首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: During cerebral ischemia, excess of glutamate release and dysfunction of its high affinity transport induce an accumulation of extracellular glutamate, which plays an important role in neuronal death. The authors studied the relationship among propofol neuroprotection, glutamate extracellular concentrations, and glutamate transporter activity in a model of ischemic cortical cell cultures.

Methods: Thirteen-day-old primary cortical neuronal-glial cultures were exposed to a 90-min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber, followed by reoxygenation. Propofol was added only during the OGD period, and its effect was compared to that of the N-methyl-d-aspartate receptor antagonist dizocilpine (MK-801). Twenty-four hours after the injury, cell death was quantified by lactate dehydrogenase release and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Extracellular concentrations of glutamate in culture supernatants and glutamate uptake were performed at the end of OGD period by high-performance liquid chromatography and incorporation of l-[3H]glutamate into cells, respectively.

Results: At clinically relevant concentrations (0.05-10 [mu]m), propofol offered protection equivalent to that of MK-801. It significantly reduced lactate dehydrogenase release and increased the reduction of MTT. At the end of the ischemic injury, propofol was able to reverse the OGD-induced increase in glutamate extracellular concentrations and decrease of glutamate uptake. The inhibition of the glial GLT1 transporter by 3-methyl-glutamate did not further modify the effect of propofol on glutamate uptake, suggesting that GLT1 was not the major target of propofol.  相似文献   


2.
Background: The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation.

Methods: Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[3H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol.

Results: Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation.  相似文献   


3.
BACKGROUND: The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. METHODS: Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. RESULTS: Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. CONCLUSION: Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.  相似文献   

4.
Background: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress.

Methods: Primary cortical neuronal-glial cultures were exposed to N-methyl-d-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mm), sevoflurane (0.1-2.9 mm), halothane (0.1-2.9 mm), or 10 [mu]m (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 [mu]m).

Results: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization.  相似文献   


5.
BACKGROUND: Volatile anesthetics are known to ameliorate experimental ischemic brain injury. A possible mechanism is inhibition of excitotoxic cascades induced by excessive glutamatergic stimulation. This study examined interactions between volatile anesthetics and excitotoxic stress. METHODS: Primary cortical neuronal-glial cultures were exposed to N-methyl-D-aspartate (NMDA) or glutamate and isoflurane (0.1-3.3 mM), sevoflurane (0.1-2.9 mM), halothane (0.1-2.9 mM), or 10 microM (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine hydrogen maleate (MK-801). Lactate dehydrogenase release was measured 24 h later. In other cultures, effects of volatile anesthetics on Ca++ uptake and mitochondrial membrane potential were determined in the presence or absence of NMDA (0-200 microM). RESULTS: Volatile anesthetics reduced excitotoxin induced lactate dehydrogenase release by up to 52% in a dose-dependent manner. At higher concentrations, this protection was reversed. When corrected for olive oil solubility, the three anesthetics offered equivalent protection. MK-801 provided near-complete protection. Ca++ uptake was proportionally reduced with increasing concentrations of anesthetic but did not account for reversal of protection at higher anesthetic concentrations. Given equivalent NMDA-induced Ca++ loads, cells treated with volatile anesthetic had greater lactate dehydrogenase release than those left untreated. At protective concentrations, volatile anesthetics partially inhibited NMDA-induced mitochondrial membrane depolarization. At higher concentrations, volatile anesthetics alone were sufficient to induce mitochondrial depolarization. CONCLUSIONS: Volatile anesthetics offer similar protection against excitotoxicity, but this protection is substantially less than that provided by selective NMDA receptor antagonism. Peak effects of NMDA receptor antagonism were observed at volatile anesthetic concentrations substantially greater than those used clinically.  相似文献   

