首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Neuromodulation》2022,25(7):1024-1032
IntroductionSpinal cord stimulation (SCS) can provide long-term pain relief for various chronic pain conditions, but some patients have no relief with trial stimulation or lose efficacy over time. To “salvage” relief in patients who do not respond or have lost efficacy, alternative stimulation paradigms or anatomical targets can be considered. Dorsal root ganglion stimulation (DRG-S) has a different mechanism of action and anatomical target than SCS.ObjectivesWe assessed DRG-S salvage therapy outcomes in patients who did not respond to SCS or had lost SCS efficacy.Materials and MethodsWe retrospectively included consecutive patients from 2016 to 2020 who were salvaged with DRG-S after failed SCS trials (<50% pain reduction) or who had lost efficacy after permanent SCS. We compared numerical rating scale (NRS) pain, Oswestry disability index (ODI), health-related quality of life (EuroQol five-dimensions five-level), and oral morphine equivalent (OME) opioid requirements before DRG-S salvage and at patients’ last follow-up.ResultsA total of 60 patients who had failed SCS were salvaged with DRG-S. The mean age was 56 ± 12 years, and the most common diagnoses were complex regional pain syndrome (n = 24) and failed back surgery syndrome (n = 24). The most common failed modalities included tonic (n = 32), Burst (n = 18), and high-frequency (n = 10) SCS. The median follow-up duration of salvage DRG-S was 34 months. With DRG-S, NRS decreased (8.7 ± 1.2 to 3.8 ± 2.1), and OME declined (median 23 mg to median 15 mg), whereas EuroQol 5D scores increased (0.40 ± 0.15 to 0.71 ± 0.15), and ODI improved (64 ± 14% to 31 ± 18%) (all p < 0.05).ConclusionsDRG-S can be used in patients with chronic pain who have previously failed to receive persistent benefit from SCS.  相似文献   

3.
4.
5.
6.
《Neuromodulation》2022,25(7):947-955
ObjectivesIn the spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRG-S) literature, the typical primary outcome measure includes pain relief, whether numeric rating scale changes or percentage pain relief, and functional outcomes and patient satisfaction are included as secondary outcomes. This systematic review and meta-analysis aims to determine the rate of patient satisfaction with the use of SCS and DRG-S in the treatment of chronic intractable pain.Materials and MethodsThe study protocol was registered in the PROSPERO International prospective register of systematic reviews. We queried articles from multiple electronic data bases, including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials data bases, and hand-searched reference lists of identified publications. All periods were included. Inclusion criteria encompassed randomized controlled trials (RCTs) and prospective observational studies that reported patient satisfaction in patients who underwent SCS or DRG-S. Bias evaluation for the included studies involved appropriate guidelines for each study design (Cochrane risk of bias tool for RCTs and Newcastle-Ottawa scale for observational studies).ResultsOur search strategy identified 242 unique citations, of which nine RCTs and 23 observational studies were included for analysis. Overall, 25 studies comprising 1355 participants were pooled in our quantitative analysis. The pooled proportion of patients who reported satisfaction from all studies was 82.2% (95% CI, 77.8%–86.2%). This finding had high statistical heterogeneity (I2 = 74.0%). Subgroup analysis did not reveal differences in satisfaction when studies were stratified based on study design (RCT or observational study) or follow-up period (six, 12, 24, and 36 months).ConclusionsOur results show high levels of patient satisfaction across the SCS and DRG-S literature when these treatment modalities are used for chronic intractable pain, regardless of SCS programming algorithm. However, there is a scarcity of unbiased and/or non–industry-funded prospective studies in the neuromodulation field, and future efforts to expand this area of the SCS and DRG-S literature are greatly needed.  相似文献   

