首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Na,K-ATPase is a heterodimer consisting of an alpha and a beta subunit. Both Na,K-ATPase subunits are encoded by multigene families. Several isoforms for the alpha (alpha 1, alpha 2, and alpha 3) and beta (beta 1, beta 2, and beta 3) subunits have been identified. All these isoforms are capable of forming functionally active enzyme. Although there is general agreement that the Na,K-ATPase consists of alpha and beta subunits in equimolar amounts, the quaternary structure of the Na,K-ATPase and its functional significance is unknown. Several studies have demonstrated that the enzyme exists within the plasma membrane as an oligomer of alpha beta dimers. However, because the alpha beta protomer seems to be catalytically competent, the possibility exists that higher oligomers are irrelevant to function. The ability to express different alpha isoforms in insect cells and the availability of isoform-specific antibodies has provided the opportunity to test for the existence of stable and specific associations among alpha subunits. By coexpressing different alpha-subunit isoforms in cultured cells, we demonstrate that the Na,K-ATPase alpha subunits specifically and stably associate into oligomeric complexes. This same association among alpha-subunit isoforms was demonstrated in the native enzyme from rat brain. The interaction between Na,K-ATPase alpha subunits is highly specific. When the Na,K-ATPase alpha subunit is coexpressed with the alpha subunit from the H,K-ATPase, the H,K subunit does not associate with the Na,K subunit. Moreover, expression of the truncated alpha 1T isoform with the full-length alpha subunit demonstrates that the C-terminal portion of the polypeptide is important in the alpha-subunit association. Although these results do not clarify the functional role of alpha alpha associations, they do establish their highly specific nature and suggest that oligomerization of alpha beta protomers may be important to the stability and physiological regulation of the enzyme.  相似文献   

2.
We have made use of a panel of mouse-hamster somatic cell hybrids and restriction fragment length polymorphisms between two mouse species (Mus musculus and Mus spretus) to determine the chromosomal localization of genes encoding the alpha and beta subunits of the Na,K-ATPase (Na+,K+-activated ATP phosphohydrolase, EC 3.6.1.3). DNA probes for three distinct isoforms of the Na,K-ATPase alpha subunit mapped to three different mouse chromosomes: the alpha 1 gene (Atpa-1) cosegregated with the Egf gene on chromosome 3; alpha 2 (Atpa-2) with the cytochrome P-450PB gene family/coumarin hydroxylase locus on chromosome 7; alpha 3 (Atpa-3) with the alpha-spectrin gene on chromosome 1. The Na,K-ATPase beta-subunit gene (Atpb) mapped to the same region of chromosome 1, but it was not tightly linked to the Atpa-3 gene. These results indicate that three isoforms of the Na,K-ATPase alpha subunit are encoded by three distinct genes. The dispersion of Na,K-ATPase genes suggests that their expression is not likely to be controlled by a common cis-acting regulatory element.  相似文献   

3.
The active Na+/K+ pump is composed of an alpha and a beta subunit. Until now, three putative isoforms of the beta subunit have been identified that share sequence similarity. We have expressed the beta 1 and beta 3 isoforms of Xenopus laevis Na+/K(+)-ATPase in Xenopus oocytes to compare functional properties of the Na+/K+ pump, including either of these two isoforms. Na+/K+ pump current, estimated as K(+)-induced outward current in voltage-clamped oocytes, was doubled by coexpression of alpha 1 subunits with either isoform of the beta subunit compared to expression of alpha 1 subunits alone. The kinetics of activation by external K+ and the voltage dependence of the electrogenic activity of the Na+/K+ pump were similar with both beta isoforms, indicating that both beta 1 and beta 3 isoforms can support expression at the oocyte surface of an active Na+/K+ pump with similar functional properties.  相似文献   

