首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Serum bile acids were group-separated by ion exchange chromatography on diethylaminohydroxypropyl Sephadex LH-20 into unconjugated bile acids and bile acids conjugated with either glycine, taurine, glucuronic acid or sulphuric acid. The conjugate moiety was hydrolysed by treatment with a combination of Helix pomatia and cholylglycine hydrolase and the released bile acids analysed by gas liquid chromatography/mass spectrometry. Analysis of fasting and postprandial serum from six healthy subjects showed that, in addition to the primary bile acids, cholic (C) and chenodeoxycholic acid (CDC), secondary bile acids were present to varying extents. Unconjugated serum bile acids were found in four of the six subjects. Glycine and taurine conjugates of C and CDC and their glucuronides and sulphates were found in all subjects. The postprandial increase of serum bile acids was mainly due to increase of the glycine conjugates of C and CDC. After the meal, the ratio C:CDC in glycine and taurine conjugates shifted to lower values.  相似文献   

2.
Abstract. Urinary, biliary and serum bile acids were studied in three patients before and after percutaneous transhepatic drainage for total bile duct obstruction.
Before drainage high urinary excretion often different bile acids occurred. The percentage distribution was: cholic and chenodeoxycholic acid (66–86%), hyo-cholic (3–16%), 3β 12α-dihydroxy-5-cholenoic (3–6%) and 3β-hydroxy-5-cholenoic acid (2–8%). These acids were regularly found in serum. In addition small amounts (less than 2%) of norcholic, allocholic, 3β, 7α-dihydroxy-5β-cholanoic, 3α, 7α-dihydroxy-5α-cholanoic and lithocholic acid were excreted in urine. Trace amounts of these bile acids were found in serum.
After start of drainage biliary bile acid excretion increased rapidly during the first day, dropped to a minimum during the second or third day and then slowly increased again. In spite of normal volumes of bile produced, the total serum bile acids and the urinary excretion of bile acids remained increased during a drainage period of 19 days. The bile acids were of the same type as observed during cholestasis. In serum the increase was mainly due to high concentrations of chenodeoxycholic and 3β-hydroxy-5-cholenoic acid, as sulphate esters.
Glycine and taurine conjugates of cholic, chenodeoxycholic and hyocholic acid were mainly excreted in bile. Bile acid sulphate esters were only present in trace amounts in bile and were mainly excreted in urine. This, combined with low renal clearance, explains the elevated serum levels of sulphate esters of chenodeoxycholic and 3β-hydroxy-5-cholenoic acid conjugates.  相似文献   

3.
On separate occasions (24-14C)cholic acid and (24-14C)chenodeoxycholic acid were administered intravenously to patients with liver cirrhosis and the isotope excretion in urine and faeces monitored. Bile acids in serum, urine and faeces were extracted and separated into unconjugated bile acids, glycine- and taurine conjugates, glucuronides and sulphates. Individual bile acid conjugates were separated by high-performance liquid chromatography (HPLC) and the unconjugated bile acids were separated by gas-liquid chromatography (GLC) and identified by gas chromatography-mass spectrometry (GC-MS). Individual bile acid conjugates were quantified and their isotope contents determined. In serum, isotope contents declined rapidly during the first day, followed by a markedly slow rate of reduction. In accordance with this, the excretion of isotope from the patients was found to be very slow and the routes of bile acid excretion were changed, which resulted in an increased ratio of urine/faeces isotope excretion. Studies of the ratio of labelled to endogenous bile acid conjugates indicated that a continuous transformation of the labelled compounds occurred during the period of study. As judged from serum bile acids, conjugation to glycine- or taurine conjugates was rapid. The specific activities of labelled sulphate esters were consistently lower than for other conjugates during the 300-min observation period. During the first day, the urinary bile acids contained a high proportion of unconjugated labelled bile acids, which gradually disappeared. Labelled primary bile acids were slowly converted into microbial products, mainly 7-alpha dehydroxylated derivatives. The observed slow transformations resulted in a much delayed equilibration of labelled and endogenous bile acid derivatives, which invalidates isotope techniques for calculation of kinetic data of bile acid turnover. However, the observed very slow turnover of labelled bile acids in cirrhosis, owing to the persistent high rate of intestinal absorption and low capacity for urinary excretion, makes it possible for the intestinal flora to markedly change the composition of the bile acids in the pool. Studies of endogenous urinary and faecal bile acid excretion revealed the changed route of bile acid excretion with a high urinary/faeces ratio and the decreased synthesis of bile acids in cirrhosis.  相似文献   