6.
BACKGROUND: The extracellular concentration of glutamate in the brain increases after oxidative damage. This increase may be caused, in part, by changes in glutamate transport by astrocytes. The authors hypothesized that propofol and hypothermia mitigate the effects on astrocytes of oxidative stress. METHODS: Primary cultures of rat cerebral astrocytes were subjected to oxidative stress by incubation with tert-butyl hydroperoxide for 30 min, followed by a 30-90-min washout period. The effects of prophylactic (simultaneous with tert-butyl hydroperoxide application) and delayed (administered 30 min after the oxidant) propofol or hypothermia were determined by measuring the uptake of glutamate as well as the release of preloaded d-aspartate (a nonmetabolizable analog of glutamate) and endogenous lactate dehydrogenase (a cytosolic marker). RESULTS: Delayed administration of an anesthetic concentration of propofol (1-3 microm) prevented the inhibition of high-affinity glutamate uptake, stimulation of d-aspartate release, and increase in lactate dehydrogenase release caused by tert-butyl hydroperoxide (1 mm, 37 degrees C). The protective effect of propofol (EC50 = 2 microm) on glutamate uptake was 20-fold more potent than that of alpha-tocopherol (EC50 = 40 microm). Prophylactic hypothermia (28 and 33 degrees C) also protected astrocytes from tert-butyl hydroperoxide. Delayed hypothermia was not protective but did not compromise rescue by propofol. CONCLUSIONS: Clinical levels of propofol and hypothermia mitigate the effects of oxidative stress on astrocytic uptake and retention of glutamate, with propofol having a relatively larger therapeutic window. The ability of these treatments to normalize cell transport systems may attenuate the pathologic increase in extracellular glutamate at synapses and thus prevent excitotoxic neuronal death.  相似文献   

7.
Ischemia may increase glutamate release, which can lead to neuronal damage. The therapeutic value of drugs that antagonize glutamate's effects are being investigated in CNS ischemia. This study examined the efficacy of a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten- 5,10-imine hydrogen maleate], in reducing ischemic injury. We explored the limits of this therapy and different properties of MK-801 that might be involved in its neuroprotective actions. Two focal CNS ischemia models were used, a multiple cerebral embolic model (MCEM) and a rabbit spinal cord ischemia model (RSCIM). When animals were treated 5 minutes after the onset of injury, MK-801 was effective in reducing ischemic damage in both models. However, when treatment was delayed 10 minutes after the ischemic insult in the MCEM, no neuroprotection was observed even when the MK-801 dose was increased eightfold. We also did not find a beneficial effect of MK-801 pretreatment with a dose that was one tenth of the effective dose in the RSCIM. Studies using the (-) MK-801 isomer showed that MK-801 neuroprotection exhibited stereoselectivity. The contribution of anticonvulsant activity and sedation to MK-801's neuroprotective actions was examined indirectly using phenytoin and midazolam, respectively. Neither drug was effective in reducing ischemic injury in the MCEM. This suggests that MK-801's neuroprotective efficacy in ischemia is mediated through its NMDA receptor antagonist activity independent of its anticonvulsant or sedative properties. These results support the hypothesis that excessive NMDA receptor excitation may be involved in ischemic neuronal damage.  相似文献   

8.
Background: The extracellular concentration of glutamate in the brain increases after oxidative damage. This increase may be caused, in part, by changes in glutamate transport by astrocytes. The authors hypothesized that propofol and hypothermia mitigate the effects on astrocytes of oxidative stress.

Methods: Primary cultures of rat cerebral astrocytes were subjected to oxidative stress by incubation with tert-butyl hydroperoxide for 30 min, followed by a 30-90-min washout period. The effects of prophylactic (simultaneous with tert-butyl hydroperoxide application) and delayed (administered 30 min after the oxidant) propofol or hypothermia were determined by measuring the uptake of glutamate as well as the release of preloaded d-aspartate (a nonmetabolizable analog of glutamate) and endogenous lactate dehydrogenase (a cytosolic marker).