7.
《Neuromodulation》2022,25(7):1006-1014
ObjectivesThere is a lack of clinically relevant measures for quantification of maladaptive mechanisms of the nociceptive system leading to chronic pain. Recently, we developed a method that tracks nociceptive detection thresholds (NDTs) using intraepidermal electrical stimulation. In this study, we explored the feasibility of using this NDT method in patients with persistent spinal pain syndrome type 2 (PSPS-T2) and its potential to enable observation of altered nociceptive processing induced by dorsal root ganglion (DRG) stimulation. In addition, we compared NDTs with quantitative sensory testing (QST) measurements and numeric rating scale (NRS).Materials and MethodsA total of 12 patients with PSPS-T2 (seven men; 60.4 ± 12.3 years) experiencing chronic unilateral lower limb pain treated with DRG stimulation were included in the study. Both the NDT method and electrical and pressure QST methods were performed twice in the L5 dermatome on both the affected and the unaffected foot, once with the DRG stimulator turned off and, subsequently, once with the DRG stimulator turned on.ResultsThe NDT method can be applied to patients with PSPS-T2. With the DRG stimulator turned off, NDTs on the affected side were significantly higher than on the unaffected side. This difference was no longer present once the DRG stimulator was turned on. Furthermore, DRG stimulation affected QST (electrical and pressure) values and NRS scores. Finally, NDTs showed larger contrasts between the sides than QST measures.ConclusionsThe NDT method permitted observation of altered nociceptive function. The effect of DRG stimulation also was reflected in QST outcomes and NRS scores. The larger contrast between the sides for NDTs suggests that the NDT method might be valuable for future quantification of nociceptive dysfunction in chronic pain.  相似文献   

8.
9.
《Neuromodulation》2022,25(7):980-988
ObjectivesTo investigate the analgesic effect of high-voltage pulsed radiofrequency (HV-PRF) on the dorsal root ganglion (DRG) for neuropathic pain induced by spared nerve injury (SNI) in rats, especially the influence of this treatment on the DRG ultrastructure and voltage-gated sodium channel 1.7 (Nav1.7) level in the DRG.Materials and MethodsOne hundred fifty adult male Sprague-Dawley rats were randomly divided into five groups: Sham, SNI, Free-PRF, standard-voltage PRF (SV-PRF), and HV-PRF. The 45V-PRF and 85V-PRF procedures applied to the left L5 DRG were performed in SV-PRF group and the HV-PRF group, respectively, on day 7 after SNI, whereas no PRF was concurrently delivered in Free-PRF group. The paw mechanical withdrawal threshold (PMWT) was detected before SNI (baseline) and on days 1, 3, 7, 8, 10, 14, and 21. The changes of left L5 DRG ultrastructure were analyzed with transmission electron microscopy on days 14 and 21. The expression levels of Nav1.7 in left L5 DRG were detected by immunofluorescence and Western blot.ResultsCompared with the Free-PRF group, PMWT in the SV-PRF group and HV-PRF group were both significantly increased after PRF (all p < 0.05). Meanwhile, the PMWT was significantly higher in the HV-PRF group than that in the SV-PRF group on days 14 and 21 (all p < 0.05). There were statistically significant differences between the SV-PRF and Free-PRF groups (p < 0.05). Similarly, statistically significant difference was found between the HV-PRF and Free-PRF groups (p < 0.05). Especially, comparison of the SV-PRF group and the HV-PRF group revealed statistically significant difference (p < 0.05). The Nav1.7 levels were significantly downregulated in the SV-PRF group and HV-PRF groups compared to that in the Free-PRF group (all p < 0.01). A significantly lower Nav1.7 level was also found in the HV-PRF group compared to that in the SV-PRF group (p < 0.05).ConclusionsThe HV-PRF produces a better analgesic effect than SV-PRF applied to the DRG in SNI rats. The underlying mechanisms may be associated with improving the histopathological prognosis and the downregulation of Nav1.7 levels in the DRG.  相似文献   

10.
11.
《Neuromodulation》2022,25(7):1015-1023
ObjectivesThe influence of gender on outcomes in individuals undergoing treatment for chronic pain is unclear. This retrospective, single-site study explored the impact of gender on pain, quality of life (QoL), revisions, and explants in patients with failed back surgery syndrome or visceral pain, who received a fully implanted 10 kHz spinal cord stimulation (SCS), burst SCS, or dorsal root ganglion (DRG) stimulation system.Materials and MethodsThe following data were collected from paper and electronic records: gender, age, chronic pain diagnosis, system, baseline and follow-up scores (average pain [visual analog scale, VAS], worst pain [VAS], QoL [EQ-5D-3L]), revisions, and explants. Data were statistically analyzed by one-way ANCOVAs controlling for age, chi-square tests of independence, and logistic regression.ResultsThe final sample comprised 387 patients (176 males and 211 females). Males were significantly older compared to females (mean difference: 2.33 years, p = 0.044). Controlling for age, baseline average pain was significantly lower in males than females (mean difference: ?0.32, p = 0.049). Males and females responded equally well to 10 kHz SCS and burst SCS as well as DRG stimulation. A greater percentage of males (5%) than females (1%) had revisions due to lead fractures. Additionally, more females (13%) than males (6%) had an explant due to insufficient pain relief. Female gender and older age were associated with greater likelihood of having an explant compared to male gender and younger age.ConclusionGender may play an influential role in pain severity at baseline but have little effect at follow-up. To help identify which patients may undergo a revision or explant, gender and age could be important factors and should be further scrutinized. Even though men and women responded equally well to SCS and DRG stimulation, more men had a revision due to lead fractures, and more women were explanted due to insufficient pain relief.  相似文献   