4.
Urinary bile acids from patients with extrahepatic cholestasis were extracted with Sep-pak C18 cartridges and group separated on diethylaminohydroxypropyl Sephadex LH-20. The nature of the different conjugates of cholic and chenodeoxycholic acid in the fractions was studied after further separation by preparative thin-layer chromatography. The free and glycine-conjugated bile acids were quantified by capillary gas chromatography and identified by gas chromatography-mass spectrometry (GC/MS). Taurine conjugates were split with cholylglycine hydrolase and the liberated free bile acids analysed by GC/MS. Sulphate esters were hydrolysed with Helix pomatia and the resulting bile acid derivatives were analysed as above. After hydrolysis with cholylglycine hydrolase, the glucuronides of the unconjugated bile acids were separated and identified by GC/MS. Amino acid analysis of the different fractions revealed that glycine and taurine were the only amino acids present in connection with cholic and chenodeoxycholic acid. Large amounts of monosulphated bile acid conjugates were present but no disulphates. Only 3-sulphates were found. Both sulphates and glucuronides were found exclusively as glycine or taurine conjugates and no such derivatives of unconjugated bile acids were isolated. The isolated conjugates were split either by a combination of acid solvolysis and alkaline hydrolysis or by Helix pomatia and cholylglycine hydrolase.  相似文献   

5.
Bile Salt Sulphates in Cholestasis   总被引:7,自引:0,他引:7  
Abstract. Bile salt sulphates were determined in serum and urine of 40 patients with severe cholestasis due to extrahepatic obstruction, hepatitis, cirrhosis and metastases of the fiver. Mono-, di- and tri-sulphates of bile salts were identified by column chromatography following intravenous administration of 14C-cholate. Quantitative analysis was done by gas-liquid chromatography following solvolysis. In our patients more than 50% of the bile salts excreted by the urine were sulphated (76.9% mono-sulphates, 21.3% di-sulphates, 1.8% tri-sulphates). In contrast less than 10% of serum bile salts were sulphated. Therefore the renal clearance of bile salt sulphates was more than 15 times greater than the clearance of non-sulphated bile salts. There were no significant differences in patients with extrahepatic obstruction, hepatitis, cirrhosis and metastases of the liver. – It is concluded that urinary excretion of mono- and di-sulphates of bile salts represents an important excretory mechanism in patients with cholestatic liver disease. In most patients only trace amounts of tri-sulphated bile salts were excreted in the urine.  相似文献   

6.
Abstract. Bile acids and their sulphated and glucuronidated derivatives were studied in three children with persistent intrahepatic cholestasis, two children with intrahepatic biliary hypoplasia, and four healthy children. In children with cholestasis, biliary bile acids consisted of 11(±0–3) % 3 β-hydroxy-delta-5-cholenoic acid, 2-1(± 0–6) % lithocholic acid, 2-2(± 11) % deoxy-cholic acid, 5–8(±2-2) % ursodeoxycholic acid, 39-1(± 1 -4) % chenodeoxycholic acid, 0–5(± 0 2) % hyo-cholic acid, and 49-3(± 3 0) % cholic acid. Of these bile acids 121 (±l 9) % were sulphated and 4–5 (±0 6) % were glucuronidated. In healthy children, biliary bile acids consisted of 0–7 (±0–4) % lithocholic acid, 3–4 (±0 8.) % deoxycholic acid, 0–1 (±0 1) % ursodeoxycholic acid, 32-7 (±6 9) % chenodeoxycholic acid, and 631 (±7 1) % cholic acid. Of these bile acids, 0–6±0 1 % were sulphated and 0–2 ±0 1% were glucuronidated (mean ± SEM). In the urine of healthy children, 3-3(±0 6) mg/24 h bile acids (1–5±0 3 mg sulphates and 0–1 ±0 1 mg glucuronides) were excreted, in the urine of children with cholestasis 61-4 (± 10 2) mg/24 h (30 2 ±7 1 mg sulphates and 5 6 ±1 2 mg glucuronides) were excreted. Thus in children with cholestasis the amounts of sulphated and glucuronidated bile acids are greater than in healthy controls. Substantial amounts of sulphated and glucuronidated bile acids are excreted in bile and urine of these patients. Phenobarbitone treatment in the five children with cholestasis led to a reduction of serum bile acids from 90 4 (± 13 2) μg/ml to 39 3(±3 6) μ//ml, a relative increase of bile acid glucuronides in bile from 45 (±0 6)% to 8 l(±0 6)%, a slight alteration of the bile acid sulphates in bile from 121(±l 9) % to 111 (± 1 2)% and no alteration of the bile acid spectrum. Urinary excretion of bile acids decreased from 61 4 (± 10 2) mg/24 h to 34 7(±3 0) mg/24 h. Phenobarbitone treatment of children with cholestasis thus induced glucuronidation of bile acids but had no significant effect on sulphation or on formation of individual bile acids.  相似文献   

