首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, "slide" and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.  相似文献   

2.
To redirect our gaze in three-dimensional space we frequently combine saccades and vergence. These eye movements, known as disconjugate saccades, are characterized by eyes rotating by different amounts, with markedly different dynamics, and occur whenever gaze is shifted between near and far objects. How the brain ensures the precise control of binocular positioning remains controversial. It has been proposed that the traditionally assumed "conjugate" saccadic premotor pathway does not encode conjugate commands but rather encodes monocular commands for the right or left eye during saccades. Here, we directly test this proposal by recording from the premotor neurons of the horizontal saccade generator during a dissociation task that required a vergence but no horizontal conjugate saccadic command. Specifically, saccadic burst neurons (SBNs) in the paramedian pontine reticular formation were recorded while rhesus monkeys made vertical saccades made between near and far targets. During this task, we first show that peak vergence velocities were enhanced to saccade-like speeds (e.g., >150 vs. <100 degrees/s during saccade-free movements for comparable changes in vergence angle). We then quantified the discharge dynamics of SBNs during these movements and found that the majority of the neurons preferentially encode the velocity of the ipsilateral eye. Notably, a given neuron typically encoded the movement of the same eye during horizontal saccades that were made in depth. Taken together, our findings demonstrate that the brain stem saccadic burst generator encodes integrated conjugate and vergence commands, thus providing strong evidence for the proposal that the classic saccadic premotor pathway controls gaze in three-dimensional space.  相似文献   

3.
1. To characterize the vergence signal carried by the medial longitudinal fasciculus (MLF), it was subjected to reversible blockade by small injections of 10% lidocaine hydrochloride. The effects of these blockades on both conjugate and vergence eye movements were studied. 2. With this procedure, experimentally induced internuclear ophthalmoplegia (INO) and its effects on conjugate eye movements could be studied acutely, without possible contamination from long-term oculomotor adaptation. In the eye contralateral to the MLF blockade, saccadic and horizontal smooth-pursuit eye movements were normal. Horizontal abducting nystagmus, often seen in patients with INO, was not observed in this eye. 3. As previously reported for INO, profound oculomotor deficits were seen in the eye ipsilateral to the MLF blockade. During maximal blockade, adducting saccades and horizontal smooth-pursuit movements in this eye did not cross the midline. Adducting saccades were reduced in amplitude and peak velocity and showed significantly increased durations. Abducting saccades, which were slightly hypometric, displayed a marked postsaccadic centripetal drift. 4. The eye ipsilateral to the blockade displayed a pronounced, upward, slow drift, whereas the eye contralateral to the blockade showed virtually no drift. Furthermore, although vertical saccades to visual targets remained essentially conjugate, the size of the resetting quick phases in each eye was related to the amplitude of the slow phase movement in that eye. Thus the eye on the affected side displayed large quick phases, whereas the eye on the unaffected side showed only slight movements. On occasion, unilateral downbeating nystagmus was seen. This strongly suggests that the vertical saccade generators for the two eyes can act independently. 5. The effect of MLF blockade on the vergence gain of the eye on the affected side was investigated. As a measure of open-loop vergence gain, the relationship of accommodative convergence to accommodation (AC/A) was measured before, during, and after reversible lidocaine block of the MLF. After taking conjugate deficits into account, the net vergence signal to the eye ipsilateral to the injection was found to increase significantly during the reversible blockade. 6. The most parsimonious explanation for this increased vergence signal is suggested by the accompanying single-unit study. This study showed that abducens internuclear neurons, whose axons course in the MLF, provide medial rectus motoneurons with an appropriate horizontal conjugate eye position signal but an inappropriate vergence signal. Ordinarily, this incorrect vergence signal is overcome by another, more potent, v  相似文献   

4.
When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in "vergence centers." We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.  相似文献   

