and octyl-beta-d-glucoside on GABA(A) receptors using a [35S]-t-butylbicyclophosphoorothionate (TBPS) radioligand binding assay. Caloporoside and 2-hydroxy-6-([(16R)-(beta-d-mannopyranosyloxy)heptadecyl]) benzoic acid produced concentration-dependent complete inhibition of specific [35S] TBPS binding with overall apparent IC50 values of 14.7+/-0.1 and 14.2+/-0.1 microM, respectively. In contrast, octyl-beta-d-glucoside elicited a concentration-dependent stimulation of specific [35S] TBPS binding (E(max)=144+/-4%; EC50=39.2+/-22.7 nM). The level of stimulation was similar to that elicited by diazepam (E(max)=147+/-6%; EC50=0.8+/-0.1 nM), and was occluded by GABA (0.3 microM). However, the three test compounds failed to elicit any significant effect (positive or negative) upon [3H] flunitrazepam or [3H] muscimol binding, indicating that they did not bind directly, or allosterically couple, to the benzodiazepine or agonist binding site of the GABA(A) receptor, respectively. The constituent monosaccharide, glucose, and both the closely related congeners octyl-beta-d-glucoside or hexyl-beta-d-glucoside have no significant effect upon [35S] TBPS binding. These data, together, provide strong evidence that a beta-glycosidic linkage and chain length are crucial for the positive modulation of [35S] TBPS binding to the GABA(A) receptor by this novel chemical class.  相似文献   

16.
The ability of [3H]5′-N-ethylcarboxamidoadenosine (NECA) to specifically bind recognition sites on intact Chinese hamster ovary (CHO) cells was examined in the present study. Saturation experiments indicated that [3H]NECA bound with moderate affinity (Kd = 400 nM) and large capacity (apparent Bmax = 3.2 pmol/105 cells) to intact CHO cells. No specific binding to these cells was observed with the A1-selective agonist 20 nM [3H]cyclohexyladenosine or with the A2-selective agonist 20 nM [3H]CGS 21680. Competition studies revealed that close structural analogs of NECA and the xanthine phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX) inhibited 20 nM [3H]NECA binding with moderate affinity (IC50s 0.5–15 μM). Adenosine also showed weak activity (IC50 = 100 μM) for inhibiting [3H]NECA binding. However, a wide variety of prototypic adenosine receptor agonists and antagonists did not significantly interact with these [3H]NECA recognition sites on CHO cells. [3H]NECA binding to CHO cell membranes was not sensitive to guanine nucleotides and NECA did not stimulate cAMP formation. These results are consistent with the previously demonstrated ability of [3H]NECA to bind low affinity adenosine binding proteins (adenotin proteins), as well as, adenosine receptors in a variety of mammalian tissues. The present results further indicate that [3H]NECA selectively labels in adenotin-like recognition site on intact CHO cells in the absence of detectable binding to high affinity adenosine receptors. © 1993 Wiley-Liss, Inc.  相似文献   

17.
[(3)H]2-(2-benzofuranyl)-2-imidazoline (2-BFI) and [(3)H]idazoxan are the most used tools to characterise imidazoline I(2) receptors. We evaluated the binding of both radioligands to human postmortem frontal cortex membranes. Saturation binding analyses revealed that [(3)H]idazoxan (in the presence of 2 microM efaroxan to avoid radioligand binding to alpha(2)-adrenoceptors and imidazoline I(1) receptors) and [(3)H]2-BFI bound with high affinity to an apparent single population of sites. However, in competition studies whereas [(3)H]idazoxan (10 nM) binding was displaced monophasically by idazoxan and 2-BFI, both drugs displayed biphasic curves for [(3)H]2-BFI (1 nM). The proportion of the low-affinity binding site increased from 17% to 25% when 10 nM [(3)H]2-BFI was displaced by idazoxan. Amiloride inhibited [(3)H]2-BFI (10 nM) binding with low affinity and in a monophasic way. These data indicate that [(3)H]2-BFI recognises in human postmortem brain membranes a second binding site different from the imidazoline I(2) receptors labelled by [(3)H]idazoxan.  相似文献   

