首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Afferents to the interpeduncular nucleus (IPN) of the rat were studied with the horseradish peroxide (HRP) retrograde transport method. HRP was deposited microelectrophoretically in the IPN of adult rats. Major projections to the IPN originate in the medial habenular nucleus, the region surrounding the dorsal tegmental nucleus (accessory dorsal tegmental nucleus and the so-called dorsal tegmental nucleus pars lateralis), and the midbrain raphe (nucleus centralis superior and nucleus raphe dorsalis). Also, minor projections originate in the central gray and nucleus locus coeruleus. Our results indicate that the habenulointerpeduncular projection originates solely from the medial habenular nuclei and is topographically organized; medial regions of the medial habenular nuclei project to ventral portions of IPN and lateral regions project to the dorsal IPN.  相似文献   

2.
A study of afferent projections to the rat interpeduncular nucleus   总被引:1,自引:0,他引:1  
Forebrain and brainstem afferents projecting to the interpeduncular nucleus (IPN) have been demonstrated in male rats by retrograde transport of fluorescent dye, "fast blue," microinjected in IPN, followed by intraventricular colchicine 48 hr prior to perfusion. The most intensely labeled cells projecting to IPN were concentrated throughout the entire rostrocaudal extent of the medial habenular nuclei. A small number of labeled medial habenular cells located dorsomedially also revealed SP immunofluorescence. Additional forebrain afferents originate from septal, hypothalamic and mammillary nuclei. Of brainstem afferents projecting to IPN, the most intensely labeled neurons were present in a circumscribed region overlying the dorsal aspect of the dorsal tegmental nucleus, an area described in the cat as the nucleus incertus [5], and which we now suggest is present in the rat. Many labeled cells in the medial aspect of this nucleus also revealed L-ENK immunofluorescence. Additional brainstem afferents include the raphe, dorsolateral tegmental nuclei and locus coeruleus. This study demonstrates both forebrain and brainstem afferents projecting to IPN and reveals an SP and L-ENK projection from the medial habenula and nucleus incertus, respectively.  相似文献   

3.
We examined the afferent projections to the subnuclei of the interpeduncular nucleus (IPN) in the rat by means of retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). We observed locations of retrogradely labeled cells following injections of WGA-HRP into the IPN, and distributions of anterogradely labeled fibers and terminals within the IPN following injections into the areas that contain cells of origin of afferents. Results of the retrograde and anterograde experiments have clarified the detailed organization of the IPN afferents. A part of the nucleus incertus, located dorsomedial to the dorsal tegmental nucleus, projects to the contralateral half of the rostral subnucleus of the IPN; the pars caudalis of the dorsal tegmental nucleus projects sparsely to the rostral lateral, dorsal lateral, lateral, caudal, and apical subnuclei predominantly contralaterally; the laterodorsal tegmental nucleus, to most of the subnuclei predominantly contralaterally; the ventromedial central gray rostral to the dorsal tegmental nucleus and lateral to the dorsal raphe nucleus projects to the rostral lateral and dorsal lateral subnuclei predominantly contralaterally; the median raphe nucleus, substantially to all subnuclei; the medial habenular nucleus, in a topographic manner, to the rostral, central, and intermediate subnuclei, to the rostral lateral and lateral subnuclei predominantly ipsilaterally, and to the dorsal lateral subnucleus predominantly contralaterally; the supramammillary nucleus and areas around the origin of the mammillothalamic tract and near the third ventricle project sparsely to the ventral part of the rostral subnucleus and to the central, lateral, caudal and apical subnuclei; the nucleus of the diagonal band, sparsely to the rostral, central, dorsal lateral, caudal, and apical subnuclei. These differential projections of the afferents to the subnuclei of the IPN may reflect its complex functions within the limbic midbrain circuit.  相似文献   