7.
A method is described for the rapid determination of urinary bile salt profiles by fast atom bombardment--mass spectrometry (FAB-MS). Urine was passed through a reverse-phase octadecylsilane bonded silica cartridge and the bile salts eluted with methanol. Negative ion FAB spectra could be obtained from the equivalent of 10 microliter of urine loaded onto the target probe with glycerol as matrix. In samples from normal infants and children bile salt peaks were rarely detectable above the background whereas peaks produced by steroid sulphates and glucuronides and bile alcohol glucuronides could usually be identified. In samples from infants and children with cholestasis the major peaks were produced by the taurine and glycine conjugates of di-, tri- and tetrahydroxycholanoic acids (and their monosulphates). In samples from patients with Zellweger syndrome and infantile Refsum's disease, a unique ion at m/z 572 indicated the presence of taurine-conjugated tetrahydroxy-cholestanoic acid(s). The amide linkage to taurine was cleaved by alkaline hydrolysis but not by cholylglycine hydrolase. Capillary gas chromatography--mass spectrometry (GC-MS) of the bile acids liberated by alkaline hydrolysis indicated the presence of at least two nuclear-tetrahydroxylated cholestanoic acids, probably the 6 alpha- and 1 beta-hydroxylated derivatives of 3 alpha, 7 alpha, 12 alpha-trihydroxy-5 beta-cholestan-26-oic acid.  相似文献   

8.
[24-14C] glycochenodeoxycholate-3-sulphate (GCDC-3S) was given intravenously to seven patients with liver cirrhosis and the elimination of the isotope from blood and the isotope excretion in urine and faeces followed. The bile acid conjugates in serum and urine were separated by HPLC and the change in specific activity in isolated conjugates determined. [24-14C] GCDC-3S was rapidly eliminated either by urinary excretion or faecal excretion and the half-life of the labelled conjugates varied between 76-198 min. No deamination or desulphation of the isotope occurred prior to urinary excretion. Only small amounts of GCDC-3S excreted in bile were absorbed from the intestine, as no isotope was recovered in other bile acid conjugates in serum.  相似文献   

9.
Conjugated and sulfated bile acids were determined by gas-liquid chromatography and by high-pressure liquid chromatography in gallbladder bile samples of four pregnant women at term and of two patients with cholestasis of pregnancy. In healthy pregnant women the mean ratio of cholyl/chenodeoxycholyl/deoxycholyl glycine was 3.7 : 1 : 0.23 and that of taurine conjugates 3.0 : 1 : 0.25, respectively. In gallbladder bile pool of non-pregnant females these ratios were 1.0 : 1 : 0.00 and 1.0 1 : 0.70, respectively. Thus cholic acid predominated in pregnancy bile. In patients with cholestasis of pregnancy, cholid acid comprised 90% of total biliary bile acids, the proportion of chenodeoxycholic acid was greatly decreased and nonsulfated deoxycholic acid was not detected. The proportion of sulfated bile acids of total biliary bile acids was between 0.4 and 1.2% in uncomplicated pregnancy and 0.3 and 0.5% in cholestasis patients.  相似文献   