4.
The γ subunit of the Na,K-ATPase is a hydrophobic protein of approximately 10 kDa. The γ subunit was expressed in Sf-9 insect cells and Xenopus oocytes to ascertain its role in Na,K-ATPase function. Immunoblotting has shown that the γ subunit is expressed in Sf-9 cells infected with recombinant baculovirus containing the cDNA for the human γ subunit. Confocal microscopy demonstrates that the γ subunit can be delivered to the plasma membrane of Sf-9 cells independently of the other Na,K-ATPase subunits and that γ colocalizes with α1 when these proteins are coexpressed. When Sf-9 cells were coinfected with α1 and γ, antibodies to the γ subunit were able to coimmunoprecipitate the α1 subunit, suggesting that γ is able to associate with α1. The γ subunit is a member of a family of single-pass transmembrane proteins that induces ion fluxes in Xenopus oocytes. Evidence that the γ subunit is a functional component was supported by experiments showing γ-induced cation channel activity when expressed in oocytes and increases in Na+ and K+ uptake when expressed in Sf-9 cells.  相似文献   

5.
Hypothermic hyperkalemic circulatory arrest has been widely used for myocardial protection during heart surgery. Recent data showed that administration of triiodo-L-thyronine (T3) postoperatively enhanced ventricular function. The effect of hyperkalemic arrest in conjunction with thyroid hormone on the plasma membrane enzyme sodium/potassium-adenosine triphosphatase (Na/K-ATPase), was determined in cultured neonatal rat atrial and ventricular myocytes. Exposure of ventricular myocytes to hyperkalemic medium (50 mM KCl) in the absence of T3 increased expression of the Na/K-ATPase catalytic subunit mRNAs, alpha1 and alpha3 isoforms, by 1.9- and 1.5-fold, respectively (p<0.01), which were accompanied by similar increases (1.4- and 1.8-fold) in protein content. Addition of T3 to the hyperkalemic cultures attenuated these increases in Na/K-ATPase mRNA isoforms to levels of expression observed in cells treated with T3 (10(-8) M) alone. Similarly, expression of the alpha1 mRNA isoform in atrial myocytes was increased (p<0.05) by hyperkalemic conditions, and T3 treatment attenuated this effect. In contrast, although expression of the Na/K-ATPase beta1 mRNA in both atrial and ventricular myocytes was significantly increased by hyperkalemia, addition of T3 did not prevent the hyperkalemic response, and in atrial myocytes T3 significantly increased beta1 mRNA expression 1.8-fold. These results show that expression of cardiac Na/K-ATPase is regulated by T3 and hyperkalemia in an isoform and chamber specific manner, and suggest that use of hyperkalemic cardioplegia during heart surgery may alter plasma membrane ion function.  相似文献   

6.
7.
This study is aimed at identifying the Na pump isoform composition of human erythroid precursor cells and mature human erythrocytes. We used purified and synchronously growing human erythroid progenitor cells cultured for 7-14 days. RNA was extracted from the progenitor cells on different days and analyzed by RT-PCR. The results showed that only the alpha1, alpha3, beta2, and beta3 subunit isoforms and the gamma modulator were present. Northern analysis of the erythroid progenitor cells again showed that beta2 but not beta1 or alpha2 isoforms were present. The erythroid cells display a unique beta subunit expression profile (called beta-profiling) in that they contain the message for the beta2 isoform but not beta1, whereas leukocytes and platelets are known to have the message for the beta1 but not for the beta2 isoform. This finding is taken to indicate that our preparations are essentially purely erythroid and free from white cell contamination. Western analysis of these cultured progenitor cells confirmed the presence of alpha1, alpha3, (no alpha2), beta2, beta3, and gamma together now with clear evidence that beta1 protein was also present at all stages. Western analysis of the Na pump from mature human erythrocyte ghosts, purified by ouabain column chromatography, has also shown that alpha1, alpha3, beta1, beta2, beta3, and gamma are present. Thus, the Na pump isoform composition of human erythroid precursor cells and mature erythrocytes contains the alpha1 and alpha3 isoforms of the alpha subunit, the beta1, beta2, and beta3 isoforms of the beta subunit, and the gamma modulator.  相似文献   