Results: Delayed administration of an anesthetic concentration of propofol (1-3 [mu]m) prevented the inhibition of high-affinity glutamate uptake, stimulation of d-aspartate release, and increase in lactate dehydrogenase release caused by tert-butyl hydroperoxide (1 mm, 37[degrees]C). The protective effect of propofol (EC50 = 2 [mu]m) on glutamate uptake was 20-fold more potent than that of [alpha]-tocopherol (EC50 = 40 [mu]m). Prophylactic hypothermia (28 and 33[degrees]C) also protected astrocytes from tert-butyl hydroperoxide. Delayed hypothermia was not protective but did not compromise rescue by propofol.  相似文献   


9.
The clinical utility of N-methyl-D-aspartate (NMDA) receptor antagonists is now being assessed in ischemic brain injury in humans. The uptake and retention of NMDA receptor antagonists in ischemic tissue will influence the design of clinical trials. The effects of permanent occlusion of the middle cerebral artery, induced 15 minutes prior to isotope administration, on the uptake of 3H-MK-801 (dizocilpine) have been assessed in the rat with quantitative autoradiography. In a group of three rats at 15 minutes after the intravenous administration of 3H-MK-801, the level (mean +/- standard error of the mean) of isotopic tracer in the ischemic cortex and striatum was markedly less than that in the contralateral hemisphere (ipsilateral vs. contralateral caudate nucleus: 22 +/- 4 vs. 84 +/- 11 pmol/gm, p less than 0.01). In contrast, in a group of five rats at 60 minutes after the intravenous administration of 3H-MK-801, the level of isotopic tracer in the ischemic cortex and striatum was greater than that in the contralateral hemisphere (ipsilateral vs. contralateral caudate nucleus: 52 +/- 8 vs. 32 +/- 4 pmol/gm, p less than 0.05). There were no significant alterations in the specific binding of 3H-MK-801 in vitro in ischemic tissue at equivalent times. The early uptake of 3H-MK-801 into the central nervous system is dominated by the level of cerebral blood flow, whereas at later times after administration enhancement of MK-801 binding by elevated extracellular glutamate concentrations appears to be more important in determining the level of the drug in ischemic tissue.  相似文献   

10.
PURPOSE: In cerebral ischemia/anoxia, the glutamate transporter runs in reverse and releases glutamate into the extracellular space, causing irreversible neuronal damage. Intravenous anesthetics attenuate overall glutamate release and prevent neuronal injury during anoxia/ischemia, but their effect on the glutamate transporter is variable. METHODS: A human glial glutamate transporter (hGLT-I) cDNA was isolated by screening a human cerebral cortical library. Cloned cDNA was transfected in Chinese hamster ovary cells. The effect of the intravenous anesthetics midazolam (0.3 to 30 microM), ketamine (10 to 100 microM), thiopental (30 to 300 microM), and propofol (3 to 30 microM) on reversed uptake of L-glutamate via hGLT-I was examined by whole-cell patch-clamp. RESULTS: Midazolam at a concentration 3 microM reduced outward currents arising from reversed L-glutamate uptake via hGLT-I in a concentration-dependent manner. While, ketamine at 100 microM attenuated the same outward currents, to 53.3+/-11.4% of those seen in controls without anesthetics (P<0.05, n=5). In contrast, neither thiopental nor propofol showed effects on outward currents mediated by reversed operation of hGLT-I. CONCLUSIONS: These results suggest that midazolam and ketamine, but not thiopental and propofol, have a capacity to inhibit glutamate release via GLT- I directly.  相似文献   