4.
The afferent and efferent connections of the dorsal tegmental nucleus (DTN) were studied in the rat using axoplasmic transport techniques. Horseradish peroxidase (HRP) and Fast Blue were injected stereotaxically into either pars centralis or pars ventromedialis of the DTN, two subdivisions of the nucleus with distinctive connected with the ipsilateral lateral mammillary and interpeduncular neclei; these projections constitute the major afferent and efferent systems of the DTN. Commissural fibers from the corresponding pars centralis and intrinsic fibers systems are massive and form a complex fiber meshwork within the subnucleus. The prepositus hypoglossi nuclei (bilateral) also project to the pars centralis. Smaller numbers of afferent fibers arise from the lateral habenular nucleus, the posterior hypothalamus and the brainstem reticular formation.The pars ventromedialis of the DTN receives diverse inputs which include the septal nuclei, diagonal band of Broca, preoptic area, anterior and lateral hypothalamus, lateral and medial habenular nuclei, medial mammillary nucleus and many nuclei of the brainstem reticular formation. Based on the differences of connections and cytoarchitecture between the pars and the pars ventromedialis, the pars ventromedialis may be an entity separate from the dorsal tegmental nucleus.  相似文献   

5.
Connections of the habenular complex to the nuclei of the midline in the midbrain (interpeduncularis, medianus raphe, and dorsalis raphe) have been studied classically by anterograde degeneration in the monkey, the cat, and marsupials. Passing fibers from the medial septal nucleus and lateral preoptic area, however, have also been demonstrated which can complicate interpretation of these results. In this paper the habenular projections were studied in the rat by the retrograde axonal transport of horseradish peroxidase (HRP). After HRP injections in the medianus raphe nucleus labelled neurons appeared in the lateral habenular nucleus and parafascicular nucleus. Labelled neurons were also found in the lateral habenular nucleus after injections in either the dorsalis raphe nucleus or the caudal central gray substance. The habenular projections were always bilateral. There were no labelled neurons in the medial habenular nucleus after HRP injections in the medianus raphe nucleus, dorsalis raphe nucleus, or central gray. These data stress the lateral habenular influences upon the raphe nuclei, especially on the dorsalis raphe neurons which have usually been thought of as functionally related to other brainstem structures. The present results suggest also that in the rat the lateral habenular nucleus might be the link between basal forbrain inputs and the limbic midbrain area. Thus, the raphe nuclei of the midbrain appear to be crucial regions for integrating two descending circuits: first, a limbic (through septum) circuit, and, second, a basal forebrain (through lateral habenular-preoptic area) circuit.  相似文献   

6.
The HRP tracing method was employed to investigate the organization and afferent connections of the interpeduncular nucleus (IPN) in the rat. To study the topographical features of the different projections, a method was devised for obtaining HRP placements of limited size in different areas of the IPN. The main afferent connection of the IPN is a topographically organized projection from the medial habenula (Hb). This projection follows a reversed caudorostral pattern, terminating throughout all but the caudalmost part of the IPN. The dorsal part of the IPN receives a sparse innervation arising mainly from a narrow lateral and ventrolateral area of the medial Hb. The ventral two thirds of the IPN receives a much heavier projection, as follows: A large ventrolateral area of the medial Hb projects to the lateral part of the IPN in a completely bilateral way. An additional projection, which is predominantly ipsilateral, arises from the rostral half of the dorsolateral part of the medial Hb and terminates in the caudal IPN. The medial part of the medial Hb projects preferentially to central areas of the IPN. The projection from the lateral Hb is quantitatively much smaller but appears to be distributed to the entire length of the IPN, following a nonreversed caudorostral arrangement, with the ipsilateral projection predominating. The projections from the medial and lateral Hb to the IPN were confirmed by tracing anterogradely transported HRP as well. No reciprocal connection from the IPN to the Hb could be demonstrated. A sparse projection to the IPN with a strong ipsilateral predominance arises from the horizontal limbs of the nucleus of the diagonal band of Broca. This was the only projection observed from the septal region. Sparse projections from the premammillary and supramammillary nuclei were also demonstrated. Confirmatory data and some details of organization were also obtained for projections to the IPN from other areas, including the medial and dorsal raphe nuclei, the dorsal tegmental nucleus of Gudden, and the adjacent dorsolateral tegmental nucleus. Very small projections from the ventral tegmental nucleus and the locus coeruleus were also found.  相似文献   