12.
13.
《Neuromodulation》2021,24(4):738-745
BackgroundDorsal root ganglion stimulation (DRG-S) involves the electrical modulation of the somata of afferent neural fibers to treat chronic pain. DRG-S has demonstrated clinical efficacy at frequencies lower than typically used with spinal cord stimulation (SCS). In a clinical study, we found that the frequency of DRG-S can be tapered to a frequency as low as 4 Hz with no loss of efficacy. This review discusses possible mechanisms of action underlying effective pain relief with very low-frequency DRG-S.Materials and MethodsWe performed a literature review to explore the role of frequency in neural transmission and the corresponding relevance of frequency settings with neuromodulation.FindingsSensory neural transmission is a frequency-modulated system, with signal frequency determining which mechanisms are activated in the dorsal horn. In the dorsal horn, low-frequency signaling (<20 Hz) activates inhibitory processes while higher frequencies (>25 Hz) are excitatory. Physiologically, low-threshold mechanoreceptors (LTMRs) fibers transmit or modulate innocuous mechanical touch at frequencies as low as 0.5–5 Hz, while nociceptive fibers transmit pain at high frequencies. We postulate that very low-frequency DRG-S, at least partially, harnesses LTMRs and the native endogenous opioid system. Utilizing lower stimulation frequency decreases the total energy delivery used for DRG-S, extends battery life, and facilitates the development of devices with smaller generators.  相似文献   

14.
15.
We studied submodality dependence of sensory changes produced by unilateral ligation of the sciatic or the saphenous nerve in the rat. We focused especially on sensory changes in the skin area adjacent to the innervation area of the injured nerve. Moreover, we examined the roles of capsaicin-sensitive nociceptive fibers, collateral sprouting and a dorsal root reflex in sensory changes observed behaviorally. Assessment of sensory changes was performed by a pattern of behavioral tests: hot-plate test and hindlimb withdrawal responses induced by radiant heat, hot-water bath, innocuous mechanical stimuli, and noxious mechanical stimuli. In one group, the saphenous nerve ipsilateral to the sciatic ligation was topically treated with capsaicin (1%) at the time of the surgery. A proximal stump of a saphenous nerve strand was orthodromically stimulated to induce a dorsal root reflex (an antidromic volley) in nociceptive fibers of the saphenous nerve trunk. For visualization of plasma extravasation induced by a dorsal root reflex, a dye-labeling (Evans blue) technique was used. A collateral sprouting of nociceptive fibers of the uninjured saphenous nerve was evaluated by determining the plasma extravasation response induced by antidromic stimulation of the saphenous nerve. Three and 10 days following the sciatic constriction injury, the hindlimb withdrawal threshold evoked by noxious mechanical stimulation of the medial side of the paw (the innervation are of the intact saphenous nerve) was significantly decreased. There was no corresponding thermal hyperalgesia adjacent to the injured sciatic nerve. Chronic constriction of the saphenous nerve did not produce any significant hyper- or hypoalgesia to mechanical or thermal stimulation of the uninjured sciatic nerve area. Topical treatment of the ipsilateral (intact) saphenous nerve at the time of the sciatic nerve ligation completely prevented the development of mechanical hyperalgesia in the medial side of the paw (the innervation area of the saphenous nerve). No dorsal root reflex in nociceptive fibers mediating the adjacent hyperalgesia could be evoked. No collateral sprouting of the uninjured nociceptive fibers of the saphenous nerve was observed. The results indicate that the constriction injury of the sciatic nerve produced a selective hyperalgesia to mechanical stimulation in the innervation area of the neighboring saphenous nerve. At the peripheral level, the mechanical hyperalgesia adjacent to the innervation area of the injured nerve was mediated by capsaicin-sensitive nociceptive fibers. Collateral sprouting of nociceptive fibers from the uninjured to the injured innervation area did not contribute to the present sensory findings. The sciatic nerve injury did not induce a dorsal root reflex in nociceptive fibers innervating the hyperalgesic saphenous nerve area.  相似文献   

