首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Experiments were designed to evaluate the effect of cyclic AMP on the electrically-induced release of noradrenaline from vascular sympathetic nerve terminals. The possible implication of the inhibition of adenylate cyclase in the negative feed-back control by prejunctional α2-adrenoceptors of neurotransmitter release was also investigated. Rat isolated tail arteries were preincubated with [3H]-noradrenaline; the preparations were subsequently perfused/superfused with [3H]-noradrenaline-free medium and their perivascular nerves were field stimulated with 24 pulses at 0.4 Hz (0.3 ms, 200 mA). 2 compounds known to enhance the intracellular concentration of cyclic AMP, namely the membrane permeant analogue 8-Br-cAMP (10–300 μmol/l) and forskolin (0.3–10 μmol/l), an activator of adenylate cyclase, concentration-dependently enhanced the stimulation-evoked tritium overflow. The 1,9-dideoxy derivative of forskolin, which does not stimulate adenylate cyclase, was ineffective. Exposure to the cyclic AMP phosphodiesterase inhibitor rolipram 30 μmol/l produced a moderate increase (about 20%) in tritium overflow. However, in the presence of rolipram the facilitatory effect of forskolin was significantly more pronounced than in its absence. Whereas 8-Br-cAMP produced a slight concentration-dependent enhancement of the stimulation-induced vasoconstriction, forskolin and rolipram depressed it. The α2-adrenoceptor agonist B-HT 933 (3–30 μmol/l) concentration-dependently inhibited the tritium overflow. The effect of B-HT 933 30 μmol/l was slightly, but significantly reduced in the presence of 8-Br-cAMP 100 and 300 μmol/l, but was not changed in the presence of forskolin 3 μmol/l The facilitatory effect of rauwolscine 1 μmol/l was enhanced in the presence of 8-Br-cAMP 100 μmol/l. During perfusion with 8-Br-cAMP 100 μmol/l, the current strength and frequency were decreased to 150 mA and 0.2 Hz, respectively in order to obtain similar amounts of tritium overflow to those observed in the absence of the cyclic AMP analogue with the initial stimulation parameters. Under these conditions, the inhibition of the overflow by B-HT 933 30 μmol/l and the facilitation by the α2-adrenoceptor antagonist rauwolscine 1 μmol/l were unaltered as compared to controls under initial stimulation conditions. It is concluded that, in the rat tail artery, the terminals of perivascular sympathetic nerves are endowed with an adenylate cyclase system. Cyclic AMP is able to modulate noradrenaline release, but does not appear to play a role in the initiation of the release process itself. In addition, the results do not support the hypothesis that prejunctional α2-adrenoceptors depress noradrenaline release through the inhibition of adenylate cyclase. Send offprint requests to B. Bucher at the above address  相似文献   

2.
Rationale: Neurosteroid 3α, 5α THP, a positive allosteric modulator of the GABAA receptor Cl ionophore complex, induces catalepsy-like dopamine antagonists, adenosine agonists or GABA agonists. Adenosine and dopamine receptors are co-localized on GABAergic neurons in the striatum and regulate GABA-mediated neurotransmission. Moreover, the antagonistic interactions between specific subtypes of adenosine and dopamine receptors are involved in motor depressant or motor stimulant effects of adenosine receptor agonists or antagonists, respectively. Such interaction may modulate neurosteroid-induced catalepsy. Objective: This study examined the modulation of 3α, 5α THP-induced catalepsy by adenosinergic agents. Methods: Catalepsy induced by 3α, 5α THP (2–8 μg, ICV) was assessed by bar test periodically up to 3 h in mice. Adenosine A1, A2A or A3 receptor agonists or antagonists were given IP or ICV prior to 3α, 5α THP. Some animals received IP dopamine D2 receptor agonist or antagonist 30 min prior to above combination treatment. Results: Adenosine A1, A2A, and A3 receptor agonists potentiated, whereas adenosine A2A receptor antagonists, but not A1 antagonists, reversed 3α, 5α THP-induced catalepsy. These effects of adenosine agonists and antagonists were abolished by prior administration of bromocriptine, the dopamine D2 receptor agonist and spiperone, the dopamine D2 receptor antagonist, respectively. Conclusions: These findings suggest specific adenosine-dopamine receptor interaction in the striatum to modulate 3α, 5α THP-induced catalepsy. Received: 1 November 1998 / Final version: 5 January 1999  相似文献   