5.
Saccades made between targets at optical infinity require both eyes to rotate by the same angle. Nevertheless, these saccades are consistently accompanied by transient vergence eye movements. Here we have investigated whether the dynamics of these vergence movements depend on the trajectory of the coincident conjugate movement, and whether moving the head during eye-head gaze shifts modifies vergence dynamics. In agreement with previous reports, saccades with more symmetric (i.e., "bell-shaped") conjugate velocity profiles were accompanied by stereotyped biphasic vergence transients (i.e., a divergence phase immediately followed by a convergence phase). However, we found that saccades with more asymmetric, oscillatory-like dynamics (characterized by a typical conjugate reacceleration of the eyes following the initial peak velocity) were systematically accompanied by more complex vergence movements that also exhibited oscillatory-like dynamics. These findings could be extended to conditions where the head was free to move: comparable conjugate and vergence oscillations were observed during head-restrained saccades and combined eye-head gaze shifts. The duration of the vergence oscillation increased with gaze shift amplitude, such that as many as four vergence phases (divergence-convergence-divergence-convergence) were recorded during 55 degrees gaze shifts (approximately 240 ms). To quantify these observations, we first determined whether conjugate and vergence peak velocities were systematically correlated. Conjugate peak velocity was linearly related to the peak velocity of the initial divergence phase for saccades and gaze shifts of all amplitudes, regardless of their dynamics. However, for more asymmetric saccades and gaze shifts, the subsequent convergence and divergence peak velocities were not correlated with either the initial peak conjugate velocity or the peak velocity of the conjugate reacceleration. Next, we determined that the duration of the different conjugate and vergence oscillation phases remained relatively constant across all saccades and gaze shifts, and that the conjugate and vergence profiles oscillated together at approximately 7.5-10 Hz. Using computer simulations, we show that a classic feed-forward model is unable to reproduce vergence oscillations based solely on peripheral mechanisms. Furthermore, we demonstrate that small modifications to the gain and delay of a simple feedback model for saccade generation can generate conjugate oscillations, and propose that such changes reflect the influence of lowered alertness on the tecto-reticular pathways. We conclude that peripheral mechanisms can only account for the initial divergence that accompanies all saccades, and that the conjugate and vergence oscillations observed during asymmetric movements arise centrally from an integrative binocular controller.  相似文献   

6.
Blinks are known to change the kinematic properties of horizontal saccades, probably by influencing the saccadic premotor circuit. The neuronal basis of this effect could be explained by changes in the activity of omnipause neurons in the nucleus raphe interpositus or in the saccade-related burst neurons of the superior colliculus. Omnipause neurons cease discharge during both saccades and vergence movements. Because eyelid blinks can influence both sets of neurons, we hypothesized that blinks would influence the kinematic parameters of saccades in all directions, vergence, and saccade-vergence interactions. To test this hypothesis, we investigated binocular eye and lid movements in five normal healthy subjects with the magnetic search coil technique. The subjects performed conjugate horizontal and vertical saccades from gaze straight ahead to targets at 20 degrees up, down, right, or left while either attempting not to blink or voluntarily blinking. While following the same blink instruction, subjects made horizontal vergence eye movements of 7 degrees and combined saccade-vergence movements with a version amplitude of 20 degrees. The movements were performed back and forth from two targets simultaneously presented nearby (38 cm) and more distant (145 cm). Small vertical saccades accompanied most vergence movements. These results show that blinks change the kinematics (saccade duration, peak velocity, peak acceleration, peak deceleration) of not only horizontal but also of vertical saccades, of horizontal vergence eye movements, and of combined saccade-vergence eye movements. Peak velocity, acceleration, and deceleration of eye movements were decreased on the average by 30%, and their duration increased by 43% on the average when they were accompanied by blinks. The blink effect was time dependent with respect to saccade and vergence onset: the greatest effect occurred 100 ms prior to saccade onset, whereas there was no effect when the blink started after saccade onset. The effects of blinks on saccades and vergence, which are tightly coupled to latency, support the hypothesis that blinks cause profound spatiotemporal perturbations of the eye movements by interfering with the normal saccade/vergence premotor circuits. However, the measured effect may to a certain degree but not exclusively be explained by mechanical interference.  相似文献   