7.
The efferent projections of the lateral hypothalamic area (LHA) at mid-tuberal levels were examined with the autoradiographic tracing method. Connections were observed to widespread regions of the brain, from the telencephalon to the medulla. Ascending fibers course through LHA and the lateral preoptic area and lie lateral to the diagonal band of Broca. Fibers sweep dorsally into the lateral septal nucleus, cingulum bundle and medial cortex. Although sparse projections are found to the ventromedial hypothalamic nucleus, a prominent pathway courses to the dorsal and medial parvocellular subnuclei of the paraventricular nucleus. Labeled fibers in the stria medullaris project to the lateral habenular nucleus. The central nucleus of the amygdala is encapsulated by fibers from the stria terminalis and the ventral amygdalofugal pathway. The substantia innominate, nucleus paraventricularis of the thalamus, and bed nucleus of the stria terminalis also receive LHA fibers. Three descending pathways course to the brainstem: (1) periventricular system, (2) central tegmental tract (CTT), and (3) medial forebrain bundle (MFB). Periventricular fibers travel to the ventral and lateral parts of the midbrain central gray, dorsal raphe nucleus, and laterodorsal tegmental nucleus of the pens. Dorsally coursing fibers of CTT enter the central tegmental field and the lateral and medial parabrachial nuclei. The intermediate and deep layers of the superior colliculus receive some fibers. Fibers from CTT leave the parabranchial region by descending in the ventrolateral pontine and medullary reticular formation; some of these fibers sweep dorsomedially into the nucleus tractus solitarius, dorsal motor nucleus of the vagus, and nucleus commissuralis. From MFB, fibers descend into the ventral tegmental area and to the border of the median raphe and raphe magnus nuclei.  相似文献   

8.
Using the retrograde transport of horseradish peroxidase (HRP), a study has been made of projections to the ventral tegmental area of Tsai (VTA) and related dopaminergic cell groups (A 10). In order to minimise the possibility of damage to fibres of passage, a technique was evolved for the microiontophoresis of HRP such that minimal current strengths and durations were applied. In addition to a sham injection, control injections were also made to the medial lemnisuc, red nucleus, deep tegmental decussations, mesencephalic reticular formation and brachium conjunctivum. Following HRP injections confined to the areas of the VTA containing the dopamine cell groups, labelled neurons appeared in prefrontal cortex, dorsal bank of rhinal sulcus, nucleus accumbens, bed nucleus of stria terminalis, amygdala, diagonal band of Broca, substantis innominata, magnocellular preoptic area, medial and lateral preoptic areas, anterior, lateral and postero-dorsal hypothalamus, lateral habenular, nucleus parafascicular nucleus of thalamus, superior colliculus, nucleus raphe dorsalis, nucleus raphe nagnus and pontis, dorsal and ventral parabrachial nuclei, locus coeruleus and deep cerebellar nuclei. Regions containing catecholamine groups A 1, A 5, A 6, A 7, A 9, A 13 and the serotonin group B 7 corresponded to the topography of labeled cell groups. Injections of HRP to the interfascicular nucleus resulted in labeling predominantly confined to the medial habenular and median raphe nuclei. The results are discussed in relation to the known connections of these regions. Other regions of the brain labelled by VTA injections are assessed in relation to control injections and the limitations of the HRP technique. A review of the organisation of some of these afferents in relation to the known cortical-subcortical-mesencephalic projection systems, suggests that the VTA is in a position to recieve information from a massively convergent system derived ultimately from the entire archi-, paleo-, and neo-cerebral cortices. In addition A 10 dopaminergic neurons are known to project to restricted regions of both pre-frontal and entorhinal cortices, which themselves also recieve massively convergent association cortico-cortical connections. It would appear reasonable to propose that these neurons perform a correspondingly important integrative function.  相似文献   