3.
The present study investigates the possibility that imidazoline receptors mediate modulation of cholinergic motor functions of the guinea-pig ileum. For this purpose, the effects of a series of compounds with known affinity for α2-adrenoceptors and/or imidazoline recognition sites were examined on the cholinergic twitch contractions evoked by electrical field stimulation (0.1 Hz) of longitudinal muscle-myenteric plexus preparations. Additional experiments were carried out on ileal strips preincubated with [3H]choline, superfused with physiological salt solution containing hemicholinium-3, and subjected to electrical field stimulation (1 Hz). The stimulation-induced outflow of radioactivity was taken as an index of endogenous acetylcholine release. α-Methyl-noradrenaline, noradrenaline, clonidine, medetomidine, oxymetazoline and xylazine caused a concentration-dependent inhibition of twitch responses (IC50 from 0.13 to 1.05 μM; Emax from 85.9 to 92.5%). Rilmenidine and agmatine were less potent in reducing the twitch activity, and the latter compound acted also with low intrinsic activity (IC50=44.9 μM; Emax=35.5%). In interaction experiments, the inhibitory action of clonidine on twitch responses was competitively antagonized by RX 821002 (2-(2-methoxy-1,4-benzodioxan-2-yl)-2-imidazoline), idazoxan, rauwolscine, yohimbine and BRL 44408 (2-[2H-(1-methyl-1,3-dihydroisoindole)-methyl]-4,5-dihydroimidazoline), whereas prazosin (10 μM), ARC 239 (2-(2,4-(O-methoxy-phenyl)-piperazin-1-yl)-ethyl-4,4-dimethyl-1,3-(2H,4H)-isoquinolindione; 10 μM) and BRL 41992 (1,2-dimethyl-2,3,9,13b-tetrahydro-1H-dibenzo[c,f]imidazol[1,5-a]azepi-ne; 10 μM) were without effect. Rauwolscine antagonized the inhibitory effects of various agonists on ileal twitch activity in a competitive manner and with similar potency. Agmatine and idazoxan did not significantly modify the twitch contractions when tested in the presence of α2-adrenoceptor blockade by rauwolscine (3 μM) or RX 821002 (1 μM). Linear regression analysis showed that the affinity values of antagonists correlated with their affinity at the α2A and α2D binding sites as well as at previously classified α2A/D adrenoceptor subtypes, whereas no significant correlation was obtained when comparing the potency estimates of agonists and antagonists with the affinity at I1 or I2 binding sites. When tested on the electrically induced outflow of tritium, α-methyl-noradrenaline, noradrenaline, clonidine, medetomidine, oxymetazoline, xylazine and rilmenidine yielded inhibitory concentration-response curves which were shifted rightward to a similar extent in the presence of rauwolscine (3 μM). In the absence of further drugs, agmatine significantly reduced the evoked tritium outflow at the highest concentrations tested (10 and 100 μM), whereas idazoxan (up to 100 μM) was without effect. When RX 821002 (1 μM) was added to the superfusion medium, neither agmatine nor idazoxan modified the evoked outflow of radioactivity. The results argue against modulation by imidazoline receptors of acetylcholine release from myenteric plexus nerve terminals. They provide evidence that compounds endowed with imidazoline-like structures affect the cholinergic motor activity of the guinea-pig ileum by interacting with presynaptic α2-adrenoceptors belonging to the α2D subtype. Received: 10 October 1997 / Accepted: 14 March 1998  相似文献   

4.
Experiments on hippocampal slices were carried out in order to find out whether the release of noradrenaline in the hippocampus can be modulated through P2-receptors. The slices were preincubated with [3H]-nor-adrenaline, superfused with medium containing desipramine (1 μM), and stimulated electrically, in most experiments by 4 pulses/100 Hz. The adenosine A1-receptor agonist N6-cyclopentyl-adenosine (CPA) and the nucleotides ATP, adenosine-5’-O-(3-thiotriphosphate) (ATPγS) and adenosine-5’-O-(2-thiodiphosphate) (ADPβS) decreased the evoked overflow of tritium by up to 55 %. The adenosine A2a-agonist 2-p-(2-carboxyethyl)-phenethylamino-5’-N-ethylcarboxamido-adenosine (CGS 21680; 0.003-0.3 μM) caused no change. The concentration-response curve of CPA was shifted to the right by the A1-antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 3 nM) but not by the P2-receptor antagonists cibacron blue 3GA (30 μM) and reactive blue 2 (30 μM); the apparent pKB value of DPCPX against CPA was 9.0. In contrast, the concentration-response curve of ATP was shifted to the right by DPCPX (3 nM), apparent pKB 8.7, as well as by ciba-cron blue 3GA (30 μM), apparent pKB 5.2, and reactive blue 2 (30 μM), apparent pKB 5.6; the antagonist effects of DPCPX and cibacron blue 3GA were additive in a manner compatible with the blockade of two separate receptors for ATP. The same pattern was obtained with ATPγS: its concentration-response curve was shifted to the right by DPCPX as well as by cibacron blue 3GA and reactive blue 2. Suramin (300 μM) antagonized neither the effect of ATP nor that of ATPγS. The 5’-nucleotidase inhibitor α,β-methylene-ADP (100 μM) did not change the effect of ATP. Only cibacron blue 3GA (30 μM) but not reactive blue 2 (30 μM), given alone, consistently caused a small increase of the evoked overflow of tritium. Hippocampal slices degraded exogenous ATP, and this degradation was reduced by cibacron blue 3GA (30 μM), reactive blue 2 (30 μM) and suramin (300 μM). The results indicate that the noradrenergic terminal axons of the rat hippocampus possess P2-receptors in addition to the known A1-adenosine receptors. The presynaptic P2-receptors mediate an inhibition of noradrenaline release, are activated by nucleotides but not nucleosides, and are blocked by cibacron blue 3GA and reactive blue 2. ATP and ATPγS act at both the A1- and the P2-receptors. An autoreceptor function of cerebral presynaptic P2-receptors remains doubtful. Received: 20 November 1996 / Accepted: 10 February 1997  相似文献   

