首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our prior phase I study of the combination of vascular endothelial growth factor (VEGF) antibody, bevacizumab, and VEGF receptor (VEGFR) inhibitor, sunitinib, in advanced solid tumors identified an encouraging response evaluation. An expansion phase of this study was thus undertaken to obtain further safety data, response assessment and characterization of pharmacodynamic biomarkers in melanoma, renal, and adrenal carcinoma patients. Patients with metastatic solid tumors received sunitinib (37.5 mg/d, 4 wk on/2 wk off) and bevacizumab (5 mg/kg intravenously every 2 wk). Responses were assessed every 2 cycles. Serum levels of angiogenic molecules were measured using ELISA assays. Twenty-two patients were enrolled, including 11 melanoma, 5 renal cell carcinoma (RCC), 5 adrenal cancer, and 1 angiosarcoma. Grade 3 or higher adverse events were observed in 15 patients, including hypertension (41%), thrombocytopenia (23%), and fatigue (14%). Three RCC patients, and 1 melanoma patient developed thrombotic microangiopathy (TMA). Partial response (PR) occurred in 21% patients, including melanoma (2), adrenal (1), and renal (1) carcinomas. Overall, 6 patients demonstrated some reduction in their tumor burden. Serum VEGF and several other proangiogenic proteins declined over the first 4 wk of treatment whereas the putative VEGF-resistant protein, prokineticin-2, increased over 10-fold. Occurrence of TMA related to dual VEGF/VEGFR inhibition can result from systemic or nephron specific injury even in non-renal malignancies. While the combination of sunitinib and bevacizumab was clinically efficacious in renal cell carcinoma and melanoma, the observance of microangiopathy, even in non-RCC patients, is a significant toxicity that precludes further clinical development.  相似文献   

2.
Historically, there have been few treatment options for patients with advanced renal cell carcinoma (RCC) besides immunotherapy with interleukin‐2 and interferon (IFN)‐α. Targeted therapies have improved clinical outcomes over the past several years. These include the vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors sunitinib and sorafenib, which inhibit angiogenic signaling in endothelial cells and vascular pericytes predominantly through VEGFR and platelet‐derived growth factor receptor β. Also included is the anti‐VEGF monoclonal antibody bevacizumab used in combination with IFN‐α. These agents mediate their antitumor effects by interfering with the VEGF signaling pathway, thereby inhibiting angiogenesis and causing tumor shrinkage. However, ultimately, most patients develop resistance and experience disease progression during VEGF/VEGFR‐targeted therapy, and until the recent approval of the mammalian target of rapamycin (mTOR) inhibitor everolimus (RAD001), there were no agents available with proven activity in this setting. This review describes the clinical development of everolimus in advanced RCC and the rationale for the use of mTOR inhibitors after failure of VEGF/VEGFR inhibitors.  相似文献   

3.
Human melanoma cells express two prominent angiogenic factors, e.g., vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF/fibroblast growth factor-2). In this study, we report on the relative contribution of these two factors to in vitro and in vivo growth of a tumorigenic melanoma cell line (WM164) and nontumorigenic, immortalized melanocytes (FM516SV). Overexpression of either cytokine significantly boosted tumorigenicity of WM164 cells in immunodeficient SCID mice. Attempting to overexpress bFGF antisense sequences produced no viable clones confirming earlier reports that autocrine bFGF is obligatory to melanoma cell survival and growth. By contrast, down-regulation of endogenous VEGF production did not affect growth of WM164 cells in vitro. In vivo expansion of WM164 cells expressing VEGF antisense was delayed but not abrogated. Forced expression of either bFGF or VEGF in immortalized but nontumorigenic melanocytes did not induce sustained tumor growth in vivo highlighting that neither of the two factors is sufficient for induction of tumorigenicity in this model system. Overexpression of either cytokine in WM164 cells led to the development of atypical large vessels but not to an increase in microvessel density. Taken together our results confirm an essential autocrine role of bFGF in human melanoma and indicate a beneficial but nonessential role of VEGF in the tumorigenic phenotype of human melanoma cells.  相似文献   