11.
BACKGROUND: General anesthetics reduce neuronal death caused by focal cerebral ischemia in rodents and by in vitro ischemia in cultured neurons and brain slices. However, in intact animals, the protective effect may enhance neuronal survival for only several days after an ischemic injury, possibly because anesthetics prevent acute but not delayed cell death. To further understand the mechanisms and limitations of volatile anesthetic neuroprotection, the authors developed a rat hippocampal slice culture model of cerebral ischemia that permits assessment of death and survival of neurons for at least 2 weeks after simulated ischemia. METHODS: Survival of CA1, CA3, and dentate gyrus neurons in cultured hippocampal slices (organotypic slice culture) was examined 2-14 days after 45 min of combined oxygen-glucose deprivation at 37 degrees C (OGD). Delayed cell death was serially measured in each slice by quantifying the binding of propidium iodide to DNA with fluorescence microscopy. RESULTS: Neuronal death was greatest in the CA1 region, with maximal death occurring 3-5 days after OGD. In CA1, cell death was 80 +/- 18% (mean +/- SD) 3 days after OGD and was 80-100% after 1 week. Death of 70 +/- 16% of CA3 neurons and 48 +/- 28% of dentate gyrus neurons occurred by the third day after OGD. Both isoflurane (1%) and the N-methyl-D-aspartate antagonist MK-801 (10 microm) reduced cell death to levels similar to controls (no OGD) for 14 days after the injury. Isoflurane also reduced cell death in CA1 and CA3 caused by application of 100 but not 500 microm glutamate. Cellular viability (calcein fluorescence) and morphology were preserved in isoflurane-protected neurons. CONCLUSIONS: In an in vitro model of simulated ischemia, 1% isoflurane is of similar potency to 10 microm MK-801 in preventing delayed cell death. Modulation of glutamate excitotoxicity may contribute to the protective mechanism.  相似文献   

12.
We investigated the role of intracellular pH in protection by propofol of glutamate uptake during oxidative stress. Exposure of primary astrocyte cultures to tert-butylhydroperoxide (t-BOOH, 300 microM) decreased the initial rate of Na-dependent glutamate uptake. Either propofol or alpha-tocopherol, administered 30 min after t-BOOH, attenuated this transport inhibition. These lipophilic antioxidants protected glutamate uptake whether the medium contained 25 mM bicarbonate or was nominally bicarbonate-free. t-BOOH also inhibited Na/H exchanger isoform 1 (NHE1) activation by intracellular protons and propofol prevented this inhibition. Blockade of NHE1 by the potent antagonist, 5-(N-ethyl-N-isopropyl) amiloride (1 microM), abolished the protective effects of small concentrations of propofol (1 microM) and alpha-tocopherol (40 microM) on glutamate uptake during oxidative stress in bicarbonate-free medium. 5-(N-ethyl-N-isopropyl) amiloride had no effect on antioxidant rescue of glutamate transport in medium containing 25 mM bicarbonate. These results indicate that regulation of intracellular pH may contribute to neuroprotection by propofol and other lipophilic antioxidants. Propofol concentrations that are associated with anesthesia and neuroprotection may prevent intracellular acidification during oxidative stress by preserving the NHE1 response to cytosolic protons. However, if intracellular acidification occurs nonetheless, then propofol protection of glutamate uptake activity becomes less effective and the extracellular glutamate concentration may increase to neurotoxic levels. IMPLICATIONS: Anesthetic concentrations of propofol maintain the capacity of brain cells to extrude protons during oxidative stress. However, if intracellular acidification occurs nonetheless, then propofol's protection of glutamate clearance mechanisms from oxidative damage becomes attenuated, and extracellular glutamate concentration may increase to neurotoxic levels.  相似文献   