10.
1. The bile acids and bile acid sulphates in the urine, serum and bile of eight cholestatic patients were studied quantitatively by gasliquid chromatography and gas-liquid chromoatography/mass spectrometry. 2. The primary bile acids (cholic acid and chenodeoxycholic acid) comprised on average 94% of the total bile acids in bile, 70% in the serum and 64% in urine. 3. The percentage composition of bile acids in bile was relatively constant and was not influenced by the degree of cholestasis. In contrast, in the serum only the primary bile acids were increased, the concentrations of the secondary bile acids (deoxycholic acid and lithocholic acid) and the minor bile acids remaining constant. 4. The data do not support the hypothesis that monohydroxy bile acids accumulate in cholestasis and are related to the pathogenesis of this syndrome. 5. The pattern of bile acid urinary excretion was similar to that in the serum. But in one patient, 3alpha, 7beta, 12alpha-trihydroxy-5beta-cholan-24-oic acid was a principal urinary bile acid, although very low concentrations of the compound were found in that patient's serum, suggesting that some of the minor bile acids in urine may originate by epimerization in the kidney. 6. In bile only a small proportion of the bile acids was sulphated (range 2.1-4.6%) and in serum the degree of sulphation was very variable (9-50%). However, in urine, sulphate esters accounted for a large proportion of the total bile acids (33-72%). 7. The output of bile acid sulphate in the urine was related to the urine total bile acid output but the serum concentration of bile acid sulphate remained relatively constant. Consequently, in contrast to the non-sulphated bile acids, whose renal clearance was relatively constant, the renal clearance of sulphated bile acids was directly related to the urine total bile acid output. This finding is inconsistent with the earlier hypothesis that their predominance in urine was due to a high renal clearance. It may indicate renal synthesis of some of the bile acid sulphates in the urine and/or inhibition of active renal tubular reabsorption of sulphated bile acids by non-sulphated bile acids.  相似文献   

11.
From 12 patients with liver cirrhosis and hyperbilirubinaemia, the different conjugates of bilirubin and bile acids in the serum were separated and determined. The serum of the patients contained varying amounts of unconjugated bilirubin, which was not correlated to total serum bilirubin. No correlation between bilirubin conjugates and different conjugates of bile acids could be found, indicating different elimination processes for these substances. To examine whether a changed plasma transport of bile acids, which may contribute to the different excretion pattern of bilirubin and bile acids, occurs in liver cirrhosis, the bile acids in the different serum lipoprotein fractions were determined in seven of the patients. It was found that 40% of serum bile acids were bound to serum lipoproteins, despite decreased serum lipoprotein levels. The degree of lipoprotein binding of bile acids was not correlated to total serum bile acid concentrations. Cholic acid conjugates were present to a higher extent in the lipoprotein fractions than those of chenodeoxycholic acid or of deoxycholic acid. Determination was made of the distribution of individual conjugates between different lipoproteins and it was found that most of the glycine conjugates were present in high density lipoprotein, whereas the main part of sulphates and taurine conjugates were present in low density lipoprotein. These results indicate that a higher fraction of bile acids in liver cirrhosis is transported by lipoproteins in plasma, which may be of importance for the hepatic elimination of bile acids in cases with this disease.  相似文献   

12.
From a study of the collision-activated fragmentation of bile acids, a qualitative analytical method based on negative ion fast atom bombardment tandem mass spectrometry has been developed. The times for sample preparation and analyses are short. Both free and conjugated bile acids are detected as they occur in biological fluids, without derivatization. For identifying bile acids and conjugates, the method offers better specificity and sensitivity than does the fast atom bombardment mass spectrometric technique alone. Specific scan modes have been developed for the selective detection of taurine conjugates, delta 4-unsaturated taurine conjugates, delta 4-3-keto free acids and their glycine conjugates, free acids and glycine conjugates bearing a hydroxyl group at the C-12 position, sulfates of glycine and taurine conjugates, and a C29 dicarboxylic bile acid, specific for generalized peroxisomal disorders. Applications of this technique demonstrate its potential usefulness, principally in the diagnosis of several peroxisomal disorders.  相似文献   