16.
《Neuromodulation》2021,24(4):672-684
Background/Objectives: The physiological mechanisms underlying the pain-modulatory effects of clinical neurostimulation therapies, such as spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS), are only partially understood. In this pilot prospective study, we used patient-reported outcomes (PROs) and quantitative sensory testing (QST) to investigate the physiological effects and possible mechanisms of action of SCS and DRGS therapies.Materials and Methods: We tested 16 chronic pain patients selected for SCS and DRGS therapy, before and after treatment. PROs included pain intensity, pain-related symptoms (e.g., pain interference, pain coping, sleep interference) and disability, and general health status. QST included assessments of vibration detection theshold (VDT), pressure pain threshold (PPT) and tolerance (PPToL), temporal summation (TS), and conditioned pain modulation (CPM), at the most painful site.Results: Following treatment, all participants reported significant improvements in PROs (e.g., reduced pain intensity [p < 0.001], pain-related functional impairment [or pain interference] and disability [p = 0.001 for both]; better pain coping [p = 0.03], sleep [p = 0.002]), and overall health [p = 0.005]). QST showed a significant treatment-induced increase in PPT (p = 0.002) and PPToL (p = 0.011), and a significant reduction in TS (p = 0.033) at the most painful site, but showed no effects on VDT and CPM. We detected possible associations between a few QST measures and a few PROs. Notably, higher TS was associated with increased pain interference scores at pre-treatment (r = 0.772, p = 0.009), and a reduction in TS was associated with the reduction in pain interference (r = 0.669, p = 0.034) and pain disability (r = 0.690, p = 0.027) scores with treatment.Conclusions: Our preliminary findings suggest significant clinical and therapeutic benefits associated with SCS and DRGS therapies, and the possible ability of these therapies to modulate pain processing within the central nervous system. Replication of our pilot findings in future, larger studies is necessary to characterize the physiological mechanisms of SCS and DRGS therapies.  相似文献   

17.
18.
目的研究与慢性痛相关基因的特异表达,比较大鼠背根神经节损伤神经元与正常神经元之间基因表达的差异,以寻找构成神经病性疼痛的内在因素。方法应用mRNA差异显示方法从损伤背根神经节中寻找特异表达的基因。结果损伤侧背根节中cDNA条带(25.75±4.7)明显多于对照侧(18.0±5.0)。反向杂交后进行亚克隆得到10个含插入片段的阳性质粒,并对其中4个进行测序。结论神经轴突损伤可导致胞体基因表达改变,其中某些可能与痛觉异常有关,也可能与细胞结构恢复及免疫功能改变有关。  相似文献   

19.
20.
《Neuromodulation》2022,25(8):1393-1402
BackgroundWhile electroacupuncture (EA) has been used traditionally for the treatment of chronic pain, its analgesic mechanisms have not been fully clarified. We observed in an earlier study that EA could reverse inflammatory pain and suppress high Nav1.7 expression. However, the molecular mechanism underlying Nav1.7 expression regulation is unclear. In this study, we studied the relationship between the glucocorticoid receptor (GR) and Nav1.7 and the role of these molecules in EA analgesia.Materials and MethodsIn this study, we established an inflammatory pain model by intraplantar injection of complete Freund's adjuvant (CFA) in rats. EA stimulation was applied to the ipsilateral “Huantiao” (GB30) and “Zusanli” (ST36) acupoints in the rat model. Western blotting, real-time polymerase chain reaction, immunostaining, intrathecal injection, and chromatin immunoprecipitation (ChIP) assay were performed to determine whether the sodium channel protein Nav1.7 plays a role in CFA-induced pain and whether GR regulates Nav1.7 expression during analgesia following EA stimulation.ResultsEA application significantly decreased the paw withdrawal threshold thresholds and thermal paw withdrawal latency and suppressed GR and Nav1.7 expression in the dorsal root ganglion. Moreover, treatment with a GR sense oligonucleotide (OND) markedly reversed these alterations. In contrast, treatment with a GR antisense OND along with EA application exerted a better analgesic effect, which was accompanied by the suppression of Nav1.7 and GR protein expression. The ChIP assay showed that the binding activity of GR to the Nav1.7 promoter was enhanced in CFA injected rats and suppressed in EA-treated rats.ConclusionsThe present study demonstrated that EA exerted anti-hyperalgesic effects by inhibiting GR expression, which led to Nav1.7 expression modulation in the rat model of CFA-induced inflammatory pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号