18.
1 To determine the binding characteristics of a highly potent agonist for protease-activated receptor-2 (PAR2), 2-furoyl-Leu-Ile-Gly-Arg-Leu-amide (2-furoyl-LIGRL-NH(2)), whole-cell binding assays were performed utilising a radioactive ligand, [(3)H]2-furoyl-LIGRL-NH(2). 2 Specific binding of [(3)H]2-furoyl-LIGRL-NH(2) was observed in NCTC2544 cells, dependent upon PAR2 expression, and competitively displaced by the addition of unlabeled PAR2 agonists. Scatchard analysis of specific saturation binding suggested a single binding site, with K(d) of 122+/-26.1 nM and a corresponding B(max) of 180+/-6 f mol in 3.0 x 10(5) cells. 3 The relative binding affinities of a series of modified PAR2 agonist peptides obtained from competition studies paralleled their relative EC(50) values for Ca(2+) mobilisation assays, indicating improved binding affinities by substitution with 2-furoyl at the N-terminus serine. 4 Pretreatment of cells with trypsin reduced specific binding of [(3)H]2-furoyl-LIGRL-NH(2), demonstrating direct competition between the synthetic agonist peptide and the proteolytically revealed tethered ligand for the binding site of the receptor. 5 In HCT-15 cells endogenously expressing PAR2, the binding of [(3)H]2-furoyl-LIGRL-NH(2) was displaced by addition of unlabeled ligands, Ser-Leu-Ile-Gly-Lys-Val (SLIGKV-OH) or 2-furoyl-LIGRL-NH(2). The relative binding affinity of 2-furoyl-LIGRL-NH(2) to SLIGKV-OH was comparable to its relative EC(50) value for Ca(2+) mobilisation assays. 6 The binding assay was successfully performed in monolayers of PAR2 expressing NCTC2544 and human umbilical vein endothelial cells (HUVEC), in 96- and 24-well plate formats, respectively. 7 These studies indicate that [(3)H]2-furoyl-LIGRL-NH(2) binds to human PAR2 at its ligand-binding site. The use of this radioligand will be valuable for characterising chemicals that interact to PAR2.  相似文献   

19.
1. The binding of 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]-DPCPX), an antagonist radioligand selective for adenosine A1 receptors, was studied in rat duodenum, colon muscularis mucosae and longitudinal muscle, urinary bladder and vasa deferentia. 2. [3H]-DPCPX bound with high affinity to a single site in all membrane preparations studied with the exception of the rat urinary bladder in which no specific binding was detected. The affinity (Kd) of the binding site for [3H]-DPCPX was similar in all membrane preparations, the colon longitudinal muscle (1.18 +/- 0.47 nM), colon muscularis mucosae (0.84 +/- 0.15 nM), duodenum (1.59 +/- 0.18 nM) and vasa deferentia (0.93 +/- 0.17 nM). The density of [3H]-DPCPX binding sites was similar in the duodenum (38.8 +/- 4 fmol mg-1 protein), muscularis mucosae (43 +/- 3.5 fmol mg-1 protein) and vasa deferentia (43.3 +/- 12.2 fmol mg-1 protein), but in the longitudinal muscle 6-7 fold more binding sites (295 +/- 70 fmol mg-1 protein) were identified. 3. Inhibition studies using DPCPX (0.1-100 nM), N6-cyclopentyladenosine (CPA) (0.1-100 nM), 5'-N-ethylcarboxamidoadenosine (NECA) (2 nM-10 microM) and (R)-N6-phenylisopropyladenosine (R-PIA) (1 nM-1 microM) to displace the binding of [3H]-DPCPX at a concentration around the Kd value (1 nM), demonstrated an order of potency of displacement in all tissues of DPCPX > or = CPA > R-PIA > NECA. This potency order is characteristic of an A1 receptor, indicating that [3H]-DPCPX binds to adenosine A1 receptors in the rat duodenum, colon and vasa deferentia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The activation of the human A(3) adenosine receptor (AR) by a wide range of N(6)-substituted adenosine derivatives was studied in intact CHO cells stably expressing this receptor. Selectivity of binding at rat and human ARs was also determined. Among N(6)-alkyl substitutions, small N(6)-alkyl groups were associated with selectivity for human A(3)ARs vs. rat A(3)ARs, and multiple points of branching were associated with decreased hA(3)AR efficacy. N(6)-Cycloalkyl-substituted adenosines were full (/=6 carbons) hA(3)AR agonists. N(6)-(endo-Norbornyl)adenosine 13 was the most selective for both rat and human A(1)ARs. Numerous N(6)-arylmethyl analogues, including substituted benzyl, tended to be more potent in binding to A(1) and A(3) vs. A(2A)ARs (with variable degrees of partial to full A(3)AR agonisms). A chloro substituent decreased the efficacy depending on its position on the benzyl ring. The A(3)AR affinity and efficacy of N(6)-arylethyl adenosines depended highly on stereochemistry, steric bulk, and ring constraints. Stereoselectivity of binding was demonstrated for N(6)-(R-1-phenylethyl)adenosine vs. N(6)-(S-1-phenylethyl)adenosine, as well as for the N(6)-(1-phenyl-2-pentyl)adenosine, at the rat, but not human A(3)AR. Interestingly, DPMA, a potent agonist for the A(2A)AR (K(i)=4nM), was demonstrated to be a moderately potent antagonist for the human A(3)AR (K(i)=106nM). N(6)-[(1S,2R)-2-Phenyl-1-cyclopropyl]adenosine 48 was 1100-fold more potent in binding to human (K(i)=0.63nM) than rat A(3)ARs. Dual acting A(1)/A(3) agonists (N(6)-3-chlorobenzyl- 29, N(6)-(S-1-phenylethyl)- 39, and 2-chloro-N(6)-(R-phenylisopropyl)adenosine 53) might be useful for cardioprotection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号