9.
Afferent and efferent connections of the medial preoptic area including medial preoptic nucleus (MP) and periventricular area at the MP level were examined using WGA-HRP as a marker. Injections were performed by insertion of micropipette containing (1) small amount of HRP powder or (2) dryed HRP solution for 24 to 48 hr until the fixation or for 5 min respectively. Dorsal and ventral approaches of injection micropipettes were performed and the results were compared. Previously reported reciprocal connections with lateral septum, bed nucleus of the stria terminalis, medial amygdaloid nucleus, lateral hypothalamic nucleus, paraventricular hypothalamic nucleus, ventromedial hypothalamic nucleus, arcuate nucleus, supramammillary nucleus, central gray at the mesencephalon, raphe dorsalis, raphe medianus, and lateral parabrachial nucleus have been confirmed. In addition, we found reciprocal connections with septo-hypothalamic nucleus, amygdalo-hipocampal nucleus, subiculum, parafascicular thalamic nucleus, posterior thalamic nucleus at the caudo-ventral subdivision, median preoptic nucleus, lateral preoptic nucleus, anterior hypothalamic nucleus, periventricular area at the caudal hypothalamic level, dorsomedial hypothalamic nucleus, posterior hypothalamic nucleus, dorsal and ventral premammillary nucleus, lateral mammillary nucleus, peripeduncular nucleus, periventricular gray, ventral tegmental area, interpeduncular nucleus, nucleus raphe pontis, nucleus raphe magnus, pedunculo-pontine tegmental nucleus, gigantocellular reticular nucleus and solitary tract nucleus. The areas which had only efferent connections from MP were accumbens, caudate putamen, ventral pallidum, substantia innominata, lateral habenular nucleus, paratenial thalamic nucleus, paraventricular thalamic nucleus, mediodorsal thalamic nucleus, reuniens thalamic nucleus, median eminence, medial mammillary nucleus, subthalamic nucleus, pars compacta of substantia nigra, oculomotor nucleus, red nucleus, laterodorsal tegmental nucleus, reticular tegmental nucleus, cuneiform nucleus, nucleus locus coeruleus, and dorsal motor nucleus of vagus among which substantia innominata and median eminence were previously reported. Efferent connections to the nucleus of Darkschewitsch, interstitial nucleus of Cajal, dorsal tegmental nucleus, ventral tegmental nucleus, vestibular nuclei, nucleus raphe obsculus were very weak or abscent in the ventral approach while they were observed in dorsal approach. Previously reported afferent connections from dorsal tegmental nucleus, cuneiform nucleus, and nucleus locus ceruleus were not detected in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The topographic organization of afferent projections from the deep cerebellar nuclei, medulla oblongata and spinal cord to the paramedian reticular nucleus (PRN) of the cat was studied using the horseradish peroxidase (HRP) method of retrograde labelling. Discrete placements of HRP within each of the dorsal (dPRN) and ventral (vPRN) regions of the PRN showed some segregation of input. The deep cerebellar nuclei project in a predominantly contralateral fashion upon the PRN. A small but significant ipsilateral fastigial afferent component is also present. The fastigial and dentate nuclei contribute the majority of fibers to the dPRN whereas the interposed nucleus provides very little. The vPRN receives a relatively uniform input from all 3 cerebellar nuclei. Both lateral vestibular nuclei contribute the majority of fibers from the vestibular nuclear complex largely from their dorsal division. Additional input arises from bilateral medial and inferior vestibular nuclei. The vPRN receives relatively more fibers from the inferior vestibular nuclei than does the dPRN while inputs from the medial vestibular nuclei are comparably sparse. The PRN receives bilateral projections from the nucleus intercalatus (of Staderini). A significant projection to the contralateral PRN occurs from the ventrolateral subnucleus of the solitary complex and its immediate vicinity. Additional sources of medullary afferent input include the lateral, gigantocellular and magnocellular tegmental fields, the contralateral PRN and the raphe nuclei. Sites of origin of spinal afferents to the dPRN are bilaterally distributed mainly within Rexed's laminae VII and VIII of the cervical cord whereas those to the vPRN are confined largely to the medial portion of the contralateral lamina VI in the C1 segment. A few labelled cells are found in the thoracolumbar cord with those to the vPRN being more caudal. These data provide the neuroanatomical substrate for a better understanding of the functional role of the PRN in mediating cardiovascular responses appropriate to postural changes.  相似文献   

11.
Through the use of the quantitative autoradiographic 2-[14C]deoxyglucose technique, we have investigated the functional significance of the habenular nuclei by the measurement of local cerebral glucose utilization (LCGU) in discrete brain areas of conscious rats following 3 kinds of lesioning. Bilateral electrolytic lesions of the habenular nuclei decreased LCGU in a limited number of well-defined brain areas (the interpeduncular nucleus, median and dorsal raphe, mammillary body and dorsal tegmental nucleus) at 7 and 14 days after lesions. These changes were also observed 180 days following lesioning except that of the dorsal tegmental nucleus. At 14 days after bilateral ibotenic acid-induced lesions of the lateral habenula, LCGU was significantly decreased in the median and dorsal raphe, mammillary body and interpeduncular nucleus. In further studies, bilateral electrolytic lesions of the stria medullaris (which conveys the major afferents to the habenula) decreased glucose use in the interpeduncular nucleus less than that observed after bilateral electrolytic lesions of the habenular nuclei. A highly significant positive correlation was observed between LCGU and choline acetyltransferase activity in the interpeduncular nucleus after all types of lesion. These results further support the view that the medial and the lateral habenula exert a major influence upon functional activity in the interpeduncular nucleus and the mesencephalic raphe nuclei, respectively.  相似文献   