8.
We have used immunoblotting and biochemical techniques to analyze expression of Na+,K(+)-ATPase alpha and beta subunits in rat pineal glands. Western blot analysis of pineal microsomal membrane fractions with antisera specific for each of the three rat alpha and two rat beta subunits revealed similar levels of expression of alpha 1 and alpha 3 subunits in pineal glands of 5-day-old rats. High levels of alpha 3 and beta 2 subunits and low levels of alpha 1 subunits were detected in adult glands. No alpha 2 or beta 1 subunits were detectable at either developmental stage. Examination of the enzymatic properties of the pineal gland alpha 3 isoform suggests that this enzyme is a ouabain-sensitive ATPase whose activity is dependent upon Na+ and K+. This ATPase exhibited a lower apparent Km for Na+ than the kidney alpha 1 isoenzyme and did not show positive cooperative Na+ activation. Our results suggest that the activity of the Na+,K(+)-ATPase alpha 3 isoenzyme may be adapted to function under conditions of hyperpolarizing transmembrane potentials.  相似文献   

9.
There are two types of cDNA clones (designated alpha 1 and alpha 2) encoding the alpha subunit of carp gonadotropin. These two cDNAs are derived from different genes and encode proteins that differ by seven amino acid residues (three in the signal peptide and four in the mature polypeptide). Expression of these two cDNAs in insect cells by recombinant baculovirus revealed that the alpha 1 subunit, after noncovalent association with the beta subunit, has the same potency as the native alpha subunit purified from the pituitary. In contrast, the alpha 2 subunit can associate with the beta subunit, but only to form an inactive gonadotropin. Competition of the alpha 2 subunit with the alpha 1 subunit for association with the beta subunit decreases the gonadotropin activity of the alpha/beta complex. In addition, both alpha 1 and alpha 2 subunits are secreted into the culture medium by insect cells and have an apparent molecular mass approximately 5 kDa higher than that of the native alpha subunit. These results indicate that the insect cell-derived alpha 1 subunit is biologically active and that those four amino acid changes in the mature of alpha 2 protein affect the biological activity and thus provide valuable clues for the study of the structure-function relationship of the alpha subunit of glycoprotein hormones.  相似文献   

10.
A cDNA encoding G16 alpha, the alpha subunit of a heterotrimeric guanine nucleotide-binding protein, was expressed in Sf9 cells using recombinant baculovirus. G16 alpha in membrane extracts of Sf9 cells activated phospholipase C-beta 1 (PLC-beta 1) in the presence of guanosine 5'-[gamma-thio]triphosphate; the system could not be activated by Al3+, Mg2+, and F-. The G16 alpha in the cytosolic fraction of Sf9 cells did not stimulate PLC-beta 1. Concurrent expression of the G-protein beta gamma subunit complex increased the amount of G16 alpha in Sf9 cell membranes. The guanosine 5'-[gamma-thio]triphosphate-activated form of G16 alpha was purified from cholate extracts of membranes from cells expressing G16 alpha, and the G-protein beta 2 and gamma 2 subunits. G16 alpha activated PLC-beta 1, PLC-beta 2, and PLC-beta 3 in a manner essentially indistinguishable from that of Gq alpha. G16 alpha-mediated activation of PLC-beta 1 and PLC-beta 3 greatly exceeded that of PLC-beta 2. G16 alpha did not activate PLC-gamma 1 or PLC-delta 1. Thus, two distantly related members of the Gq alpha family, Gq alpha and G16 alpha, have the same ability to activate the known isoforms of PLC-beta.  相似文献   

11.
12.
The isoforms of the alpha 1 subunits of voltage-dependent Ca2+ channels expressed in human pancreatic islets were identified by using a pair of degenerate oligonucleotide primers and the polymerase chain reaction (PCR) to amplify mRNAs encoding alpha 1 subunit-like sequences. The sequences of the PCR products indicate that islets express the heart-type alpha 1 subunit as well as a second isoform whose complete sequence has not been previously reported. The sequences of cloned cDNAs encoding the human beta-cell, or neuroendocrine-type, alpha 1 subunit indicate that it is composed of 2181 amino acids. It shares 68%, 64%, and 41% identity with the sequences of the alpha 1 subunits of rabbit heart, skeletal muscle, and brain, respectively, and is predicted to have a similar structure including four homologous domains composed of six membrane-spanning segments each. RNA blotting studies indicate that the beta-cell-type alpha 1 subunit is also expressed in brain as well as in the insulin-producing cell lines RINm5F and beta TC-3; however, it could not be detected by RNA blotting in a third cell line, HIT-T15. In situ hybridization studies revealed expression of beta-cell-type alpha 1 subunit mRNA in beta cells of rat pancreatic islets, implying that this protein may play a role in the regulation of insulin secretion.  相似文献   