13.
BACKGROUND: Glutamate transporters located in the plasma membrane of cerebral astrocytes take up excitatory neurotransmitters from the synaptic cleft. In diseases characterized by oxidative stress, the extracellular glutamate concentration increases and contributes to neuronal death. The authors wanted to determine whether propofol defends brain cells against oxidant-induced changes in their transport of glutamate. METHODS: Primary cultures of rat cerebral astrocytes were exposed to tert-butyl hydroperoxide (1 mM) to serve as an in vitro model of oxidative stress. Astrocytes were incubated with propofol for 2 h and tert-butyl hydroperoxide was added for the final hour. Alternatively, astrocytes were incubated with tert-butyl hydroperoxide for 30 min and then with propofol for another 30 min. Control cells received drug vehicle rather than propofol. The rate of uptake of glutamate, the efflux of the nonmetabolizable analog D-aspartate, and the intracellular concentration of the endogenous antioxidant glutathione were measured. RESULTS: Tert-butyl hydroperoxide decreased the glutathione concentration and inhibited glutamate uptake but had a negligible effect on D-aspartate efflux. At clinically relevant concentrations, propofol did not affect the glutathione concentration but did prevent the effect of tert-butyl hydroperoxide on glutamate transport. Furthermore, the addition of propofol after tert-butyl hydroperoxide reversed the inhibition of glutamate uptake. CONCLUSIONS: Propofol prevents and reverses the inhibition of excitatory amino acid uptake in astrocytes exposed to tert-butyl hydroperoxide. The ability of propofol to defend against peroxide-induced inhibition of glutamate clearance may prevent the pathologic increase in extracellular glutamate at synapses, and thus delay or prevent the onset of excitotoxic neuronal death.  相似文献   

14.
目的 探讨四种常用静脉麻醉药物对大鼠皮层脑片缺氧缺糖损伤的作用。方法 建立大鼠皮层脑片缺氧缺糖损伤模型,设立对照组、缺氧缺糖损伤组、药物加损伤组,利用2,3,5-三苯基氯化四氮唑(TTC)染色定量比色方法,评价氯胺酮、异丙酚、咪达唑仑和硫喷妥钠对脑片损伤的保护作用。结果 随着缺氧缺糖损伤时间的延长,皮层脑片TTC染色程度明显降低,TTC染色反映的组织损伤百分率与孵育上清液乳酸脱氢酶(LDN)释放比活性呈正相关(r=0.9609,P<0.01)。对于缺氧缺糖损伤所致脑片TTC染色降低,不同浓度氯胺酮均能完全抑制;与损伤组比较。大剂量硫喷妥钠和咪达唑仑(400μmol·L~(-1)和10μmol·L~(-1)A值明显升高(P<0.01或0.05);小剂量异丙酚(1μmol·L~(-1))对脑片TTC染色降低无作用,大剂量(100μmol·L~(-1))加重TTC染色降低(P<0.01)。结论 对于大鼠皮层脑片缺氧缺糖损伤,四种静脉麻醉药物作用效果各不相同:临床麻醉剂量的氯胺酮具有明显保护作用,咪达唑仑和硫喷妥钠在超过临床使用范围的大剂量时有部分保护作用;大剂量异丙酚会加重大鼠皮层脑片的缺氧缺糖损伤。  相似文献   

15.
The purpose of this study was to examine the effects of inhibiting ionotropic glutamate receptor subtypes on measures of oxidative stress events at acute times following traumatic spinal cord injury (SCI). Rats received a moderate contusion injury and 15 min later were treated with one of two doses of 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzol[f]quinoxaline-7-sulfonamide disodium (NBQX), MK-801, or the appropriate vehicle. At 4 h following injury, spinal cords were removed and a crude synaptosomal preparation obtained to examine mitochondrial function using the MTT assay, as well as measures of reactive oxygen species (ROS), lipid peroxidation, and glutamate and glucose uptake. We report here that intraspinal treatment with either 15 or 30 nmol of NBQX improves mitochondrial function and reduces the levels of ROS and lipid peroxidation products. In contrast, MK-801, given intravenously at doses of 1.0 or 5.0 mg/kg, was without effect on these same measures. Neither drug treatment had an effect on glutamate or glucose uptake, both of which are reduced at acute times following SCI. Previous studies have documented that drugs acting on non-N-methyl-D-aspartate (NMDA) receptors exhibit greater efficacy compared to NMDA receptor antagonists on recovery of function and tissue sparing following traumatic spinal cord injury. The results of this study provide a potential mechanism by which blockade of the non-NMDA ionotropic receptors exhibit positive effects following traumatic SCI.  相似文献   