13.
The hypnotic drug alpha-bromoisovalerylurea (BIU) has been studied in the rat with respect to its potential use as model substrate to investigate the pharmacokinetics of glutathione conjugation in vivo. The major metabolites of racemic BIU are the diastereomeric glutathione conjugates (bile) and mercapturates (urine). BIU was metabolized mainly by glutathione conjugation: after i.v. administration of [14C]BIU to freely moving rats, 89% of the dose was recovered in urine within 24 hr, mostly as mercapturates. The rate-limiting step in the clearance of BIU from blood most likely is glutathione conjugation as it was shown that rate-limitation is not due to flow-limited clearance in the liver (the initial extraction ratio of BIU in the perfused liver preparation was low: hepatic extraction ratio = 0.23), protein binding (60% was unbound in plasma) or enzyme saturation (linear pharmacokinetics in the dose range studied: 22-270 mumol/kg). Water solubility of BIU was sufficient to allow its i.v. administration, whereas the absence of toxic effects enables animal as well as human studies. Thus, BIU is a promising model substrate for studies of glutathione conjugation in vivo. In pentobarbital-anesthetized rats with a bile duct catheter, equal amounts of metabolites were excreted in bile (almost exclusively as the two diastereomeric BIU glutathione conjugates) and urine (mostly as the two diastereomeric mercapturates). Based on similar experiments with bile duct-ligated rats, it was concluded that the appearance of the mercapturates in urine could also occur without biliary excretion and subsequent gut metabolism of the BIU glutathione conjugates. The ability of the liver to metabolize BIU was studied in a hemoglobin-free, recirculating liver perfusion system. Of the recovered radioactivity 40% was excreted in bile within 2 hr, almost exclusively in the form of the two BIU glutathione conjugates. Also, glutathione conjugates were found in the perfusate (16% of the radioactivity present in the perfusate after 2 hr). A distinct stereoselectivity was observed in the metabolite excretion rates. The excretion half-lives of the two diastereomeric glutathione conjugates in bile differed 2- to 3-fold, both in anesthetized rats and in the perfused liver preparation. A similar difference in excretion half-lives was found for the urinary excretion of the diastereomeric mercapturates. Thus, BIU can be used to investigate in vivo the stereoselectivity of glutathione conjugation.  相似文献   

14.
Abstract. Quantitative gas chromatography-mass spectrometry was used to study the metabolic profiles of unconjugated, conjugated and sulphated bile acids in urine of patients with intermittent intrahepatic cholestasis of unknown aetiology, cirrhosis of the liver, primary biliary cirrhosis, viral and toxic hepatitis and extrahepatic cholestasis. A large number of bile acids was present which can broadly be classified into four groups: cholic and chenodeoxycholic acids constituted between 49·4% and 77·9% of the total bile acids (mean values of the groups); deoxycholic and other 3,12-disubstituted bile acids between 1·3% and 12·3%, monohydroxy bile acids between 6·7% and 14·4% and bile acids hydroxylated at C-1 or C-6 between 4·6% and 14·6%. The high proportion of bile acids from the latter group, and the presence of tetrahydroxylated bile acids, clearly distinguished hepatic disease from the normal state. The metabolic profiles were very variable and there were few consistent differences between the groups of diseases studied. Norcholic acid constituted a significantly higher percentage of the total bile acids in cirrhotic patients (6·2 ± 6·8%) than in non-cirrhotic patients (1·3±1·8%, P<0·001). With this exception, no profile was specific for any type of intra- or extra-hepatic cholestasis. The excretion rates of the major l-hydroxylated bile acids were positively correlated to each other. The same was true for the major 6-hydroxylated bile acids. This may indicate that cholic, chenodeoxycholic and deoxycholic acids act as substrates for common 1- and 6-hydroxylating enzymes. Possibly the taurine conjugates are preferred substrates since 1-hydroxylated bile acids and hyocholic acid were found mainly in this fraction. A positive correlation between the excretion of sulphated 3β-hydroxy-5-cholenoic acid and 3β,12α-dihydroxy-5-cholenoic acid indicates a direct metabolic relationship between these compounds. Confirming previous data, a high proportion of bile acids was sulphated. The degree of sulphation increased with decreasing number of hydroxyl groups, reaching 100% for the monohydroxy and most of the dihydroxy acids. Tetrahydroxycholanoates were not sulphated, and sulphation of trihydroxycholanoates was positively correlated to the renal bile acid excretion rate. Bile from patients with intermittent intrahepatic cholestasis did not contain the tetrahydroxylated bile acids present in urine. Hyocholic acid was a very minor, mainly taurine conjugated, bile acid. Monohydroxy bile acids were usually below the detection limit. These data do not support the hypothesis that lithocholic acid participates in the initiation or perpetuation of intermittent intrahepatic cholestasis of unknown aetiology.  相似文献   