5.
A fourth type of opioid receptor, termed ORL1, has been cloned and nociceptin (also known as orphanin FQ) has been identified as an endogenous ligand at this receptor. We examined whether nociceptin affects the release of noradrenaline in the brain. For this purpose, cerebral cortex slices from the mouse, rat or guinea-pig were preincubated with [3H]noradrenaline and then superfused with medium containing desipramine and rauwolscine. Tritium overflow was evoked electrically (0.3 Hz) or by introduction of Ca2+ 1.3 mM into Ca2+-free K+-rich (15 mM) medium. Nociceptin 1 μM reduced the electrically evoked tritium overflow from mouse, rat and guinea-pig brain cortex slices by 80, 71 and 36%, respectively. Naloxone 10 μM did not change the effect of nociceptin. All subsequent experiments were performed on mouse brain cortex slices and in the presence of naloxone 10 μM. The concentration-response curve of nociceptin (maximum inhibition by 80%, pEC50 7.5) was shifted to the right by the non-selective ORL1 receptor antagonist naloxone benzoylhydrazone and the selective ORL1 receptor antagonist [Phe1ψ(CH2-NH)Gly2]-nociceptin(1–13)NH2 (pA2 6.6 and 7.2, respectively). Naloxone benzoylhydrazone did not affect the evoked overflow by itself whereas [Phe1ψ(CH2-NH)Gly2]-nociceptin(1–13)NH2 caused an inhibition by maximally 35% (pEC50 7.0; intrinsic activity α 0.45). The inhibitory effect of [Phe1ψ(CH2-NH)Gly2]-nociceptin(1–13)NH2 was counteracted by naloxone benzoylhydrazone. Nociceptin also reduced the Ca 2+ -evoked tritium overflow in mouse brain cortex slices superfused in the presence of tetrodotoxin. This effect was also antagonized by naloxone benzoylhydrazone, which, by itself, did not affect the evoked tritium overflow. In conclusion, nociceptin inhibits noradrenaline release more markedly in the mouse than in the rat or guinea-pig brain cortex. The effect of nociceptin in the mouse brain cortex involves ORL1 receptors, which are located presynaptically on noradrenergic neurones. Received: 19 June 1998 / Accepted: 17 July 1998  相似文献   

6.
Selective H2- and H3-receptor agonists, exhibiting an at least tenfold higher potency than histamine itself at the respective receptors, have been known for several years. Selective H1-receptor agonists with a potency exceeding that of histamine have become available only recently; the most potent are methylhistaprodifen and dimethylhistaprodifen [N α-methyl- and N α,N α-dimethyl-2-(3,3-diphenylpropyl)histamine, respectively] with 3.4- and 2.4-fold higher potencies than histamine in vitro (in the guinea-pig ileum). The aim of the present study was to examine whether these compounds and the parent compound histaprodifen are potent H1-receptor agonists in the pithed and in the anaesthetized rat. In pithed, vagotomized rats diastolic blood pressure was decreased by 2-(2-thiazolyl)ethanamine i.v. (which was used as a reference H1-receptor agonist) and by histaprodifen, methylhistaprodifen, and dimethylhistaprodifen; the maximum decrease was about 45 mmHg for each compound, and the potencies, expressed as pED50, the negative logarithm of the dose (in mole per kilogram body weight) eliciting a half-maximal response, were 7.23, 7.55, 8.43 and 8.12, respectively. The dose/response curves of the four compounds were shifted to the right to about the same extent by the H1-receptor antagonist dimetindene (1 μmol/kg i.v.). The vasodepressor response was not affected by combined i.v. administration of the H2- and H3-receptor antagonists ranitidine and thioperamide, by combined i.v. administration of the α1- and α2-adrenoceptor antagonists prazosin and rauwolscine, and by the β-adrenoceptor antagonist propranolol i.v. but was attenuated by the inhibitor of NO synthase, N ω-nitro-l-arginine methyl ester i.v. In anaesthetized rats 2-(2-thiazolyl)ethanamine, histaprodifen, methylhistaprodifen and dimethylhistaprodifen i.v. also decreased diastolic blood pressure in a manner sensitive to dimetindene i.v. Our data show that histaprodifen and, in particular, methyl- and dimethylhistaprodifen are highly potent H1-receptor agonists in vivo. Received: 3 September 1998 / Accepted: 23 October 1998  相似文献   