13.
Voltage-gated sodium channels composed of pore-forming alpha and auxiliary beta subunits are responsible for the rising phase of the action potential in cardiac muscle, but the functional roles of distinct sodium channel subtypes have not been clearly defined. Immunocytochemical studies show that the principal cardiac pore-forming alpha subunit isoform Na(v)1.5 is preferentially localized in intercalated disks, whereas the brain alpha subunit isoforms Na(v)1.1, Na(v)1.3, and Na(v)1.6 are localized in the transverse tubules. Sodium currents due to the highly tetrodotoxin (TTX)-sensitive brain isoforms in the transverse tubules are small and are detectable only after activation with beta scorpion toxin. Nevertheless, they play an important role in coupling depolarization of the cell surface membrane to contraction, because low TTX concentrations reduce left ventricular function. Our results suggest that the principal cardiac isoform in the intercalated disks is primarily responsible for action potential conduction between cells and reveal an unexpected role for brain sodium channel isoforms in the transverse tubules in coupling electrical excitation to contraction in cardiac muscle.  相似文献   

14.
Lilly MB  Zemskova M  Frankel AE  Salo J  Kraft AS 《Blood》2001,97(6):1662-1670
The alpha subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor has several isoforms that result from alternative splicing events. Two forms, alpha-1 and alpha-2, have intracytoplasmic sequences that are identical within a membrane-proximal domain but differ completely distally. Variant and mutated GM-CSF receptor alpha subunits, along with the beta subunit (beta(c) protein) were expressed in M1 murine leukemia cells. and the ability of the receptors to signal for differentiation events and to activate Jak/Stat signaling pathways was examined. All cell lines expressing both alpha and beta(c) proteins exhibited high-affinity binding of radiolabeled human GM-CSF. Receptor alpha subunits with intact membrane-proximal intracellular domains could induce expression of the macrophage antigen F4/80 and down-regulate the expression of CD11b. Addition of recombinant human GM-CSF to cells expressing alpha-1 subunits induced the expression of CD86 and tyrosine phosphorylation of Jak-2 and its putative substrates SHPTP-2, Stat-5, and the GM-CSF receptor beta(c) subunit. Cells containing alpha subunits that lacked a distal domain (term-3) or had the alternatively spliced alpha-2 distal domain showed markedly decreased ability to support tyrosine phosphorylation of Jak-2 and its substrates or to up-regulate CD86. Ligand binding induced stable association of the alpha-1 subunit and beta(c) protein. In contrast, the alpha-2 subunit did not stably associate with the beta(c) subunit. These data identify potential molecular mechanisms for differential signaling of the alpha-1 and alpha-2 proteins. The association of unique signaling events with the 2 active GM-CSF alpha subunit isoforms offers a model for variable response phenotypes to the same ligand.  相似文献   

15.
Prolyl 4-hydroxylase (EC 1.14.11.2) catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The vertebrate enzyme is an alpha 2 beta 2 tetramer, the beta subunit of which is a highly unusual multifunctional polypeptide, being identical to protein disulfide-isomerase (EC 5.3.4.1). We report here the cloning of a second mouse alpha subunit isoform, termed the alpha (II) subunit. This polypeptide consists of 518 aa and a signal peptide of 19 aa. The processed polypeptide is one residue longer than the mouse alpha (I) subunit (the previously known type), the cloning of which is also reported here. The overall amino acid sequence identity between the mouse alpha (II) and alpha (I) subunits is 63%. The mRNA for the alpha (II) subunit was found to be expressed in a variety of mouse tissues. When the alpha (II) subunit was expressed together with the human protein disulfide-isomerase/beta subunit in insect cells by baculovirus vectors, an active prolyl 4-hydroxylase was formed, and this protein appeared to be an alpha (II) 2 beta 2 tetramer. The activity of this enzyme was very similar to that of the human alpha (I) 2 beta 2 tetramer, and most of its catalytic properties were also highly similar, but it differed distinctly from the latter in that it was inhibited by poly(L-proline) only at very high concentrations. This property may explain why the type II enzyme was not recognized earlier, as an early step in the standard purification procedure for prolyl 4-hydroxylase is affinity chromatography on a poly(L-proline) column.  相似文献   