4.
Vascular endothelial growth factor (VEGF) plays a vital role in tumor angiogenesis. VEGF is produced by human melanomas, and the VEGF receptor 2 (VEGFR-2) is expressed by most advanced stage melanomas, suggesting the possibility of an autocrine loop. Here, we show that bevacizumab, an anti-VEGF antibody, inhibits proliferation of VEGFR-2(+) melanoma cell lines by an average of 41%; however, it failed to inhibit proliferation of VEGFR-2(neg) melanoma cell lines. The growth inhibitory effect of bevacizumab was eliminated by VEGFR-2 knockdown with small interfering RNA, showing that VEGF autocrine growth in melanoma is mediated through VEGFR-2. However, bevacizumab inhibition of autocrine signals did not completely inhibit cell proliferation nor cause cell death. Cell survival is mediated partially through mammalian target of rapamycin (mTOR), which is inhibited by rapamycin. Combination of bevacizumab with rapamycin caused loss of half of the VEGFR-2(+) melanoma cells, but no reduction in the number of VEGFR-2(neg) melanoma cells. The results show (a) an autocrine growth loop active in VEGFR-2(+) melanoma, (b) a nonangiogenic mechanism for inhibition of melanoma by blocking autocrine VEGFR-2 activation, and (c) a possible therapeutic role for combination of inhibitors of mTOR plus VEGF in selected melanomas.  相似文献   

5.
Angiogenesis is essential for tumor progression and metastasis; however, the angiogenesis regulators that are biologically relevant for melanoma are still unknown. In this study, we analyzed the circulating serum levels of potent angiogenic factors, including vascular endothelial growth factor (VEGF), angiogenin, transforming growth factor-beta1 and VEGF receptors, VEGFR1 and VEGFR2, in human melanoma patients. One hundred and fourteen patients with histopathologically verified cutaneous melanoma at different stages and 30 healthy controls were investigated. Serum levels of angiogenic factors and VEGF receptors were quantitatively analyzed by solid-phase enzyme-linked immunosorbent assay. The age of the patients (61 men and 53 women) ranged from 18 to 80 years; median age was 51 years. Serum transforming growth factor-beta1 (P < 0.001), VEGF (P = 0.006) and VEGFR1 (P = 0.007) levels were significantly higher in patients with melanoma than in the control group. No significant differences, however, exist in the serum angiogenin and VEGFR2 levels between melanoma patients and the controls. The positive correlations of elevated serum levels of transforming growth factor-beta1, VEGF and VEGFR1 with advanced stages of disease were found. Significant relationship was found only between serum levels of VEGF and VEGFR2. Elevated serum transforming growth factor-beta1 (P < 0.001) and VEGF levels (P = 0.0012) were found to be poor prognostic factors. Serum level of angiogenin and VEGF receptors, however, had no effect on survival. Our data suggest that the angiogenic serum factors, including VEGF, transforming growth factor-beta1 and VEGFR1, but not angiogenin and VEGFR2 were increased in melanoma patients, especially associated with advanced disease stages. The mechanism of VEGF regulation of angiogenesis may in part be due to enhanced proliferation of VEGFRs, especially VEGFR1.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is a critical regulator of angiogenesis. Inhibiting the VEGF–VEGF receptor (R) signal transduction pathway in glioblastoma has recently been shown to delay progression, but the relative benefit and mechanisms of response and failure of anti-VEGF therapy and VEGFR inhibitors are not well understood. The purpose of our study was to evaluate the relative effectiveness of VEGF sequestration and/or VEGFR inhibition on orthotopic tumor growth and the mechanism(s) of treatment resistance. We evaluated, not only, the effects of anti-VEGF therapy (bevacizumab), anti-VEGFR therapy (sunitinib), and the combination on the survival of mice bearing orthotopic gliomas, but also the differential effects of the treatments on tumor vascularity, cellular proliferation, mesenchymal and stem cell markers, and myeloid cell infiltration using flow cytometry and immunohistochemistry. Bevacizumab significantly prolonged survival compared with the control or sunitinib alone. Both antiangiogenic agents initially reduced infiltration of macrophages and tumor vascularity. However, multitargeted VEGFR inhibition, but not VEGF sequestration, rapidly created a vascular gradient and more rapidly induced tumor hypoxia. Re-infiltration of macrophages was associated with the induction of hypoxia. Combination treatment with bevacizumab and sunitinib improved animal survival compared with bevacizumab therapy alone. However, at the time of tumor progression, a significant increase in CD11b+/Gr1+ granulocyte infiltration was observed, and tumors developed aggressive mesenchymal features and increased stem cell marker expression. Collectively, our results demonstrate a more prolonged decrease in tumor vascularity with bevacizumab than with sunitinib, associated with a delay in the development of hypoxia and sustained reduction of infiltrated myeloid cells.  相似文献   