7.
Single-unit recordings were made from midbrain areas in monkeys trained to make both conjugate and disjunctive (vergence) eye movements. Previous work had identified cells with a firing rate proportional to the vergence angle, without regard to the direction of conjugate gaze. The present study describes the activity of neurons that burst for disjunctive eye movements. Convergence burst cells display a discrete burst of activity just before and during convergence eye movements. For most of these cells, the profile of the burst is correlated with instantaneous vergence velocity and the number of spikes in the burst is correlated with the size of the vergence movement. Some of these cells also have a tonic firing rate that is positively correlated with vergence angle (convergence burst-tonic cells). Divergence burst cells have similar properties, except that they fire for divergent and not convergent movements. Divergence burst cells are encountered far less often than convergence burst cells. Both convergence and divergence burst cells were found in an area of the mesencephalic reticular formation just dorsal and lateral to the oculomotor nucleus. Convergence burst cells were also recorded in another more dorsal mesencephalic region, rostral to the superior colliculus. Both of the areas also contain cells that encode vergence angle. Models of the vergence system derived from psychophysical data imply the existence of a vergence integrator, the output of which is vergence angle. Some models also suggest the presence of a parallel element that improves the frequency response of the vergence system, but has no effect on the steady-state behavior of the system. Vergence burst cells would be suitable inputs to a vergence integrator. By providing a vergence velocity signal to motoneurons, they may improve the dynamic response of the vergence system. The behavior of vergence burst cells during vergence movements is similar to that of the medium-lead burst cells during saccades. The proposed roles for vergence velocity cells are analogous to those of the saccadic burst cells. In this respect, the neural organization of the vergence system resembles that of the saccadic system, despite the distinct difference in the kinematics of these two types of eye movements.  相似文献   

8.
The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as "fixation cells" because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades-they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command-a principle that may be applicable to buildup neurons elsewhere in the SC.  相似文献   

9.
Rapid shifts of the point of visual fixation between objects that lie in different directions and at different depths require disjunctive eye movements. We tested whether the saccadic component of such movements is equal for both eyes (Hering’s law) or is unequal. We compared the saccadic pulses of abducting and adducting movements when horizontal gaze was shifted from a distant to a near target aligned on the visual axis of one eye (Müller paradigm) in ten normal subjects. We similarly compared horizontal saccades made between two distant targets lying in the same field of movement as during the Müller paradigm tests, and between targets lying symmetrically on either side of the midline, at near side of the midline, at near or far. We measured the ratio of the amplitude of the movements of each eye in corresponding directions due to the saccadic component, as well as corresponding ratios of peak velocity and peak acceleration. In response to a Müller test paradigm requiring about 17° of vergence, the change in position of the unaligned eye was typically twice the size of the corresponding movement of the aligned eye. The ratio of peak velocities for the unaligned/aligned eyes was about 1.5, which was greater than for saccades made between distant targets. The ratio of peak acceleration for unaligned/aligned eyes was about 1.0 during shifts from near to far and about 1.3 for shifts from far to near, these values being similar to corresponding ratios for saccades between distant targets. These measurements of peak acceleration indicate that the saccadic pulses sent to each eye during the Müller paradigm are more equal than would be deduced by comparing the changes in eye position. We retested five subjects to compare directly the peak acceleration of saccades made during the Müller paradigm with similar-sized ”conjugate” saccades made between targets at optical infinity. Saccades made during the Müller paradigm were significant slower (P<0.005) than similar-sized conjugate saccades; this indicated that the different-sized movements during Müller paradigm are not simply due differences in saccadic pulse size but are also influenced by the concurrent vergence movement. A model for saccade-vergence interactions, which incorporates equal saccadic pulses for each eye, and differing contributions from convergence and divergence, accounts for many of these findings. Received: 31 December 1998 / Accepted: 14 July 1999  相似文献   