12.
By chronically implanting a glass micropipette filled with tritiated leucine in the raphe centralis superior of the rat, the projection of this nucleus was traced by radioautography. The majority of the ascending projections were located within the ventral tegmental area and, further rostrally, the median forebrain bundle. Along the course of this bundle numerous fibers branched successively into the mammillary peduncle, the fasciculus retroflexus, the stria medullaris, the fornix and the cingulum. The most significant projections included the ones to the interpeduncular nucleus, the mammillary bodies, the habenular nuclei and the hippocampus. No projections were detected in the striatum, the cortex piriformis or the amygdala. Descending projections diffused to the pontine reticular formation and central gray through the medial and the dorsal longitudinal bundles. In addition widespread projections were also seen in nuclei located near the raphe centralis superior: raphe nuclei, dorsal and ventral tegmental nuclei.  相似文献   

13.
Efferent connections of the habenular nuclei in the rat.   总被引:13,自引:0,他引:13  
The efferent connections of the medial (MHb) and lateral (LHb) habenular nuclei in the rat were demonstrated autoradiographically following small injections of tritiated amino acids localized within various parts of the habenular complex. Comparison of individual cases led to the following conclusions. MHb efferents form the core portion of the fasciculus retroflexus and pass to the interpeduncular nucleus (IP) in which they terminate in a topographic pattern that refects 90 degrees rotations such that dorsal MHb projects to lateral IP, medial MHb to ventral, and lateral MHb to dorsal IP. Most MHb fibers cross in the interpeduncular necleus in the "figure 8" pattern described by Cajal, and terminate throughout the width of IP with only moderate preference for the ipsilateral side. However, the most dorsal part of MHb projects almost exclusively to the most lateral IP zone in a cluster pattern that is particularly dense on the ipsilateral side. The MHb appears to have no other significant projections, but very sparse MHb fibers may pass to the supracommissural septum and to the median raphe nucleus. Except for some fibers passing ventrally into the mediodorsal nucleus, all of the LHb efferents enter the fasciculus retroflexus and compose the mantle portion of the bundle. No LHb projections follow the stria medullaris. In the ventral tegmental area LHb efferents become organized into groups that disperse in several directions: (a) Rostrally directed fibers follow the medial forebrain bundle to the lateral, posterior and dorsomedial hypothalamic nuclei, ventromedial thalamic nucleus, lateral preoptic area, substantia innominata and ventrolateral septum. (b) Fibers turning laterally distribute to the substantia nigra, pars compacta (SNC); a small number continue through SNC to adjacent tegmentum. (c) The largest contingent of LHb efferents passes dorsocaudally into paramedian midbrain regions including median and dorsal raphe nuclei, and to adjacent tegmental reticular formation. Sparse addition LHb projections pass to the pretectal area, superior colliculus, nucleus reticularis tegmenti pontis, parabrachial nuclei and locus coeruleus. No LHb projections appear to involve the interpeduncular nucleus. All of these connections are in varying degree bilateral, with decussations in the supramammillary region, ventral tegmental area and median raphe nucleus. On the basis of differential afferent and efferent connections, the LHb can be divided into a medial (M-LHb) and a lateral (L-LHb) portion. The M-LHb, receiving most of its afferents from limbic regions and only few from globus pallidus, projects mainly to the raphe nuclei, while L-LHb, afferented mainly by globus pallidus and in lesser degree by the limbic forebrain, projects predominantly to a large region of reticular formation alongside the median raphe nucleus. Both M-LHb and L-LHb, however, project to SNC. The reported data are discussed in correlation with recent histochemical findings.  相似文献   