16.
The neuroprotective potency of anesthetics such as propofol compared to mild hypothermia remains undefined. Therefore, we determined whether propofol at two clinically relevant concentrations is as effective as mild hypothermia in preventing delayed neuron death in hippocampal slice cultures (HSC). Survival of neurons was assessed 2 and 3 days after 1 h oxygen and glucose deprivation (OGD) either at 37 degrees C (with or without 10 or 100 microM propofol) or at an average temperature of 35 degrees C during OGD (mild hypothermia). Cell death in CA1, CA3, and dentate neurons in each slice was measured with propidium iodide fluorescence. Mild hypothermia eliminated death in CA1, CA3, and dentate neurons but propofol protected dentate neurons only at a concentration of 10 microM; the more ischemia vulnerable CA1 and CA3 neurons were not protected by either 10 microM or 100 microM propofol. In slice cultures, the toxicity of 100 muM N-methyl-D-aspartate (NMDA), 500 microM glutamate, and 20 microM alpha-amino-5-methyl-4-isoxazole propionic acid (AMPA) was not reduced by 100 microM propofol. Because propofol neuroprotection may involve gamma-aminobutyric acid (GABA)-mediated indirect inhibition of glutamate receptors (GluRs), the effects of propofol on GluR activity (calcium influx induced by GluR agonists) were studied in CA1 neurons in HSC, in isolated CA1 neurons, and in cortical brain slices. Propofol (100 and 200 microM, approximate burst suppression concentrations) decreased glutamate-mediated [Ca2+]i increases (Delta[Ca2+]i) responses by 25%-35% in isolated CA1 neurons and reduced glutamate and NMDA Delta[Ca2+]i in acute and cultured hippocampal slices by 35%-50%. In both CA1 neurons and cortical slices, blocking GABAA receptors with picrotoxin reduced the inhibition of GluRs substantially. We conclude that mild hypothermia, but not propofol, protects CA1 and CA3 neurons in hippocampal slice cultures subjected to oxygen and glucose deprivation. Propofol was not neuroprotective at concentrations that reduce glutamate and NMDA receptor responses in cortical and hippocampal neurons.  相似文献   

17.
Glutamate transporters, widely distributed in the brain and spinal cord, maintain extracellular glutamate concentrations below neurotoxic levels. In cerebral ischemia/anoxia, the glutamate transporter runs in reverse and releases glutamate into the extracellular space, causing irreversible neuronal damage. Although hypothermia reduces the elevation of extracellular glutamate concentration during cerebral ischemia/anoxia, little is known about the effect of hypothermia on the glutamate transporter. A human glial glutamate transporter (hGLT-1) cDNA was isolated by screening a human cerebral cortical library, and cloned cDNA was stably transfected in Chinese hamster ovary (CHO) cells. Effects of deep hypothermia (22 to 23 degrees C) on uptake and release of L-glutamate via hGLT-1 were investigated by whole-cell patch-clamp. The control study was performed at 34 to 35 degrees C. The hGLT-1 transporter had the capacity to take up extracellular L-glutamate under essentially physiological ionic conditions, whereas this transporter promoted release of L-glutamate under a nonphysiological condition mimicking complete ischemia. Deep hypothermia decreased a) uptake and b) release of L-glutamate via hGLT-1 to a) 4.8+/-4.8% (P < .01, n = 7) and b) 19.0+/-4.5% (P < .01, n = 15) of control values, respectively. The results suggest that deep hypothermia is a potent inhibitor of glutamate uptake by intact glial cells as well as glutamate release from glial cells under certain pathophysiological circumstances. The balance between these antagonistic effects of hypothermia may attenuate the elevation of the extracellular glutamate concentration during ischemia/anoxia.  相似文献   