7.
Celiprolol is a β-adrenoceptor antagonist which has desirable ancillary properties since it is relatively cardioselective and can exert direct vasodilator and bronchodilator effects. Here agonist and antagonist effects of celiprolol at cardiac β1- and vascular β2-adrenoceptors were determined under in vivo conditions in the rat. All experiments were carried out in catecholamine-depleted, pentobarbital anesthetized and vagotomized rats, placed under artificial respiration. I.v. administrations were madevia the femoral vein. Blood pressure was measured from the cannulated right carotid artery and heart rate was recorded with a cardiotachometer. Celiprolol (10 μg/kg to 1 mg/kg i.v.) produced dose-related increases in heart rate and decreases in mean carotid artery blood pressure which were of longer duration than those mediated by standard agonists of β1-(isoprenaline) or β2-(salbutamol) adrenoceptors respectively. Although the maximal increase in heart rate by celiprolol (110±4 beats/min, n=7) was approximately half that of isoprenaline (198±1 beats/min, n=5), isoprenaline acted at doses 200-fold lower than celiprolol. Betaxolol (0.03-0.3 mg/kg i.v.), a β1-adrenoceptor antagonist, inhibited strongly and with similar potency the tachycardic effects of celiprolol (DR10 = 45 μg/kg i.v.) as well as isoprenaline (DR10 = 45 μg/kg i.v.). On the other hand, the hypotensive effects of celiprolol and salbutamol were antagonized markedly and with similar potency by ICI118,551, a relatively selective β2-adrenoceptor antagonist (DR10 = 15 and 25 μg/kg i.v. respectively). In rats pretreated with celiprolol (0.03 to 0.3 mg/kg i.v.), the heart rate dose-response curves to isoprenaline were shifted to the right of those determined in matched groups of vehicle-pretreated animals. In this respect, celiprolol was half as potent as betaxolol in blocking cardiac β1-adrenoceptors. Furthermore, celiprolol also antagonized the hypotensive effects of salbutamol, but, in this respect, celiprolol was 90-fold less potent than ICI 118,551. In conclusion, these results clearly indicate that celiprolol has the ability of stimulating and blocking not only cardiac β1- but also vascular β2-adrenoceptors. The effects on cardiac β1-adrenoceptors as well as the agonism of β2-adrenoceptors are produced by similar doses of celiprolol. These doses are notably lower than those necessary to block β2-adrenoceptors. Thus, this pharmacological profile, which has also been demonstrated in humans, indicates that celiprolol is a modulator of cardiac β1-adrenoceptors with vascular β2-adrenoceptor agonist properties. Received: 26 June 1996 / Accepted: 3 March 1997  相似文献   

8.
The effect of selective phosphodiesterase (PDE) inhibitors was studied on neural transmission within the enteric nervous system employing a two-compartment bath (containing the oral and the anal end of a segment of guinea-pig ileum, respectively). Ascending excitatory enteric nerve pathways were activated by electrical field stimulation (10 Hz for 2 s, 45 mA, 0.5 pulse duration) in the anal compartment and the resulting contraction of the intestinal circular muscle in the oral compartment was recorded. The partitioned bath enables PDE inhibitors and other drugs to be applied to enteric nerve pathways (in the anal compartment) without interfering with the recording of the smooth muscle contraction in the oral compartment. The PDE 4 inhibitors rolipram (0.01–10 μM) and Ro-20-1724 (0.01–10 μM) significantly (P<0.01) inhibited (10–91% and 9–83%, respectively) the nerve-mediated contractions. When both rolipram and Ro-20-1724 were tested after phentolamine (1 μM) or yohimbine (0.1 μM), they were significantly (P<0.01) less effective. By contrast prazosin (1 μM) was ineffective. Vinpocetine (50 μM), milrinone (30 μM) and zaprinast (100 μM), which inhibit PDE 1, 3 and 5, respectively, did not modify the nerve-mediated contractions. 8-Bromoadenosine 3’,5’-cyclic monophosphate (8-Br-cyclic AMP) or N6,2’-O-dibutyryladenosine 3’,5’ cyclic monophosphate (dibutyryl cyclic AMP), two analogues of cyclic AMP, at lower concentrations (0.1–1 μM) significantly (P<0.01) inhibited (15–73% and 5–49%, respectively) the nerve-mediated contractions, while at higher concentrations (10–100 μM) they caused a significant (P<0.01) potentiating (48–68% and 77–78%, respectively) effect. These results indicate that inhibition of PDE 4 (but not PDE 1, PDE 3 or PDE 5) produces a depression of neural transmission within the enteric nervous system, possibly by releasing noradrenaline acting at α2-adrenoceptors on enteric neurons. Received: 21 November 1997 / Accepted: 11 March 1998  相似文献   