14.
Early studies that used older tracing techniques reported exceedingly few projections from the dorsal raphe nucleus (DR) to the brainstem. The present report examined DR projections to the brainstem by use of the anterograde anatomical tracer Phaseolus vulgaris leucoagglutinin (PHA-L). DR fibers were found to terminate relatively substantially in several structures of the midbrain, pons, and medulla. The following pontine and midbrain nuclei receive moderate to dense projections from the DR: pontomesencephalic central gray, mesencephalic reticular formation, pedunculopontine tegmental nucleus, medial and lateral parabrachial nuclei, nucleus pontis oralis, nucleus pontis caudalis, locus coeruleus, laterodorsal tegmental nucleus, and raphe nuclei, including the central linear nucleus, median raphe nucleus, and raphe pontis. The following nuclei of the medulla receive moderately dense projections from the DR: nucleus gigantocellularis, nucleus raphe magnus, nucleus raphe obscurus, facial nucleus, nucleus gigantocellularis-pars alpha, and the rostral ventrolateral medullary area. DR fibers project lightly to nucleus cuneiformis, nucleus prepositus hypoglossi, nucleus paragigantocellularis, nucleus reticularis ventralis, and hypoglossal nucleus. Some differences were observed in projections from rostral and caudal parts of the DR. The major difference was that fibers from the rostral DR distribute more widely and heavily than do those from the caudal DR to structures of the medulla, including raphe magnus and obscurus, nucleus gigantocellularis-pars alpha, nucleus paragigantocellularis, facial nucleus, and the rostral ventrolateral medullary area. A role for the dorsal raphe nucleus in several brainstem controlled functions is discussed, including REM sleep and its events, nociception, and sensory motor control. © Wiley-Liss, Inc.  相似文献   

15.
The organization of afferent and efferent connections of the interpeduncular nucleus (IP) has been examined in correlation with its subnuclear parcellation by using anterograde and retrograde tracing techniques. Based on Nissl, myelin, and acetylcholinesterase staining five paired and three unpaired IP subnuclei are distinguished. The unpaired division includes the rostral subnucleus (IP-R), the apical subnucleus (IP-A), and the central subnucleus (IP-C). The subnuclei represented bilaterally are the paramedian dorsal medial (IP-DM) and intermediate subnuclei (IP-I) and the laterally placed rostral lateral (IP-RL), dorsal lateral (IP-DL), and lateral subnuclei (IP-L). Immunohistochemical techniques showed cell bodies and fibers and terminals immunoreactive for substance P, leu-enkephalin, met-enkephalin, or serotonin to be differentially distributed over the different IP subnuclei. Substance P-positive perikarya were found in IP-R, enkephalin neurons in IP-R, IP-A, and the caudodorsal part of IP-C, and serotonin-containing cell bodies in IP-A and the caudal part of IP-L. Efferent IP projections were studied both by injecting tritiated leucine in IP and by injecting HRP or WGA-HRP in the presumed termination areas. The results indicate that the major outflow of IP is directed caudal-ward to the median and dorsal raphe nuclei and the caudal part of the central gray substance, i.e., the dorsal tegmental region. The projection appears to terminate mainly in the raphe nuclei, around the ventral and dorsal tegmental nuclei of Gudden, and in the dorsolateral tegmental nucleus. The descending projection to the dorsal tegmental region originates in virtually all IP subnuclei, but the main contribution comes from IP-R and the lateral subnuclei IP-RL, IP-DL, and IP-L. Sparser projections to the dorsal tegmental region originate in IP-C and IP-I, whereas the contribution of IP-A is only minimal. The projections from IP-R are mainly ipsilateral and those from IP-DM are mainly contralateral. IP fibers to the median and dorsal raphe nuclei originate predominantly in IP-R and IP-DM, and to a lesser extent in IP-C, IP-I, IP-RL, and IP-DL. A much smaller contingent of IP fibers ascends to diencephalic and telencephalic regions. A relatively minor projection, stemming from IP-RL and IP-DL, reaches the lateral part of the mediodorsal nucleus, the nucleus gelatinosus, and some midline thalamic nuclei. These IP fibers follow either the habenulo-interpeduncular pathway or the mammillothalamic tract.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Lesions were made in the lateral and medial habenular nuclei of the cat. Subsequent degeneration of nerve fibers and terminalis was studied using Nauta-Gygax silver technique. The medial and lateral habenular nuclei project differentially to the septum, olfactory, tubercle, thalamus, midbrain tegmentum and tectum. The diffuse part of the habenulopeduncular tract rises from the lateral habenular nucleus and the compact part rises from both nuclei. Degenerating terminals were seen caudally in the following nuclei: interpeduncular, central superior, dorsal raphae, ventral tegmental (from the medial habenular nucleus), dosral tegmental (from the lateral habenular nucleus), pretectal area, superior colliculus and inferior colliculus (from the lateral habenular nucleus). Rostral projections course in the medial part of the stria medullaris from the medial habenular nucleus and in the lateral part of the stria medullaris from the lateral habenular nucleus: Degenerating terminals were seen rostrally in the following nuclei: dorsomedial, anteroventral, anterodorsal, paraventricular, posterior medial septal (from the medial habenular nucleus) and preoptic area (from the lateral habenular nucleus). Projections occur from the medial habenular nucleus to the amygdala via the stria terminalis. The habenular nuclei are considered to be structures of the limbic system which are differentially related to midbrain, thalamic, amygdaloid, septal and preoptic structures via feedback circuits.  相似文献   