10.
1. Four macaque monkeys were trained to fixate visual targets. Eye movements were recorded binocularly using the search coil technique. Saccades, vergence movements, and combinations of the two were elicited by training the monkeys to alternate the gaze between real visual targets that differed in viewing distance and eccentricity with respect to the monkeys' heads. 2. When they shifted the gaze between targets that were at different viewing distances, the monkeys made vergence eye movements. For targets placed along the midsagittal plane, the monkeys often made binocularly symmetric vergence movements. The peak speed of symmetric divergence movements increased linearly with vergence amplitude by 5.7 deg/s per degree of vergence. The peak speed of symmetric convergence movements increased linearly with vergence amplitude by 7.9 deg/s per degree of vergence. 3. For gaze shifts between targets placed eccentrically with respect to the midsagittal plane and at different viewing distances, the monkeys made saccades in combination with vergence eye movements. When a saccade occurred during a vergence movement, peak vergence eye speed increased abruptly and reached a peak that was proportional to the speed of the saccade. For four monkeys, peak divergence speed ranged from 242 to 315 deg/s and peak convergence speed ranged from 257 to 340 deg/s for 16-deg vergence and 20-deg saccadic eye movements. 4. For gaze shifts between far targets at the same viewing distance but different eccentricities, saccadic eye movements were transiently disjunctive even though there was no vergence requirement. Initially, the eyes diverged and then converged to restore fixation to the correct depth plane. Divergence was followed by convergence regardless of the direction of the saccade. 5. The presence of transient saccade-related disjunctive eye movements suggested that the abrupt increase in peak vergence speed during combined saccadic and vergence eye movements was produced by the linear addition of a vergence eye movement and the saccade-related transients. Consistent with this hypothesis, the rate of change in peak vergence speed during various-sized saccades between far targets (no vergence required) was similar to the rate of change in peak vergence speed during combined saccadic and vergence movements. However, the peak vergence speeds during the combined movements were higher than predicted by the linear addition hypothesis, suggesting the presence of an additional mechanism. 6. The saccade-related increase in peak vergence speed during combined saccades and vergences led to a significant decrease in the amount of time required to complete vergence movements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The caudal parts of the frontal eye fields (FEF) contain smooth-pursuit related neurons. Previous studies show that most FEF pursuit neurons carry visual signals in relation to frontal spot motion and discharge before the initiation of smooth-pursuit. It has also been demonstrated that most FEF pursuit neurons discharge during vergence tracking. Accurate vergence tracking requires information about target motion-in-depth. To further understand the role of the FEF in vergence tracking and to determine whether FEF pursuit neurons carry visual information about target motion-in-depth, we examined visual and vergence eye movement-related responses of FEF pursuit neurons to sinusoidal spot motion-in-depth. During vergence tracking, most FEF pursuit neurons exhibited both vergence eye position and velocity sensitivity. Phase shifts (re target velocity) of most neurons remained virtually constant up to 1.5 Hz. About half of FEF pursuit neurons exhibited visual responses to spot motion-in-depth. The preferred directions for visual responses of most neurons were similar to those during vergence tracking. Visual responses of most of these neurons exhibited sensitivity to the velocity of spot motion-in-depth. Phase shifts of most of the responding neurons remained virtually constant up to 2.0 Hz. Neurons that exhibited visual responses in-depth were mostly separate from neurons that showed visual responses in the frontal plane. To further examine whether FEF pursuit neurons could participate in initiation of vergence tracking, we examined latencies of neuronal responses with respect to vergence eye movements induced by step target motion-in-depth. About half of FEF pursuit neurons discharged before the onset of vergence eye movements with lead times longer than 20 ms. These results together with previous observations suggest that the caudal FEF carries visual signals appropriate to be converted into motor commands for pursuit in depth and frontal plane.  相似文献   

12.
1. We recorded eye movements in four normal human subjects during refixations between targets calling for various combinations of saccades and vergence. We confirmed and extended prior observations of 1) transient changes in horizontal ocular alignment during both pure horizontal saccades (relative divergence followed by relative convergence) and pure vertical saccades (usually divergence for upward and convergence for downward saccades); 2) occasional, high-frequency (20-25 Hz), conjugate oscillations along the axis orthogonal to the main saccade; and 3) the speeding up of horizontal vergence by both horizontal and vertical saccades. 2. To interpret these findings, we developed a hypothesis for the generation of vergence to step changes in target depth, both with and without associated saccades. The essential features of this hypothesis are 1) the transient changes in horizontal ocular alignment during pure horizontal saccades reflect asymmetries in the mechanical properties of the lateral and medial rectus muscles causing adduction to lag abduction; 2) pure vergence movements in response to step changes in target depth are generated by a neural network that uses a desired change in vergence position as its input command and instantaneous vergence motor error (the difference between the desired change and the actual change in vergence) to drive vergence premoter neurons; and 3) the facilitation of horizontal vergence by saccades arises from nonlinear interactions in central premotor circuits. 3. The hypothetical network for generating pure vergence to step changes in target depth is analogous in structure to the local feedback model for the generation of saccades and has the same conceptual appeal. With the assumption of a single nonlinearity describing the relationship between a vergence motor error signal and the output of the neurons that generate promoter vergence velocity commands, this model generates pure vergence movements with peak velocity-amplitude relationships and trajectories that closely match those of experimental data. 4. Several types of models are proposed for the central, nonlinear interaction that occurs when saccades and vergence are combined. Common to all models is the idea that omnidirectional pause neurons (OPN), which are thought to gate activity for saccade burst neurons, also gate activity for saccade-related vergence. In one model we hypothesize the existence of a separate class of saccade-related vergence burst neurons, which generate premotor horizontal vergence commands but only during saccades. In a second model we hypothesize separate right eye and left eye saccadic burst neurons that receive not only conjugate, but also equal but oppositely directed vergence error signals.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Monocular organization of the goldfish horizontal neural integrator was studied during spontaneous scanning saccadic and fixation behaviors. Analysis of neuronal firing rates revealed a population of ipsilateral (37%), conjugate (59%), and contralateral (4%) eye position neurons. When monocular optokinetic stimuli were employed to maximize disjunctive horizontal eye movements, the sampled population changed to 57, 39, and 4%. Monocular eye tracking could be elicited at different gain and phase with the integrator time constant independently modified for each eye by either centripetal (leak) or centrifugal (instability) drifting visual stimuli. Acute midline separation between the hindbrain oculomotor integrators did not affect either monocularity or time constant tuning, corroborating that left and right eye positions are independently encoded within each integrator. Together these findings suggest that the "ipsilateral" and "conjugate/contralateral" integrator neurons primarily target abducens motoneurons and internuclear neurons, respectively. The commissural pathway is proposed to select the conjugate/contralateral eye position neurons and act as a feedforward inhibition affecting null eye position, oculomotor range, and saccade pattern.  相似文献   