9.
We have characterized the contractile responses produced by stimulation of the tachykinin NK2 receptor in the hamster urinary bladder in vitro and in vivo. In isolated bladder strips, neurokinin A (NKA, pD 2 7.40, Emax 71% of the response to 80 mM KCl) and the synthetic tachykinin NK2 receptor selective agonist [βAla8]NKA(4–10) (pD 2 7.48, Emax 77% of the response to KCl) both induced a concentration-dependent contraction, whereas the tachykinin NK1 and NK3 receptor selective agonists, [Sar9]substance P sulfone and senktide, respectively, produced a negligible contractile effect. The bicyclic peptide antagonists MEN 11420 and MEN 10627 behaved as competitive antagonists of the response to [βAla8]NKA(4–10) with apparent pK B values of 9.3 and 9.7, respectively. Comparable apparent pK B values were estimated against NKA (pK B 9.2 and 9.4 for MEN 11420 and MEN 10627, respectively). Under isovolumetric recording of the intravesical pressure, the nicotinic receptor agonist DMPP (0.6 μmol/kg i.v.) produced a phasic contraction of the hamster bladder in vivo that was abolished by hexamethonium (110 μmol/kg i.v.) or by surgical ablation of pelvic ganglia. In vivo [βAla8]NKA(4–10) (10 nmol/kg i.v.) induced a tonic-type sustained bladder contraction with superimposed high frequency and small amplitude (<12 mmHg) phasic contractions and, in about 70% of cases examined, a few high amplitude (>20 mmHg) phasic contractions. Hexamethonium abolished the high amplitude phasic contractions, indicating their reflex origin. In animals subjected to the ablation of pelvic ganglia, the urinary bladder response to [βAla8]NKA(4–10) was comparable to that observed after administration of hexamethonium. Moreover, hexamethonium did not affect the contractile responses to [βAla8]NKA(4–10) in ganglionectomized animals. MEN 10627 and MEN 11420 produced a dose-dependent and long-lasting inhibition of the contractile response to [βAla8]NKA(4–10): the least effective doses of the two antagonists were 30 and 3 nmol/kg i.v. for MEN 10627 and MEN 11420, respectively. An almost complete and long-lasting inhibition of the response to the agonist was produced at doses of 10 and 100 nmol/kg i.v. of MEN 11420 and MEN 10627. In urethane-anaesthetized hamsters the non-stop intravesical infusion of saline (50 μl/min) produced repetitive micturition cycles which were abolished by hexamethonium (110 μmol/kg i.v.) or by surgical removal of the pelvic ganglia. MEN 11420 (100 nmol/kg) had no significant effect on the volume-evoked micturition reflex in anaesthetized hamsters. In conclusion, the hamster urinary bladder is a suitable preparation for studying the action of tachykinin NK2 receptor antagonists in vivo: in this species, the stimulation of tachykinin NK2 receptors induces bladder contractions. Blockade of tachykinin NK2 receptors does not appreciably modify the volume-evoked micturition reflex in this species. Received: 22 April 1998 / Accepted: 12 June 1998  相似文献   

10.
To study possible differences in α1-adrenoceptor involvement in the spinal mechanisms mediating bladder activity induced by volume (bladder filling), central (L-dopa), and peripheral (capsaicin) stimulation, we investigated if these types of bladder activity were modified by intrathecal (i.t.) or intra-arterial (i.a.) administration of the α1-adrenoceptor antagonist, indoramin. Indoramin is selective for the α1A-adrenoceptor subtype, whereas most clinically used α1-adrenoceptor antagonists, including doxazosin, have no subtype selectivity. The drug effects were studied by continuous cystometry in normal, conscious rats and rats with bladder activity evoked by intraperitoneal L-dopa (50 mg/kg after carbidopa pretreatment), or by intravesical capsaicin (30 μM). I.t. indoramin (50 nmol) significantly decreased micturition pressure, and increased bladder capacity and micturition volume. Dribbling incontinence due to urinary retention was observed in one of ten rats. L-dopa-stimulated bladder overactivity was significantly attenuated by i.t. or i.a. indoramin (50 nmol). Similar effects of i.t. and i.a. doxazosin (50 nmol) have been reported previously. Intravesical capsaicin (30 μM) caused bladder activity, which was attenuated by i.t. indoramin (50 nmol), but not by i.t. doxazosin (50 nmol). I.a. indoramin did not reduce capsaicin-induced bladder activity; doxazosin was moderately effective. The results suggest that the bulbospinal micturition reflex evoked by bladder filling and L-dopa involves a descending pathway where transmission is partly mediated by spinal α1-adrenoceptors. Bladder overactivity evoked by intravesical capsaicin, which elicits a vesico-spinal-vesical reflex, was not affected by i.t. doxazosin in a dose that attenuates activity mediated through the bulbo-spinal pathway. This suggests less involvement of spinal α1-adrenoceptors in the vesico-spinal-vesical than in the bulbo-spinal voiding reflex. Received: 29 November 1996 / Accepted: 3 March 1997  相似文献   

11.
In the present study the effect of the opioid heptadecapeptide nociceptin, also termed orphanin FQ, an endogenous ligand for the orphan receptor named ORL1 (opioid receptor-like 1) receptor, was investigated on [3H]noradrenaline release induced by electrical field stimulation (24 pulses at 0.4 Hz, 200 mA, 0.3 ms duration) in the rat tail artery in the absence and presence of an α2-adrenoceptor antagonist, rauwolscine 3 μM. Nociceptin inhibited the electrically-evoked tritiated noradrenaline release in a concentration-dependent manner from rat tail arteries. This inhibitory effect of nociceptin was enhanced in the presence of the α2-adrenoceptor antagonist rauwolscine (maximum inhibition by 25% and 50% in the absence and presence of rauwolscine, respectively). At a supramaximal concentration (10 μM), the inhibitory action of DAGO, a selective μ-opioid receptor agonist, was less pronounced than that of nociceptin. The inhibitory effect of nociceptin was counteracted by naloxone benzoylhydrazone (3 μM) which by itself did not change the stimulation-evoked noradrenaline overflow. Naloxone (10 μM), a non-selective opioid receptor antagonist, did not affect the inhibitory effect of nociceptin whereas it abolished that of DAGO. In conclusion, these results suggest that nociceptin modulates noradrenergic neurotransmission by acting on prejunctional ORL1 receptors located on nerve terminals innervating the rat tail artery. They also demonstrate that prejunctional ORL1 receptors interact with prejunctional α2-adrenoceptors. The physiological significance of this phenomenon remains to be determined. Received: 27 August 1998 / Accepted: 29 September 1998  相似文献   