16.
Recently, a beta subunit for the rat gastric H+,K(+)-ATPase (HK beta), which is structurally similar to the beta subunit of Na+, K(+)-ATPase, has been cloned and characterized. Using heterologous expression in yeast, we have tested the specificity of beta subunit assembly with different isoforms of the alpha subunit of Na+, K(+)-ATPase. Coexpression in yeast cells of the HK beta with both the sheep alpha 1 subunit and the rat alpha 3 subunit isoforms of Na+, K(+)-ATPase (alpha 1 and alpha 3, respectively) leads to the appearance of high-affinity ouabain-binding sites in yeast membranes. These ouabain-binding sites (alpha 1 plus HK beta, alpha 3 plus HK beta) have a high affinity for ouabain (Kd, 5-10 nM) and are expressed at levels similar to those formed with the rat beta 1 subunit of Na+, K(+)-ATPase (beta 1) (alpha 1 plus beta 1 or alpha 3 plus beta 1). Potassium acts as a specific antagonist of ouabain binding by alpha 1 plus HK beta and alpha 3 plus HK beta just like sodium pumps formed with beta 1. Sodium pumps formed with the HK beta, however, show quantitative differences in their affinity for ouabain and in the antagonism of K+ for ouabain binding. These data suggest that the structure of the beta subunit may play a role in sodium pump function.  相似文献   

17.
CONTEXT: Thyroid hormone regulates specific Na+-K+-ATPase isoforms in rodent skeletal muscles. No study has examined this relationship in human tissues. OBJECTIVE: This study investigated the effect of hyperthyroid status on the expression of the alpha- and beta-subunits of the Na+-K+-ATPase. DESIGN: The vastus lateralis muscles from eight hyperthyroid patients were biopsied before and after treatment. Ten age-matched euthyroid subjects served as controls. RESULTS: In hyperthyroid patients, the average T3 level was three times higher in pretreatment compared with posttreatment (262 +/- 75 vs. 86 +/- 21 ng/dl, P = 0.001). The relative mRNA expression of the alpha2, but not alpha1 or alpha3, subunit was increased approximately 3-fold in pretreatment (2.98 +/- 0.52 vs. 0.95 +/- 0.40, P < 0.01), whereas that of beta1, not beta2 or beta3, subunit was increased approximately 2.8-fold in pretreatment (2.83 +/- 0.38 vs. 1.10 +/- 0.27, P < 0.01). The relative mRNA expression of the alpha2 and beta1 subunits was positively correlated with the serum T3 (r = 0.75, P = 0.001 and r = 0.66, P = 0.003, respectively). Immunohistochemistry studies revealed an increase in protein abundance of the alpha2 and beta1, but not alpha1 or beta2, subunits in the plasma membrane of muscle fibers of hyperthyroid patients, which decreased after treatment. CONCLUSIONS: This provides the first evidence that, in human skeletal muscles, thyroid hormone up-regulates the Na+-K+-ATPase protein expression at least, in part, at mRNA level, and the alpha2 and beta1 subunits play the important role in this regulation.  相似文献   

18.
Ankyrin has emerged as a ubiquitous protein linking integral membrane transport proteins such as Na,K-ATPase to an underlying spectrin cytoskeleton. This interaction is mediated by the alpha subunit of Na,K-ATPase; however, the nature of the ankyrin binding site in Na,K-ATPase is unknown. As a step to determine the mechanism of this interaction, the ankyrin binding region of human erythrocyte spectrin and each of five putative cytoplasmic domains of the Na,K-ATPase alpha subunit have been prepared as recombinant fusion proteins in bacteria and analyzed for their interaction with erythrocyte and kidney ankyrin (Ank1 and Ank3, respectively) in vitro. Spectrin binds both Ank1 and Ank3 avidly, as expected. Two of the Na,K-ATPase domains, immobilized on a bioaffinity column, also interact specifically with both of these ankyrins. These ATPase domains are encoded by codons 140-290 (domain II) and 345-784 (domain III), with domain II displaying the greatest apparent affinity. Sequences in domain II are highly conserved between species and isoforms of Na,K-ATPase and are homologous to a cytoplasmic domain in H,K-ATPase and to a limited region of sequence in Ca-ATPase. Conversely, domain II shares no significant homology with other ankyrin binding proteins such as band 3 and Na(+)-channel proteins. These results identify a clear function for a conserved but previously not understood region of the alpha subunit of Na,K-ATPase and suggest that the interaction of ankyrin with membrane transport proteins may involve complex tertiary structural determinants not easily deduced from the primary sequence.  相似文献   