14.
To stabilize objects of interest on the fovea during translation, vestibular-driven compensatory eye movements [translational vestibulo-ocular reflex (TVOR)] must scale with both target distance and eccentricity. To identify the neural correlates of these properties, we recorded from different groups of eye movement-sensitive neurons in the prepositus hypoglossi and vestibular nuclei of macaque monkeys during lateral and fore-aft displacements. All neuron types exhibited some increase in modulation amplitude as a function of target distance during high-frequency (4 Hz) lateral motion in darkness, with slopes that were correlated with the cell's pursuit gain, but not eye position sensitivity. Vergence angle dependence was largest for burst-tonic (BT) and contralateral eye-head (EH) neurons and smallest for ipsilateral EH and position-vestibular-pause (PVP) cells. On the other hand, the EH and PVP neurons with ipsilateral eye movement preferences exhibited the largest vergence-independent responses, which would be inappropriate to drive the TVOR. In addition to target distance, the TVOR also scales with target eccentricity, as evidenced during fore-aft motion, where eye velocity amplitude exhibits a "V-shaped " dependence and phase shifts 180 degrees for right versus left eye positions. Both the modulation amplitude and phase of BT and contralateral EH cells scaled with eye position, similar to the evoked eye movements during fore-aft motion. In contrast, the response modulation of ipsilateral EH and PVP cells during fore-aft motion was characterized by neither the V-shaped scaling nor the phase reversal. These results show that distinct premotor cell types carry neural signals that are appropriately scaled by vergence angle and eye position to generate the geometrically appropriate compensatory eye movements in the translational vestibulo-ocular reflex.  相似文献   

15.
Rapid shifts of the point of visual fixation between equidistant targets require equal-sized saccades of each eye. The brainstem medial longitudinal fasciculus (MLF) plays a cardinal role in ensuring that horizontal saccades between equidistant targets are tightly yoked. Lesions of the MLF—internuclear ophthalmoparesis (INO)—cause horizontal saccades to become disjunctive: adducting saccades are slow, small, or absent. However, in INO, convergence movements may remain intact. We studied horizontal gaze shifts between equidistant targets and between far and near targets aligned on the visual axis of one eye (Müller test paradigm) in five cases of INO and five control subjects. We estimated the saccadic component of each movement by measuring peak velocity and peak acceleration. We tested whether the ratio of the saccadic component of the adducting/abducting eyes stayed constant or changed for the two types of saccades. For saccades made by control subjects between equidistant targets, the group mean ratio (±SD) of adducting/abducting peak velocity was 0.96 ± 0.07 and adducting/abducting peak acceleration was 0.94 ± 0.09. Corresponding ratios for INO cases were 0.45 ± 0.10 for peak velocity and 0.27 ± 0.11 for peak acceleration, reflecting reduced saccadic pulses for adduction. For control subjects, during the Müller paradigm, the adducting/abducting ratio was 1.25 ± 0.14 for peak velocity and 1.03 ± 0.12 for peak acceleration. Corresponding ratios for INO cases were 0.82 ± 0.18 for peak velocity and 0.48 ± 0.13 for peak acceleration. When adducting/abducting ratios during Müller versus equidistant targets paradigms were compared, INO cases showed larger relative increases for both peak velocity and peak acceleration compared with control subjects. Comparison of similar-sized movements during the two test paradigms indicated that whereas INO patients could decrease peak velocity of their abducting eye during the Müller paradigm, they were unable to modulate adducting velocity in response to viewing conditions. However, the initial component of each eye’s movement was similar in both cases, possibly reflecting activation of saccadic burst neurons. These findings support the hypothesis that horizontal saccades are governed by disjunctive signals, preceded by an initial, high-acceleration conjugate transient and followed by a slower vergence component.  相似文献   