15.
Bile acid taurine deficiency is common in cystic fibrosis (CF) and is thought to be associated with impaired fat absorption. The relationship between the glycine: taurine bile acid conjugation ratio (bile acid G/T ratio) and taurine concentrations in plasma, urine and leucocytes was examined in 27 CF children aged 4-15 yr. The bile acid G/T ratio was elevated in serum in 14 of the 27 and in duodenal juice in 5 of 6 children. Subgroups of CF children with elevated and normal bile acid G/T ratio and controls (n = 8) all had similar plasma, urine and leucocyte taurine concentrations. The results suggest that either taurine measurement in plasma, urine and leucocytes does not accurately reflect stores elsewhere in CF, or that taurine deficiency is confined to bile acids.  相似文献   

16.
BACKGROUND: Ursodeoxycholic acid (UDCA) and its taurine conjugate (TUDCA) exert a protective effect in cholestatic liver diseases. A greater hepatoprotective effect of TUDCA has been suggested. Absorption appears to be a limiting factor and up to now has not been studied in man. METHODS: We studied absorption and biliary bile acid secretion and composition after administration of UDCA and TUDCA in patients who had complete extrahepatic biliary obstruction caused by pancreatic carcinoma but had no intestinal or liver disease. After 5 days of intact enterohepatic circulation eight patients with a percutaneous biliary-duodenal drainage received, during two study periods, 1000 mg (1916.9 micromol; mean 29.6 micromol kg(-1)) TUDCA and 750 mg (1910.4 micromol; mean 29.5 micromol kg(-1)) UDCA in random order. Each patient served as his own control. RESULTS: After UDCA and TUDCA administration the biliary UDCA content increased to 55.2% and 54.6% of total bile acids, respectively (not significant). Biliary secretion of cholic and chenodeoxycholic acids remained unchanged whereas that of lithocholic acid increased slightly. A total of 64.6% of the orally administered TUDCA and 55.1% of the UDCA was absorbed (not significant). After TUDCA administration, biliary UDCA was preferentially (95.4%) taurine-conjugated whereas after UDCA administration biliary UDCA was mainly (79.8%) glycine-conjugated. CONCLUSIONS: After oral administration of TUDCA and UDCA, no significant differences in their absorption and in biliary bile acid secretion exist. Whether biliary enrichment with taurine conjugates of UDCA instead of glycine conjugates offers advantages in the treatment of cholestatic liver disease is unclear at present.  相似文献   

17.
Taurine: an essential amino acid to prevent cholestasis in neonates?   总被引:3,自引:0,他引:3  
OBJECTIVE: To review the evidence that taurine can prevent cholestasis in neonates. DATA SOURCES: MEDLINE and EMBASE searches were conducted to identify both animal and human data regarding taurine's role in bile acid conjugation and liver disease (key terms: taurine, children less than two years old). STUDY SELECTION: Emphasis was placed on human data supplemented by relevant animal data. DATA SYNTHESIS: Taurine appears to more effectively conjugate bile acids than glycine, and the end-products of conjugation are more soluble. Taurine deficiency may increase glyco-conjugates of bile acids and result in cholestasis. Although the cause of neonatal cholestasis probably is multifactorial, there are data indicating that adequate taurine may prevent cholestasis in neonates. CONCLUSIONS: Taurine should be considered an essential amino acid for neonates and should be included in total parenteral nutrition solutions for these patients.  相似文献   