7.
《Annals of oncology》2010,21(12):2370-2376
BackgroundThe vascular endothelial growth factor (VEGF) pathway can be targeted through VEGF neutralization or VEGF receptor (VEGFR) blockade using tyrosine kinase inhibition. Because laboratory models suggest that combining these approaches might be synergistic, we sought to evaluate the feasibility and efficacy of combining sunitinib with paclitaxel + bevacizumab (PB).MethodsPatients with human epidermal growth factor receptor 2 (HER2)-negative, metastatic breast cancer receiving first-line chemotherapy were randomized to PB or PB with sunitinib (PBS), with planned escalation of the sunitinib dose.ResultsForty-six patients were randomized to PB or PBS with sunitinib dosed at 25 mg p.o. daily. Patients receiving PBS encountered substantial toxicity that precluded adequate treatment. The percentage of patients with grade ≥3 adverse events was greater in the PBS arm than the PB arm (83% versus 57%), and sunitinib dosing was modified in 78% of patients, most often due to neutropenia, febrile neutropenia, and fatigue. In addition, 44% of patients had sunitinib dose reduction to 12.5 mg, and 39% required discontinuation. Patients receiving PBS had more bevacizumab treatment interruptions and discontinuations because of toxicity. Median treatment duration was longer in the PB arm compared with the PBS arm (14.1 versus 11.1 weeks), reflecting early treatment discontinuation of PBS. Because of poor tolerability of the addition of sunitinib to PB, the planned sunitinib dose escalation was halted and the study accrual was terminated.ConclusionAdding sunitinib to standard doses of bevacizumab plus paclitaxel for metastatic breast cancer is not feasible. Different strategies will be required to evaluate whether there is additional clinical benefit to combining VEGF/VEGFR-targeted agents.  相似文献   

8.
Various angiogenic factors, such as vascular endothelial growth factor (VEGF) and an associated molecule, placenta growth factor (PlGF), are thought to be important for normal and malignant hematopoiesis. This study examined mRNA expression of VEGF, PlGF and receptors for these molecules in AML cells and identified the disease-specific patterns of expression. AML M3 having t(15;17) abnormality showed highest expression of VEGF and VEGF receptor type 1 (VEGFR1), suggesting the autocrine pathway of VEGF-VEGFR1. Then, t(8;21) AML demonstrated augmented expression of VEGF and VEGF receptor type 2 (VEGFR2), suggesting VEGF-VEGFR2 autocrine pathway. Then, addition of VEGFR2 kinase inhibitor in Kasumi-1, a t(8;21) AML cell line, resulted in marked inhibition of cell growth, although growth inhibitory effect of R2 kinase inhibitor to HL-60 was marginal. In addition, cell cycle analysis study showed S-phase cell population reduction by R2 kinase inhibitor in Kasumi-1, but not in HL-60. This observation is thought to be the rationale for novel molecular target therapy directed to angiogenic molecules.  相似文献   