12.
Theα 2 adrenoceptor has recently been implicated in working memory (WM), a function dependent on the integrity of the prefrontal cortex. Using a double-blind, placebo-controlled design, the present investigation examines the effects of two doses (1.5 μg/kg and 2.5 μg/kg) of the mixedα 1/α 2 adrenoceptor agonist clonidine (CLO) on performance of various computerised tests of WM and planning in healthy, young volunteers. These are compared to the effects produced by two doses (5 mg and 10 mg) of diazepam (DZP) on largely the same set of neuropsychological tests in a comparable set of subjects. Administration of CLO resulted in impulsivity of responding in a planning task, as well as differential dose-dependent effects on two analogous tests of spatial and visual WM. The nature of these effects were suggestive of mnemonic, rather than executive, dysfunction. Conversely, DZP produced specific deficits on tests of spatial WM and planning very similar to those seen following lesions to the frontal lobes. Therefore, these two sedative drugs produce doubly dissociable, dose-dependent effects on different aspects of cognitive function.  相似文献   

13.
The novel opioid tetrapeptides, endomorphin-1 and endomorphin-2, recently isolated from bovine and human brain bind with high affinity and selectivity to central μ-opioid receptors. In the digestive tract, a comprehensive pharmacological analysis of the receptors involved in endomorphin action has not been reported. In this study, we analyzed the effects of endomorphin-1 and endomorphin-2 on longitudinal muscle-myenteric plexus preparations (LMMPs) from the guinea-pig ileum. Both peptides (30 pM–1 μM) inhibited (–log EC50 values: 8.61 and 8.59, respectively) the amplitude of electrically-induced twitch contractions in a concentration-dependent fashion, up to its abolition. Conversely, in unstimulated LMMPs, they failed to affect contractions to applied acetylcholine (100 nM). In stimulated LMMPs, the highly selective μ-opioid receptor antagonist, d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), caused a concentration-dependent (30 nM–1 μM), parallel rightward shift of endomorphin-1 and endomorphin-2 inhibitory curves, without depression of their maximum. Following Schild analysis, calculated pA 2 values were 7.81 and 7.85, respectively, with slopes not different from unity. Concentration-response curves to both peptides were not affected by 30 nM naltrindole (a selective δ-receptor antagonist) or 30 nM nor-binaltorphimine (a selective κ-receptor antagonist). These results demonstrate that endomorphins selectively activate μ-opioid receptors located on excitatory myenteric plexus neurons, and that they act as full agonists. Received: 6 August 1998 / Accepted: 5 October 1998  相似文献   

14.
The interaction of superoxide anions (O2 ) generated by menadione with the synthesis and/or action of nitric oxide (NO), prostacyclin (PGI2) and endothelium-derived hyperpolarizing factor (EDHF) was investigated in segments of the left anterior descending coronary artery (LAD) isolated from bovine hearts. EDHF and NO release were monitored by superfusion bioassay in segments pre-constricted with the thromboxane mimetic, U46619, PGI2 release in addition by enzyme immunoassay for 6-keto-prostaglandin F, and generation of O2 by lucigenin-enhanced chemiluminescence. Bradykinin (1–1,000 pmol) elicited a prominent, endothelium-dependent, relaxant response, 50–60% of which was insensitive to combined blockade of cyclooxygenase with diclofenac (1 μM) and NO synthase with N G-nitro-l-arginine (50 μM). This diclofenac/N G-nitro-l-arginine-insensitive relaxant response was completely abrogated in the presence of tetrabutylammonium (3 mM), a non-selective inhibitor of Ca2+-dependent K+ channels, or when the segments were pre-constricted with potassium chloride (60 mM) instead of U46619, and thus most likely mediated by EDHF. Despite causing a two- to fourfold increase in the concentration of O2 in or at the vessel wall, menadione (30 μM) did not affect the diclofenac/N G-nitro-l-arginine-insensitive relaxant response to bradykinin. When administered in the absence of N G-nitro-l-arginine, however, menadione significantly inhibited the relaxant response to bradykinin, presumably by attenuating the NO-mediated relaxation. Menadione also abolished the bradykinin-stimulated release of PGI2 from luminally perfused segments of the LAD. This effect was more pronounced in the absence of N G-nitro-l-arginine, indicating that PGI2 release in this preparation may be more sensitive to inhibition by peroxynitrite, the reaction product of NO and O2 , than to O2 alone. These findings suggest that, in contrast to NO and PGI2, the release, and presumably also the mechanism of action, of EDHF in the bovine LAD is resistant to an increase in the local concentration of O2 or peroxynitrite which is thought to play an important role in coronary heart disease. Received: 27 August 1998 / Accepted: 18 November 1998  相似文献   