16.
Summary 452 single neurons from the superior colliculus were recorded in awake and non-paralysed cats. 75 neurons were obtained from cats with unrestrained horizontal head movements.228 neurons remained unaffected by saccadic eye movements. Eye movement related discharge followed the onset of saccades in 156 neurons either only in the presence of a visual pattern (92 neurons) or in darkness, too (64 neurons). The latter reaction type probably depends on eye muscle afferents.In 48 neurons eye movement related activity preceded the onset of eye movements. 12 neurons fired in synchrony with eye movements of any direction (type I). 30 neurons were excited during contralaterally directed eye versions within or into the contralateral head related hemifield. They were inhibited when the eyes moved within or into the ipsilateral head related hemifield (type II). 6 neurons with constant maintained activity during fixation were inhibited by ipsilaterally directed saccades, but remained unaffected by contralateral eye movements.Head movement related discharge followed the onset of head movements in 20 neurons only in presence of a visual pattern and also in darkness in 6 neurons. Ipsilateral head movements or postures strongly suppressed maintained activity and visual responsiveness of some neurons.15 neurons discharged in synchrony with and prior to contralateral head movements. Ipsilateral head movements inhibited these neurons. Activation or inhibition were usually related to movement and to posture, exceptionally to movement or to posture.Electrical stimulation of recording sites of these neurons through the recording microelectrode elicits contralateral head movements.  相似文献   

17.
For a given eye position, firing rates of abducens neurons (ABNs) generally (Mays et al. 1984), and lateral rectus (LR) motoneurons (MNs) in particular (Gamlin et al. 1989a), are higher in converged gaze than when convergence is relaxed, whereas LR and medial rectus (MR) muscle forces are slightly lower (Miller et al. 2002). Here, we confirm this finding for ABNs, report a similarly paradoxical finding for neurons in the MR subdivision of the oculomotor nucleus (MRNs), and, for the first time, simultaneously confirm the opposing sides of these paradoxes by recording physiological LR and MR forces. Four trained rhesus monkeys with binocular eye coils and custom muscle force transducers on the horizontal recti of one eye fixated near and far targets, making conjugate saccades and symmetric and asymmetric vergence movements of 16-27°. Consistent with earlier findings, we found in 44 ABNs that the slope of the rate-position relationship for symmetric vergence (k(V)) was lower than that for conjugate movement (k(C)) at distance, i.e., mean k(V)/k(C) = 0.50, which implies stronger LR innervation in convergence. We also found in 39 MRNs that mean k(V)/k(C) = 1.53, implying stronger MR innervation in convergence as well. Despite there being stronger innervation in convergence at a given eye position, we found both LR and MR muscle forces to be slightly lower in convergence, -0.40 and -0.20 g, respectively. We conclude that the relationship of ensemble MN activity to total oculorotary muscle force is different in converged gaze than when convergence is relaxed. We conjecture that LRMNs with k(V) < k(C) and MRMNs with k(V) > k(C) innervate muscle fibers that are weak, have mechanical coupling that attenuates their effective oculorotary force, or serve some nonoculorotary, regulatory function.  相似文献   