9.
Purpose: Lymphangiogenic factors, such as vascular endothelial growth factor-C (VEGF-C) and VEGFC-D, and their receptor, VEGF receptor-3 (VEGFR3), play a pivotal role in the promotion of metastasis to regional lymph nodes. In the present study we explored the role of VEGF-C as an autocrine growth factor for breast cancer cells. Methods: We examined the expression of VEGF-C and VEGFR3 in mammary tumor cells lines and examined whether blocking the VEGF-C-VEGFR3/Flt4 pathway using a VEGFR3 antagonist would inhibit proliferation of mammary tumor cells resulting in a decrease in tumor growth and metastasis. Results: We report expression of VEGF-C and its receptor VEGFR3 by mammary tumor cells, and their association with aggressiveness. Inhibition of VEGF-C-VEGFR3/Flt4 in mammary tumor cells decreased their proliferation and survival. Mammary tumor bearing mice treated with a VEGFR3 antagonist showed a significant decrease in tumor growth and the extent of spontaneous and experimental lung metastases. Conclusion: These findings demonstrate the VEGF-C-VEGFR3/Flt4 autocrine signaling pathway regulates mammary tumor cell survival and proliferation and that neutralization of VEGFR3 signaling might lead to development of a novel therapeutic approach for malignant breast cancer.  相似文献   

10.
We treated a case of recurrent glioblastoma (GBM) with bevacizumab and assessed its effect biologically. A 55-year-old man with a left frontal lobe GBM was experiencing recurrence 7 months postoperation. We administered bevacizumab concomitant with temozolomide (TMZ). Follow-up magnetic resonance imaging (MRI) showed dramatic but temporal tumor reduction; however, the patient died of re-recurrent disease 6 months after beginning bevacizumab. We obtained an autopsy and analyzed the detailed molecular change. In the autopsy specimen, the quantity of microvessels was significantly reduced. Vascular endothelial growth factor receptor (VEGFR) 1 and VEGFR2 were downregulated, most likely due to a negative feedback mechanism by blocking of VEGF signaling. Matrix metalloproteinase (MMP)-2 and membrane-type 1 MMP were upregulated, resulting in the higher activation of MMP-2 in the autopsy specimen. MIB-1 staining index and phosphorylation levels of p44/42-mitogen-activated protein kinase did not change, whereas phosphorylated protein kinase B (Akt) was decreased in the autopsy specimen, suggesting compensation and/or amplification of other proliferative signaling pathways such as suppression of apoptosis signaling. Consequently, bevacizumab might inhibit the VEGF autocrine loop, which then causes a change in molecular expression related not only to enhancement of tumor invasion but also maintenance of tumor proliferation.  相似文献   

11.
Colorectal cancer (CRC) is a common tumor type with a high mortality rate, in part due to intrinsic drug resistance. Although bevacizumab, a VEGF-directed neutralizing antibody, is particularly active in this pathology, some patients never respond for reasons not well understood. We here wish to clarify the role of autocrine VEGF signaling in the response of CRC cells to angiogenesis inhibition. Our results show that CRC cells with intrinsic bevacizumab-resistance displayed pronounced upregulation of autocrine HIF-VEGF-VEGFR signaling in response to prolonged bevacizumab exposure whereas the same signaling pathway was downregulated in bevacizumab-sensitive xenografts. Importantly, both bevacizumab-sensitive and -resistant CRC xenografts were sensitive to nintedanib, a small molecule angiokinase inhibitor, which was associated with inhibition of mTORC1. In vitro studies revealed that bevacizumab-resistant cells displayed intrinsically higher HIF-VEGF signaling intensity and hypoxia tolerance compared to their bevacizumab-sensitive counterparts. Interestingly, although nintedanib showed comparable activity toward bevacizumab-sensitive cells under normoxia and hypoxia, the drug was three-fold more toxic to the resistant cells under hypoxia, suggesting that nintedanib attenuated the survival signaling that usually protects these cells from hypoxia-mediated cell death. In conclusion, our findings support a role for autocrine VEGF signaling in the survival of CRC cells to hypoxia and thus to angiogenesis inhibition. We further show that nintedanib, a small molecule angiokinase inhibitor, is active toward CRC models with intrinsic bevacizumab resistance supporting clinical trials of nintedanib in patients that do not respond to bevacizumab, alone or in combination with bevacizumab to increase angiogenesis inhibition.  相似文献   