19.
Weiss  M; Yokoyama  C; Shikama  Y; Naugle  C; Druker  B; Sieff  CA 《Blood》1993,82(11):3298-3306
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) controls the production, maturation, and function of cells in multiple hematopoietic lineages. These effects are mediated by a cell-surface receptor (GM-R) composed of alpha and beta subunits, each containing 378 and 881 amino acids, respectively. Whereas the alpha subunit exists as several isoforms that bind GM-CSF with low affinity, the beta common subunit (beta c) does not bind GM-CSF itself, but acts as a high- affinity converter for GM-CSF, interleukin-3 (IL-3), and IL-5 receptor alpha subunits. The cytoplasmic region of GM-R alpha consists of a membrane-proximal conserved region shared by the alpha 1 and alpha 2 isoforms and a C-terminal variable region that is divergent between alpha 1 and alpha 2. The cytoplasmic region of beta c contains membrane proximal serine and acidic domains. To investigate the amino acid sequences that influence signal transduction by this receptor complex, we constructed a series of cytoplasmic truncation mutants of the alpha 2 and beta subunits. To study these truncations, we stably transfected the IL-3-dependent murine cell line Ba/F3 with wild-type or mutant cDNAs. We found that the wild-type and mutant alpha subunits conferred similar low-affinity binding sites for human GM-CSF to Ba/F3, and the wild-type or mutant beta subunit converted some of these sites to high- affinity; the cytoplasmic domain of beta was unnecessary for this high- affinity conversion. Proliferation assays showed that the membrane- proximal conserved region of GM-R alpha and the serine-acidic domain of beta c are required for both cell proliferation and ligand-dependent phosphorylation of a 93-kD cytoplasmic protein. We suggest that these regions may represent an important signal transduction motif present in several cytokine receptors.  相似文献   

20.
Prolyl 4-hydroxylase (EC 1.14.11.2), an alpha 2 beta 2 tetramer, catalyzes the posttranslational formation of 4-hydroxyproline in collagens. The enzyme can easily be dissociated into its subunits, but all attempts to associate a tetramer from the dissociated subunits in vitro have been unsuccessful. Molecular cloning of the catalytically important alpha subunit has identified two types of cDNA clone due to mutually exclusive alternative splicing. The beta subunit is a highly unusual multifunctional polypeptide, being identical to the enzyme protein disulfide-isomerase (EC 5.3.4.1). We report here on expression of the alpha and beta subunits of prolyl 4-hydroxylase and a fully active enzyme tetramer in Spodoptera frugiperda insect cells by baculovirus vectors. When the beta subunit was expressed alone, the polypeptide produced was found in a 0.1% Triton X-100 extract of the cell homogenate and was a fully active protein disulfide-isomerase. When either form of the alpha subunit was expressed alone, only traces of the alpha subunit could be extracted from the cell homogenate with 0.1% Triton X-100, and 1% SDS was required to obtain efficient solubilization. These alpha subunits had no prolyl 4-hydroxylase activity. When the cells were coinfected with both alpha- and beta-subunit-producing viruses, an enzyme tetramer was formed, but significant amounts of alpha and beta subunits remained unassociated. The recombinant tetramer was indistinguishable from that isolated from vertebrate tissue in terms of its specific activity and kinetic constants for cosubstrates and the peptide substrate. The two alternatively spliced forms of the alpha subunit gave enzyme tetramers with identical catalytic properties. Baculovirus expression seems to be an excellent system for mass production of the enzyme tetramer and for detailed investigation of the mechanisms involved in the association of the monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号