18.
Summary The activity of 249 neurons in the dorsomedial frontal cortex was studied in two macaque monkeys. The animals were trained to release a bar when a visual stimulus changed color in order to receive reward. An acoustic cue signaled the start of a series of trials to the animal, which was then free to begin each trial at will. The monkeys tended to fixate the visual stimuli and to make saccades when the stimuli moved. The monkeys were neither rewarded for making proper eye movements nor punished for making extraneous ones. We found neurons whose discharge was related to various movements including those of the eye, neck, and arm. In this report, we describe the properties of neurons that showed activity related to visual fixation and saccadic eye movement. Fixation neurons discharged during active fixation with the eye in a given position in the orbit, but did not discharge when the eye occupied the same orbital positions during nonactive fixation. These neurons showed neither a classic nor a complex visual receptive field, nor a foveal receptive visual field. Electrical stimulation at the site of the fixation neurons often drove the eye to the orbital position associated with maximal activity of the cell. Several different kinds of neurons were found to discharge before saccades: 1) checking-saccade neurons, which discharged when the monkeys made self-generated saccades to extinguish LED's; 2) novelty-detection saccade neurons, which discharged before the first saccade made to a new visual target but whose activity waned with successive presentations of the same target. These results suggest that the dorsomedial frontal cortex is involved in attentive fixation. We hypothesize that the fixation neurons may be involved in codifying the saccade toward a target. We propose that their involvement in arm-eye-head motor-planning rests primarily in targeting the goal of the movement. The fact that saccaderelated neurons discharge when the saccades are self initiated, implies that this area of the cortex may share the control of voluntary saccades with the frontal eye fields and that the activation is involved in intentional motor processes.  相似文献   

19.
Previous work in goldfish has suggested that the oculomotor velocity-to-position neural integrator for horizontal eye movements may be confined bilaterally to a distinct group of medullary neurons that show an eye-position signal. To establish this localization, the anatomy and discharge properties of these position neurons were characterized with single-cell Neurobiotin labeling and extracellular recording in awake goldfish while monitoring eye movements with the scleral search-coil method. All labeled somata (n = 9) were identified within a region of a medially located column of the inferior reticular formation that was approximately 350 microm in length, approximately 250 microm in depth, and approximately 125 microm in width. The dendrites of position neurons arborized over a wide extent of the ventral half of the medulla with especially heavy ramification in the initial 500 microm rostral of cell somata (n = 9). The axons either followed a well-defined ventral pathway toward the ipsilateral abducens (n = 4) or crossed the midline (n = 2) and projected toward the contralateral group of position neurons and the contralateral abducens. A mapping of the somatic region using extracellular single unit recording revealed that position neurons (n > 120) were the dominant eye-movement-related cell type in this area. Position neurons did not discharge below a threshold value of horizontal fixation position of the ipsilateral eye. Above this threshold, firing rates increased linearly with increasing temporal position [mean position sensitivity = 2.8 (spikes/s)/ degrees, n = 44]. For a given fixation position, average rates of firing were higher after a temporal saccade than a nasal one (n = 19/19); the magnitude of this hysteresis increased with increasing position sensitivity. Transitions in firing rate accompanying temporal saccades were overshooting (n = 43/44), beginning, on average, 17.2 ms before saccade onset (n = 17). Peak firing rate change accompanying temporal saccades was correlated with eye velocity (n = 36/41). The anatomical findings demonstrate that goldfish medullary position neurons have somata that are isolated from other parts of the oculomotor system, have dendritic fields overlapping with axonal terminations of neurons with velocity signals, and have axons that are capable of relaying commands to the abducens. The physiological findings demonstrate that the signals carried by position neurons could be used by motoneurons to set the fixation position of the eye. These results are consistent with a role for position neurons as elements of the velocity-to-position neural integrator for horizontal eye movements.  相似文献   

20.
Peak velocity, duration and accuracy of eye movements (saccade, vergence and combined saccade–vergence eye movements) were investigated in fourteen normal children (4.5 to 12 years of age) and ten normal adults (22 to 44 years of age). Horizontal movements from both eyes were recorded simultaneously by the oculometer, a photoelectric device. Peak velocity of all eye movements, saccades, and vergence (convergence and divergence), attains adult levels by the age of 4.5 years and there is no significant change over the age range studied (4.5 to 44 years). Vergence duration is longer only in young children (below 8 years of age). The reciprocal interaction between saccade and vergence during combined movements known in adults, i.e. acceleration of the vergence by the saccade (increase of velocity and decrease of duration) and deceleration of the saccade by the vergence (decrease of velocity and increase of duration) was found to be similar in children. The accuracy of eye movements is good on average for both saccades and vergence by the age of 4.5 years, and does not change with age; an exception is the variability of saccade amplitude, which is higher in children less than 8 years old. Taken together, the results indicate early maturation of brainstem structures controlling spatio-temporal aspects of saccades, vergence and their interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号