12.
Jia K  Li J 《癌症》2008,27(4):442-446
肿瘤的生长和转移离不开肿瘤新生血管,这使得抗血管形成治疗成为肿瘤治疗的重要途径之一。血管内皮生长因子及其受体是抗肿瘤治疗的重要靶点之一。本文主要介绍了近年来抗血管形成治疗的一些最新药物研究成果——包括针对血管内皮生长因子的单克隆抗体——贝伐;针对血管内皮生长因子受体的酪氨酸激酶抑制剂——舒尼替尼、索拉非尼等;以及血管内皮生长因子受体的单克隆抗体IMC-1C11等。  相似文献   

13.
The benefits of inhibiting vascular endothelial growth factor (VEGF) signaling in cancer patients are predominantly attributed to effects on tumor endothelial cells. Targeting non-endothelial stromal cells to further impact tumor cell growth and survival is being pursued through the inhibition of additional growth factor pathways important for the survival and/or proliferation of these cells. However, recent data suggest that VEGF receptor (VEGFR)-specific inhibitors may target lymphatic vessels and pericytes in addition to blood vessels. Here, in fact, we demonstrate that DC101 (40 mg/kg, thrice a week), an antibody specific to murine VEGFR2, significantly reduces all three of these stromal components in subcutaneous (SKRC-29) and orthotopic (786-O-LP) models of renal cell carcinoma (RCC) established in nu/nu athymic mice. Sunitinib (40 mg/kg, once daily), a receptor tyrosine kinase inhibitor of VEGFR2 and other growth factor receptors, also caused significant loss of tumor blood vessels in RCC models but had weaker effects than DC101 on pericytes and lymphatic vessels. In combination, sunitinib did not significantly add to the effects of DC101 on tumor blood vessels, lymphatic vessels, or pericytes. Nevertheless, sunitinib increased the effect of DC101 on tumor burden in the SKRC-29 model, perhaps related to its broader specificity. Our data have important implications for combination therapy design, supporting the conclusion that targeting VEGFR2 alone in RCC has the potential to have pleiotropic effects on tumor stroma.  相似文献   

14.
The recent approval of bevacizumab (Avastin), a humanized anti-vascular endothelial growth factor (VEGF) monoclonal antibody, in combination with chemotherapy for the treatment of patients with metastatic colorectal cancer, has provided proof of principle of the efficacy of antiangiogenic strategies for cancer therapy. The activity of bevacizumab is primarily attributed to its ability to inhibit endothelial cell survival. Whether anti-VEGF strategies may also have a direct effect on cancer cell survival is poorly understood. We show that serum-starved colon cancer cells differentially respond to autocrine production of VEGF with the induction of hypoxia inducible factor-1 alpha (HIF-1 alpha) and survival under hypoxic conditions. Inhibition of VEGF or VEGF receptor 2 (VEGFR2)/KDR, but not VEGFR1/Flt-1, was sufficient to abrogate VEGF-mediated induction of HIF-1 alpha and survival in sensitive HCT116, but not in resistant HT29, colon cancer cells. These results provide evidence that a VEGF/KDR/HIF-1 alpha autocrine loop differentially mediates survival of hypoxic colon cancer cells, and they suggest that colon cancer cells may be intrinsically sensitive or resistant to anti-VEGF strategies, which may determine the therapeutic efficacy of bevacizumab.  相似文献   