15.
The effects of nicotinamide adenine dinucleotide phosphate (NADPH), α,β-methylene adenosine 5’-triphosphate (α,β-MeATP), l-β,γ-methylene adenosine 5’-triphosphate (l-β,γ-MeATP), 2-methylthio-adenosine 5’-triphosphate (MeSATP) and adenosine-5-O-(2’-thiodiphosphate) (ADPβS) were investigated on the contractions to electrical field stimulation in the rat anococcygeus muscle. Stimulation-induced contractions were not affected by l-β,γ-MeATP (3–100 μM) or MeSATP (3–100 μM), but were enhanced by NADPH (10–100 μM), α,β-MeATP (3–30 μM) and ADPβS (3–10 μM) in a concentration-dependent manner, and the enhancements were antagonised by the P2-receptor antagonist suramin (100 μM). The enhancement produced by α,β-MeATP (10 μM) and ADPβS (10 μM) was also antagonised by pyridoxal-phosphate-6-azophenyl-2’,4’-disulphonic acid (10 μM) and reactive blue 2 (100 μM). The enhancement produced by α,β-MeATP (10 μM) was not altered by NG-nitro-l-arginine methyl ester (100 μM), desipramine (1 μM) or idazoxan (0.1 μM) excluding, respectively, the possible involvement of nitric oxide, neuronal amine uptake or α2-autoinhibition of noradrenergic transmission. Contractions elicited by low (0.1 and 0.3 μM) but not by higher (1 and 3 μM) concentrations of exogenously applied noradrenaline were enhanced by α,β-MeATP (10 μM). Neither the resting nor the stimulation-induced effluxes of radioactivity from [3H]-noradrenaline-labelled anococcygeus muscles were affected by α,β-MeATP (10–100 μM). The findings suggest that P2-receptors subserve the enhancing actions of NADPH, α,β-MeATP and ADPβS on sympathetic neuroeffector transmission; however, the subtype of P2-receptor involved and its location remain unclear. Received: 7 January 1998 / Accepted: 17 February 1998  相似文献   

16.
The noradrenergic system has repeatedly been implicated in the mediation of attentional processes. Using a double-blind, placebo-controlled design, the present investigation examines the effects of two doses (1.5 μg/kg and 2.5 μg/kg) of theα 2 adreno ceptor agonist clonidine (CLO) on performance of various computerised tests of attention and learning in healthy, young volunteers. These are compared to the effects produced by two doses (5 mg and 10 mg) of diazepam (DZP) on largely the same set of neuropsychological tests in a comparable set of subjects. Both doses of CLO were found to impair performance of the RVIP test of sustained attention, while the higher dose alone improved visuo-spatial learning. Conversely, the higher dose of DZP produced profound deficits on visuo-spatial learning, and impaired attentional set-shifting. This study suggests a role for theα 2 adrenoceptor in selective attention, and for the benzodiazepine receptor in specific cognitive processes mediated by discrete cortical regions.  相似文献   

17.
The hyperpolarization-activated inward current (I f) has been discussed to contribute to arrhythmias in human atrial myocardium. I f was found to be increased by β-adrenergic stimulation. In the present study, we evaluate the modulation of I f by carbachol, adenosine and by class Ic, III and IV antiarrhythmic drugs in isolated human atrial myocytes. The whole-cell patch-clamp technique was used to record I f in isolated myocytes from 18 human right atrial appendages. A typical time- and voltage-dependent hyperpolarization-activated inward current could be recorded in all cells investigated (n=56). Mean current density recorded at –130 mV was –2.8±1.2 pApF–1. Both adenosine and carbachol were found to directly inhibit I f in human atrial myocytes by shifting the activation curves to more negative potentials. Adenosine 10–5 mol/l shifted the potential of half-maximal activation by –5.9±0.4 mV from –99.4±0.6 mV to –105.3±0.4 mV (n=8; P<0.05), and carbachol 10–5 mol/l by –5.7±0.5 mV from –99.2±0.5 mV to –104.9±0.6 mV (n=6; P<0.05). The concentration-response curve of adenosine calculated by a Hill function yielded a half-maximal effect of adenosine (EC50) at a concentration of 3.6±0.5 μmol/l, a maximal shift of –6.5±0.3 mV, and a Hill coefficient (h) of 2.40. We did not observe any effect of flecainide (10–5 mol/l; n=8), sotalol (10–5 mol/l; n=6), amiodarone (10–5 mol/l; n=6) or verapamil (10–5 mol/l; n=5) on I f in human atrial myocytes. However, propafenone (10–5 mol/l) was found to reversibly reduce I f current size (9/13 cells) by shifting the activation curve by –5.2±0.4 mV (P<0.05). In human atria adenosine- and muscarinic receptor stimulation might function as endogenous protective mechanisms inhibiting the initiation of ectopic tachycardia by reducing I f current size. Propafenone may be more effective in some patients with atrial tachycardias that do not respond to other class Ic, III and IV antiarrhythmic drugs. However, it has yet to be defined whether these agents suppress atrial tachycardias via an inhibition of I f in vivo. Received: 27 May 1998 / Accepted: 15 September 1998  相似文献   