17.
The hypothalamus is closely involved in a wide variety of behavioral, autonomic, visceral, and endocrine functions. To find out which descending pathways are involved in these functions, we investigated them by horseradish peroxidase (HRP) and autoradiographic tracing techniques. HRP injections at various levels of the spinal cord resulted in a nearly uniform distribution of HRP-labeled neurons in most areas of the hypothalamus except for the anterior part. After HRP injections in the raphe magnus (NRM) and adjoining tegmentum the distribution of labeled neurons was again uniform, but many were found in the anterior hypothalamus as well. Injections of 3H-leucine in the hypothalamus demonstrated that: The anterior hypothalamic area sent many fibers through the medial forebrain bundle (MFB) to terminate in the ventral tegmental area of Tsai (VTA), the rostral raphe nuclei, the nucleus Edinger-Westphal, the dorsal part of the substantia nigra, the periaqueductal gray (PAG), and the interpeduncular nuclei. Further caudally a lateral fiber stream (mainly derived from the lateral parts of the anterior hypothalamic area) distributed fibers to the parabrachial nuclei, nucleus subcoeruleus, locus coeruleus, the micturition-coordinating region, the caudal brainstem lateral tegmentum, and the solitary and dorsal vagal nucleus. Furthermore, a medial fiber stream (mainly derived from the medial parts of the anterior hypothalamic area) distributed fibers to the superior central and dorsal raphe nucleus and to the NRM, nucleus raphe pallidus (NRP), and adjoining tegmentum. The medial and posterior hypothalamic area including the paraventricular hypothalamic nucleus (PVN) sent fibers to approximately the same mesencephalic structures as the anterior hypothalamic area. Further caudally two different fiber bundles were observed. A medial stream distributed labeled fibers to the NRM, rostral NRP, the upper thoracic intermediolateral cell group, and spinal lamina X. A second and well-defined fiber stream, probably derived from the PVN, distributed many fibers to specific parts of the lateral tegmental field, to the solitary and dorsal vagal nuclei, and, in the spinal cord, to lamina I and X, to the thoracolumbar and sacral intermediolateral cell column, and to the nucleus of Onuf. The lateral hypothalamic area sent many labeled fibers to the lateral part of the brainstem and many terminated in the caudal brainstem lateral tegmentum, including the parabrachial nuclei, locus coeruleus, nucleus subcoeruleus, and the solitary and dorsal vagal nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The projections of the medial preoptic nucleus (MPN) were examined by making injections of the anterogradely transported lectin Phaseolus vulgaris leucoagglutinin (PHA-L) into the MPN and charting the distribution of labeled fibers. The evidence indicates that the MPN projects extensively to widely distributed regions in both the forebrain and brainstem, most of which also supply inputs to the nucleus. An important neuroendocrine role for the MPN is underscored by its extensive projections to almost all parts of the periventricular zone of the hypothalamus, including the anteroventral periventricular, anterior part of the periventricular, paraventricular (PVH), and arcuate nuclei, and a role in autonomic mechanisms is indicated by projections to such regions as the dorsal and lateral parvicellular parts of the PVH, the lateral parabrachial nucleus, and the nucleus of the solitary tract. Other projections of the MPN suggest participation in the initiation of specific motivated behaviors. For example, inputs to two nuclei of the medial zone of the hypothalamus, the ventromedial and dorsomedial nuclei, may be related to the control of reproductive and ingestive behaviors, respectively, although the possible functional significance of a strong projection to the ventral premammillary nucleus is presently unclear. The execution of these behaviors may involve activation of somatomotor regions via projections to the substantia innominata, zona incerta, ventral tegmental area, and pedunculopontine nucleus. Similarly, inputs to other regions that project directly to the spinal cord, such as the periaqueductal gray, the laterodorsal tegmental nucleus, certain medullary raphe nuclei, and the magnocellular reticular nucleus may also be involved in modulating somatic and/or autonomic