15.
Vascular endothelial growth factor (VEGF) is a dimeric angiogenic factor that is overexpressed by many tumors and stimulates tumor angiogenesis. VEGF initiates signaling by dimerizing the receptors VEGFR-1 and VEGFR-2. The Fas receptor stimulates apoptosis, and artificial dimerization of the Fas cytoplasmic domain has been shown to induce apoptosis. We constructed a chimeric receptor (VEGFR2Fas) combining the extracellular and transmembrane domains of VEGFR-2 with the cytoplasmic domain of Fas receptor. When VEGFR2Fas was stably expressed in endothelial cells in vitro, treatment with VEGF rapidly induced cell death with features characteristic of Fas-mediated apoptosis. These findings demonstrate that VEGFR2Fas functions as a VEGF-triggered death receptor and raise the possibility that introduction of VEGFR2Fas into tumor endothelium or tumor cells in vivo may convert tumor-derived VEGF from an angiogenic factor into an antiangiogenesis agent.  相似文献   

16.
Hepatic angiosarcoma is a rare and aggressive vascular neoplasm. Pathogenic driver mutations are largely unknown. We present the case of a patient with recurrent hepatic angiosarcoma, who initially showed good response to sunitinib, followed by progression. Using comprehensive molecular techniques, we explored the potential mechanisms of resistance. By low-read-depth whole-genome sequencing, the comparison of copy number aberrations (CNAs) of the primary tumor to the skin metastatic lesion that developed after progression on sunitinib, revealed high-level amplification of the 4q11-q13.1 region (containing KIT, PDGFRA and VEGFR2 genes) that was sustained in both lesions. Whole exome sequencing on the germline, primary and metastatic tumor DNAs, resulted in 27 confirmed mutations, 19 of which (including TP53 mutation) presented in both primary and metastatic lesions. One mutation, ZNF331 frameshift deletion, was detected only in the primary tumor. In contrast, seven other mutations, including phospholipase C-gamma1 (PLCG1) R707Q mutation, were found only in the metastatic tumor, indicating selection of cells with the resistant genotype under sunitinib pressure. Our study supports the notion that PLCG1-R707Q mutation may confer VEGFR2-independent signaling and may thus cause resistance against VEGF(R)-directed therapies. This case illustrates also the advantages of using next-generation technologies in identifying individualized targeted therapy.  相似文献   

17.
Vascular endothelial growth factor (VEGF) is an angiogenic factor that also functions as an autocrine growth factor for VEGF receptor (VEGFR)-2(+) melanomas. In multiple studies, VEGFR-2 was detected by immunostaining in 78-89% of human melanoma cells, suggesting that most patients with melanoma would benefit from anti-VEGF therapy. Here, we evaluated 167 human melanoma specimens in a tissue microarray to verify the presence of VEGFR-2, but found disparities in staining with commercial antibodies A-3 and 55B11. Antibody A-3 stained melanoma cells in 79% of specimens, consistent with published results; however, we noted extensive nonspecific staining of other cells such as smooth muscle and histiocytes. In contrast, antibody 55B11 stained melanoma cells in only 7% (95% confidence interval: 3.3-11.5) of specimens. As an internal positive control for VEGFR-2 detection, vascular endothelial cells were stained with antibody 55B11 in all specimens. We compared VEGFR-2(+) and VEGFR-2(-) melanoma cell lines by immunoblotting and immunohistochemistry after small interfering RNA (siRNA) knockdown and transient overexpression of VEGFR-2 to validate antibody specificity. Immunoblotting revealed that A-3 primarily cross-reacted with several proteins in both cell lines and these were unaffected by siRNA knockdown of VEGFR-2. In contrast, 55B11 staining of VEGFR-2(+) cells was mostly eliminated by siRNA knockdown of VEGFR-2 and increased in VEGFR-2(-) melanoma cell lines following transfection to express ectopic VEGFR-2. Our results show that relatively few melanoma cells (<10%) express detectable levels of VEGFR-2, and therefore, the majority of patients with melanoma are unlikely to benefit from antiproliferative effects of anti-VEGF therapy.  相似文献   