18.
 This study examined the role of the serotonin 5-HT2 receptor in motor function by examining the effect of antagonists on the motor performance of a cranial nerve reflex, the nictitating membrane (NM) reflex of the rabbit. The NM reflex was elicited by varying intensities of a tactile stimulus and the magnitudes of the elicited responses were measured at each intensity. Dose-response curves were obtained for the effects of several 5-HT2 receptor antagonists on response magnitude. d-Bromolysergic acid diethylamide (BOL), LY-53,857 and ketanserin had no significant effect on the magnitude of the NM reflex, indicating that they are neutral antagonists. However, the 5-HT2 receptor antagonists ritanserin, MDL-11,939 and mianserin produced a significant reduction in response magnitude with no significant effects on response frequency, suggesting that they were acting as inverse agonists at the 5-HT2 receptor. The reduction in reflex magnitude produced by mianserin (10 μmol/kg) was fully blocked by BOL (5.8 μmol/kg), supporting the conclusion that mianserin was producing a reduction in reflex magnitude through an effect at the 5-HT2 receptor. The occurrence of inverse agonism suggests the possible existence of constitutive activity in vivo. We conclude that the 5-HT2 receptor (either 2A or 2C) plays an important role in motor function, perhaps by providing a tonic influence on motor systems. Received: 12 February 1998 / Final version: 2 July 1998  相似文献   

19.
The development of adenosine A1 and A2B receptors on the longitudinal muscle and muscularis mucosae of the neonatal rat distal colon has been investigated using homogenate binding, quantitative autoradiography and functional studies. In homogenate binding studies 1,3-[3H]-dipropyl-8-cyclopentylxanthine ([3H]DPCPX) bound with high affinity to A1 receptors in the muscularis mucosae and intact colon from rats aged 10, 15, 20, 25 and 30 days. The affinity of [3H]DPCPX was similar to that in the adult at all ages, but the density of binding sites was higher in the neonatal tissues. Quantitative autoradiography showed a higher density of [3H]DPCPX binding sites in the longitudinal muscle than in the muscularis mucosae at all ages studied (day 10 to adult), and this binding was concentration-dependently displaced by N 6-cyclopentyladenosine (CPA). In functional studies the longitudinal muscle relaxed in response to 5’-N-ethylcarboxamidoadenosine (NECA) and CPA at all ages studied (15–30 days), NECA being more potent than CPA. The potency of NECA remained constant and it was antagonised by 1 μM DPCPX at all ages with pA 2-values consistent with activation of A2 receptors. The inactivity of 2-[p-(carboxyethyl)-phenylethylamino]-5’-N-ethylcarbox-amidoadenosine (CGS 21680) indicated that the A2 receptors were of the A2B subtype. The muscularis mucosae contracted in response to CPA at all ages studied (day 15 to adult) and the antagonism by DPCPX (10 nM) were consistent with activation of A1 receptors. In conclusion, binding, autoradiographic and functional studies identified A1 receptors on the rat colon muscularis mucosae at all ages studied. However, while binding and autoradiographic localisation showed the presence of A1 receptors in the longitudinal muscle at all ages studied, functional data only revealed the presence of A2B receptors. Received: 3 July 1998 / Accepted: 25 November 1998  相似文献   

20.
Rationale: Whilst several studies have investigated the role of serotonergic receptor subtypes in learning and memory, relatively few studies have examined their role in attentional processes. Objective: The present study investigated the role of pre- and postsynaptic 5-HT1A receptors on rats’ attentional performance in the five-choice serial reaction time task (5-CSRT). Methods: Hungry rats were trained in the 5-CSRT task to detect brief (0.5 s) flashes of light presented randomly in one of five locations with a fixed intertrial interval of 5 s paced by the rat. We studied the effects of 8-OH-DPAT, a 5-HT1A receptor agonist, at various subcutaneous (SC) doses (10–100 μg/kg) on measures of rats’ discriminative accuracy (the index of attentional functioning) and various behavioural indices of response control and motivation. Manipulations of basic task parameters, intracerebroventricular (ICV) injections of 5,7-dihydroxytryptamine (5,7-DHT) to deplete forebrain 5-HT and treatments with a selective 5-HT1A receptor antagonist WAY 100635 were made in order to determine the behavioural and neural specificity of the effects of 8-OH-DPAT. Results: A dose of 100 μg/kg, but not lower doses, significantly reduced choice accuracy and increased errors of omission, latencies to respond correctly and to collect food reward and premature responses. All these effects were completely blocked by WAY 100635, injected SC 5 min before 8-OH-DPAT at doses from 10–100 μg/kg. WAY 100635 by itself had no effect in the task. Dimming the visual stimuli to one-third of the usual brightness did not modify the effect of 8-OH-DPAT on choice accuracy. Prolonging the stimuli from 0.5 to 1.0 s reversed 8-OH-DPAT’s effect on choice accuracy but did not modify the other effects on rats’ performance. An ICV injection of 150 μg 5,7-DHT, which depleted forebrain serotonin by 90%, reversed 8-OH-DPAT’s effect on choice accuracy but did not modify the effects on errors of omission and latency to make correct responses. Similar effects were found by infusing 1.0 μg/0.5 μl WAY 100635 in the dorsal raphe 5 min before 8-OH-DPAT. 8-OH-DPAT increased the latency to collect the reinforcement; this effect was attenuated by ICV 5,7-DHT and completely antagonized by WAY 100635 in the dorsal raphe. Rats treated with 5,7-DHT or 8-OH-DPAT showed more premature responses and these effects were markedly reduced by the combined treatment. Conclusions: The results suggest that stimulation of presynaptic 5-HT1A receptors is involved in the ability of 8-OH-DPAT to cause attentional dysfunction and enhance impulsivity while slowing of responding and increase in errors of omission mainly depend on stimulation of postsynaptic 5-HT1A receptors. Received: 7 August 1999 / Final version: 14 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号