reflexes. Finally, the MPN may influence a wide variety of physiological mechanisms and behaviors through its massive projections to areas like the ventral part of the lateral septal nucleus, the bed nucleus of the stria terminalis, the lateral hypothalamic area, the supramammillary nucleus, and the ventral tegmental area, all of which have extensive connections with regions along the medial forebrain bundle. Although the PHA-L method does not allow a clear demonstration of possible differential projections from each subdivision of the MPN, our results suggest that each of them does give rise to a unique pattern of outputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The efferent, afferent and intrinsic connections of the septal region have been analyzed in the rat with the autoradiographic method. The lateral septal nucleus, which can be divided into dorsal, intermediate and ventral parts, receives its major input from the hippocampal formation and projects to the medial septal-diagonal band complex. The ventral part of the nucleus also sends fibers through the medial forebrain bundle to the medial preoptic and anterior hypothalamic areas, to the lateral hypothalamic area and the dorsomedial nucleus, to the mammillary body (including the supramammillary region), and to the ventral tegmental area. The medial septal nucleus/diagonal band complex projects back to the hippocampal formation by way of the dorsal fornix, fimbria, and possibly the cingulum. Both nuclei also project through the medial forebrain bundle to the medial and lateral preoptic areas, to the lateral hypothalamic area, and to the mammillary complex. The medial septal nucleus also sends fibers to the midbrain (the ventral tegmental area and raphe nuclei) and to the parataenial nucleus of the thalamus, while the nucleus of the diagonal band has an additional projection to the anterior limbic area. Ascending inputs to the medial septal nucleus/diagonal band complex arise in several hypothalamic nuclei and in the brainstem aminergic cell groups. The posterior septal nuclei (the septofimbrial and triangular nuclei) receive their major input from the hippocampal formation, and project in a topographically ordered manner upon the habenular nuclei and the interpeduncular nuclear complex. The bed nucleus of the stria terminalis receives its major input from the amygdala (Krettek and Price, '78); but other afferents arise from the ventral subiculum, the ventromedial nucleus, and the brainstem aminergic cell groups. The principal output of the bed nucleus is through the medial forebrain bundle to the substantia innominata, the nucleus accumbens, most parts of the hypothalamus and the preoptic area, the central tegmental fields of the midbrain, the ventral tegmental area, the dorsal and median nuclei of the raphe, and the locus coeruleus. The bed nucleus also projects to the anterior nuclei of the thalamus, the parataenial and paraventricular nuclei, and the medial habenular nucleus, and through the stria terminalis to the medial and central nuclei of the amygdala, and to the amygdalo-hippocampal transition area.  相似文献   

20.
Using a retrograde axonal transport method, direct projections to the neostriatum were demonstrated from the dorsal raphe nucleus, a large area of the ventral midbrain tegmentum (including the ventral tegmental area of Tsai, the substantia nigra pars compacta, reticulata and suboculomotoria), and the tegmentum ventral to the caudal red nucleus. A direct projection was also found from the mediodorsal part of the substantia nigra to the rostral part of the dorsal raphe nucleus. Projections from the entopeduncular nucleus (pallidum) and the lateral hypothalamic area to the lateral habenular nucleus, and from the latter to the dorsal raphe nucleus were also found. This habenular projection arises primarily from large neurons in the medial part of the lateral habenula and also from another group of small cells immediately adjacent to the medial habenular nucleus. A non-reciprocal connection of the dorsal raphe nucleus to the locus coeruleus was also found. On the basis of these results and the data available in the literature on the possible neurotransmitters used by these various structures, it is suggested that the dorsal raphe nucleus may play an important role in brain stem modulation of neostriatal function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号