18.
Bile damage to gastric mucosa may be demonstrated by means of changes in the transmucosal movement of H+ and Na+ ions. In the present study pure 10 mM solutions of taurine and glycine conjugates of chenodeoxycholic acid were instilled into canine Heidenhain pouches. Solutions were prepared at pH 2, 4, and 8, as previous work had shown a greater damaging effect at low pH. The present study confirmed this pH effect, but only with respect to movement of Na+ ion for taurine conjugates. The magnitude of the changes in ionic movements was much greater with pure bile acid solutions than that seen previously with whole bile. These findings are discussed. The greater damage seen below the pKa of the bile acid conjugates suggests that its nonionized form is the more damaging.  相似文献   

19.
The metabolic profiles of urinary bile acids in pregnant women in the last trimester and patients with recurrent intrahepatic cholestasis of pregnancy (RCP) were studied. Following separation according to mode of conjugation, about thirty different bile acids were quantitatively analysed by gas chromatography-mass spectrometry. In all patients the sulphate fraction comprised 50--90% of the total bile acids. In RCP a shift from glycine to taurine conjugation was noted to together with a slight relative increase in sulphation. A ten- to hundred-fold increase in cholic and chenodeoxycholic acids was seen in RCP, the increase being mainly in the sulphate fraction. Tetrahydroxylated bile acids, tentatively regarded as 1- and 6-hydroxylated products of cholic acid, were quantitatively important in patients with RCP. The relative amounts of the secondary bile acids, deoxycholic and lithocholic acids, decreased with increasing cholestasis. Metabolites hydroxylated at C-6 were common, and the excretion of hydroxylated at C-6 were common, and the excretion of hyocholic acid was positively correlated to that of chenodeoxycholic acid. An increase in the excretion of 5 alpha-configurated bile acids in RCP was noted. A positive correlation between the excretion of 3 beta-hydroxy-5-cholenoic acid and 3 beta,12 alpha-dihydroxy-5-cholenoic acid indicates a metabolic relationship between the two compounds. Because of the relatively small amounts of lithocholic and 3 beta-hydroxy-5-cholenoic acids in patients with RCP, these compounds do not seem to be of pathogenetic importance in this type of cholestasis.  相似文献   

20.
Glucuronidation of carboxylic acid compounds results in the formation of electrophilic acyl glucuronides. Because of their polarity, carrier-mediated hepatic transport systems play an important role in determining both intra- and extrahepatic exposure to these reactive conjugates. We have previously shown that the hepatic membrane transport of 1-O-gemfibrozil-beta-D-glucuronide (GG) is carrier-mediated and inhibited by the organic anion dibromosulfophthalein. In this study, we examined the influence of 200 microM acetaminophen, acetaminophen glucuronide, and clofibric acid on the disposition of GG (3 microM) in the recirculating isolated perfused rat liver preparation. GG was taken up by the liver, excreted into bile, and hydrolyzed within the liver to gemfibrozil, which appeared in perfusate but not in bile. Mean +/- S. D. hepatic clearance, apparent intrinsic clearance, hepatic extraction ratio, and biliary excretion half-life of GG were 10.4 +/- 1.4 ml/min, 94.1 +/- 17.9 ml/min, 0.346 +/- 0.046, and 30.9 +/- 4.9 min, respectively, and approximately 73% of GG was excreted into bile. At the termination of the experiment (t = 90 min), the ratio of GG concentrations in perfusate, liver, and bile was 1:35:3136. Acetaminophen and acetaminophen glucuronide had no effect on the hepatic disposition of GG, suggesting relatively low affinities of acetaminophen conjugates for hepatic transport systems or the involvement of multiple transport systems for glucuronide conjugates. In contrast, clofibric acid increased the hepatic clearance, extraction ratio, and apparent intrinsic clearance of GG (P <.05) while decreasing its biliary excretion half-life (P <.05), suggesting an interaction between GG and hepatically generated clofibric acid glucuronide at the level of hepatic transport. However, the transporter protein(s) involved remains to be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号