18.
Glutamate does not play a major role in controlling bone growth.   总被引:2,自引:0,他引:2  
Bone cells express glutamate-gated Ca2+-permeable N-methyl-D-aspartate (NMDA) receptors and GLAST glutamate transporters. Blocking NMDA receptors has been reported to reduce the number of bone resorption pits produced by osteoclasts, and mechanical loading alters GLAST transporter expression, which should change the extracellular glutamate concentration and NMDA receptor activation. Thus, by analogy with the brain, glutamate is postulated to be an important intercellular messenger in bone, controlling bone formation and resorption. We found that activating or blocking NMDA receptors had no effect on bone formation by rat osteoblasts in culture. The number of resorption pits produced by osteoclasts was reduced by the NMDA receptor blocker MK-801 but not by another blocker AP-5, implying that this effect of MK-801 is unrelated to its glutamate-blocking action. By contrast, MK-801, AP-5, and NMDA had no consistent effect on the volume of pits. In mice with GLAST glutamate transporters knocked out, no differences were detected in mandible and long bone size, morphology, trabeculation, regions of muscle attachment, resorption lacunae, or areas of formation versus resorption of bone, compared with wild-type siblings. These data suggest that glutamate does not play a major role in controlling bone growth.  相似文献   

19.
BACKGROUND: Although propofol is known to produce amnesia when used for anesthesia, mechanisms underlying its effects on memory are poorly understood. The current study was designed to examine the effects of propofol on forms of synaptic plasticity thought to contribute to memory processing. METHODS: Extracellular excitatory postsynaptic potentials were recorded from the CA1 region of rat hippocampal slices. Long-term potentiation (LTP) was induced using theta-burst stimulation (10 bursts of 4 pulses at 100 Hz, applied at 5 Hz) of the Schaffer-collateral pathway, while low-frequency stimulation (1 Hz x 900 pulses) was delivered to induce long-term depression. The authors also used higher-frequency stimulation (10 bursts of 4 pulses at 200 Hz, applied at 5 Hz) in the presence of MK-801 to examine the effects of propofol on an N-methyl-D-aspartate receptor-independent form of LTP. RESULTS: At 30 microM, propofol inhibited LTP induction produced by theta-burst stimulation but had less effect on LTP maintenance. Similarly, when LTP was induced by 200-Hz stimulation in the presence of MK-801, propofol also blocked LTP induction. Propofol did not block LTP induction in the presence of picrotoxin, a specific antagonist of gamma-aminobutyric acid type A receptors, suggesting that modulation of gamma-aminobutyric acid type A receptors participates in propofol-mediated LTP inhibition. Propofol did not inhibit long-term depression. CONCLUSIONS: Propofol inhibits LTP induction through modulation of gamma-aminobutyric acid type A receptors but not via inhibition of N-methyl-D-aspartate receptors. However, other factors also possibly contribute to propofol-mediated LTP inhibition.  相似文献   

20.
In view of the ability of neurotensin (NT) to increase glutamate release, the role of NT receptor mechanisms in oxygen-glucose deprivation (OGD)-induced neuronal degeneration in cortical cultures has been evaluated by measuring lactate dehydrogenase (LDH) levels, mitochondrial dehydrogenase activity with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide levels, and microtubule-associated protein 2 (MAP2) immunoreactivity. Apoptotic nerve cell death was analyzed measuring chromatin condensation with Hoechst 33258, annexin V staining, and caspase-3 activity. Furthermore, the involvement of glutamate excitotoxicity in the neurodegeneration-enhancing actions of NT was analyzed by measurement of extracellular glutamate levels. NT enhanced the OGD-induced increase of LDH, endogenous extracellular glutamate levels, and apoptotic nerve cell death. In addition, the peptide enhanced the OGD-induced loss of mitochondrial functionality and increase of MAP2 aggregations. These effects were blocked by the neurotensin receptor 1 (NTR1) antagonist SR48692. Unexpectedly, the antagonist at 100 nM counteracted not only the NT effects but also some OGD-induced biochemical and morphological alterations. These results suggest that NTR1 receptors may participate in neurodegenerative events induced by OGD in cortical cultures, used as an in vitro model of cortical ischemia. The NTR1 receptor antagonists could provide a new tool to explore the clinical possibilities and thus to move from chemical compound to effective drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号