18.
Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.  相似文献   

19.
Most anti-angiogenic therapies currently being evaluated in clinical trials target vascular endothelial growth factor (VEGF) pathway, however, the tumor vasculature can acquire resistance to VEGF-targeted therapy by shifting to other angiogenesis mechanisms. Therefore, other potential therapeutic agents that block non-VEGF angiogenic pathways need to be evaluated. Here we identified formononetin as a novel agent with potential anti-angiogenic and anti-cancer activities. Formononetin demonstrated inhibition of endothelial cell proliferation, migration, and tube formation in response to basic fibroblast growth factor 2 (FGF2). In ex vivo and in vivo angiogenesis assays, formononetin suppressed FGF2-induced microvessel sprouting of rat aortic rings and angiogenesis. To understand the underlying molecular basis, we examined the effects of formononetin on different molecular components in treated endothelial cell, and found that formononetin suppressed FGF2-triggered activation of FGFR2 and protein kinase B (Akt) signaling. Moreover, formononetin directly inhibited proliferation and blocked the oncogenic signaling pathways in breast cancer cell. In vivo, using xenograft models of breast cancer, formononetin showed growth-inhibitory activity associated with inhibition of tumor angiogenesis. Moreover, formononetin enhanced the effect of VEGFR2 inhibitor sunitinib on tumor growth inhibition. Taken together, our results indicate that formononetin targets the FGFR2-mediated Akt signaling pathway, leading to the suppression of tumor growth and angiogenesis.  相似文献   

20.
Malignant gliomas can be counted to the most devastating tumors in humans. Novel therapies do not achieve significant prolonged survival rates. The cancer cells have an impact on the surrounding vital tissue and form tumor zones, which make up the tumor microenvironment. We investigated the effects of sunitinib, a small molecule multitargeted receptor tyrosine kinase inhibitor, on constituents of the tumor microenvironment such as gliomas, astrocytes, endothelial cells, and neurons. Sunitinib has a known anti‐angiogenic effect. We found that sunitinib normalizes the aberrant tumor‐derived vasculature and reduces tumor vessel pathologies (i.e. auto‐loops). Sunitinib has only minor effects on the normal, physiological, non‐proliferating vasculature. We found that neurons and astrocytes are protected by sunitinib against glutamate‐induced cell death, whereas sunitinib acts as a toxin towards proliferating endothelial cells and tumor vessels. Moreover, sunitinib is effective in inducing glioma cell death. We determined the underlying pathways by which sunitinib operates as a toxin on gliomas and found vascular endothelial growth factor receptor 2 (VEGFR2, KDR/Flk1) as the main target to execute gliomatoxicity. The apoptosis‐inducing effect of sunitinib can be mimicked by inhibition of VEGFR2. Knockdown of VEGFR2 can, in part, foster the resistance of glioma cells to receptor tyrosine kinase inhibitors. Furthermore, sunitinib alleviates tumor‐induced neurodegeneration. Hence, we tested whether temozolomide treatment could be potentiated by sunitinib application. Here we show that sunitinib can amplify the effects of temozolomide in glioma cells. Thus, our data indicate that combined treatment with temozolomide does not abrogate the effects of sunitinib. In conclusion, we found that sunitinib acts as a gliomatoxic agent and at the same time carries out neuroprotective effects, reducing tumor‐induced neurodegeneration. Thus, this report uncovered sunitinib's actions on the brain tumor microenvironment, revealing novel aspects for adjuvant approaches and new clinical assessment criteria when applied to brain tumor patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号