首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) receptors are present on nonendothelial cells suggesting that VEGF may mediate nonendothelial effects during organogenesis and tumorigenesis. Here we show that VEGF receptor-1 (VEGFR-1) negatively regulates VEGFR-2-mediated proliferation via nitric oxide (NO) in an epithelial cancer cell line ECV304. Cell proliferation was assessed by [(3)H]thymidine incorporation, fluorescent-activated cell-sorting analysis, and cell number using a Coulter Counter. Total NO generated by the action of nitric oxide synthase was measured by Seivers NOA 280 Nitric Oxide Chemiluminescence Analyser. VEGF (1 ng/ml) stimulated DNA synthesis and increased ECV304 cell number in a manner that was inhibited by a neutralizing anti-VEGFR-2 antibody. In contrast, VEGF (50 ng/ml) stimulated NO release in a manner that was inhibited by functionally neutralizing anti-VEGFR-1 antibody. Blockage of the VEGFR-1 receptor signal with anti-VEGFR-1 stimulated DNA synthesis and increased cell number. Cell-cycle analysis showed that inhibition of VEGFR-1 increased the transition from G(1) to S phase whereas inhibition of VEGFR-2 blocked the VEGF-mediated transition from G(1) to S phase. Finally, the addition of NO donors suppressed both VEGF-mediated proliferation and the increase in growth after blockade of VEGFR-1. Conversely, inhibition of VEGF mediated NO release by nitric oxide synthase inhibitor, L-monomethyl-L-arginine, restored the mitogenic effect of VEGF. These findings identify a dose-dependent reciprocal regulatory mechanism for VEGF via its two receptors. It shows that VEGFR-1 induces cell cytostasis via NO and as such is a suitable target for molecular strategies suppressing tumorigenesis.  相似文献   

2.
Kaposi's sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi's sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression.  相似文献   

3.
We performed a morphological study of placentas from women with type 1 diabetes mellitus receiving insulin therapy (insulin pump). Expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR-1, VEGFR-2, VEGFR-3) was demonstrated by immunohistochemical methods. Processes of branched angiogenesis predominated in the placentas from women with type 1 diabetes mellitus. Immunohistochemical study revealed more intensive reaction of VEGF and its receptors in syncytiotrophoblast and capillary endothelium of terminal villi.  相似文献   

4.
The expression of five markers associated with tumour angiogenesis, proliferation and apoptosis was studied in 24 canine cutaneous fibrosarcomas. Tumours were assigned histological grades and were immunohistochemically evaluated for the expression of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2). Additionally, intra-tumour microvessel density (iMVD) was assessed by immunohistochemical labelling for expression of von Willebrand factor (vWf) and tumour proliferation index (PI) was measured following labelling of Ki-67 antigen. Finally, tumour apoptotic index (AI) was determined by application of the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP end-labelling method (TUNEL). VEGF and VEGFR-2 expression were detected in 22/24 (92%) and 24/24 (100%) of fibrosarcomas, respectively. There was correlation between VEGF and VEGFR-2 expression (r = 0.51) and between histological grade and PI (r = 0.82). A significant difference in PI between tumours of different histological grade was found (P < 0.05). The median PI in grade 2 and 3 tumours (30.6 and 54.7, respectively) was significantly higher than in grade 1 tumours (6.4). Therefore, only PI correlates significantly with the histological grade of canine cutaneous fibrosarcomas. The potential for autocrine activity for VEGF exists in canine cutaneous fibrosarcomas, as VEGF and VEGFR-2 expression was found in most tumours.  相似文献   

5.
Abstract

Neovascularization is a feature of a variety of pathological processes. We compared the characteristics of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) on migration and proliferation of human umbilical vein endothelium (HUVEC). Both VEGF and bFGF induced endothelial cell migration at similar concentrations (½ max. VEGF = ~1.0 ng/ml, bFGF = ~5.0 ng/ml). However, VEGF-stimulated migration was two-fold greater than bFGF at 1 and 10 ng/ml (p < 0.05). In contrast, bFGF induced proliferation four-fold more effectively than VEGF (½ max. 1 ng/ml and 1.4 ng/ ml respectively). Checkerboard migration assays for bFGF showed a predominantly chemokinetic pattern, whereas VEGF was predominantly chemotactic. VEGF and bFGF were not synergistic in monolayer proliferation and migration assays. Three angiogenesis inhibitors, alpha-interferon, TNP-470, and platelet factor-4, inhibited VEGF and bFGF induced cell migration. These results indicate that VEGF and bFGF are chemoattractants that stimulate endothelial migration by different mechanisms and that both can be inhibited by known angiogenesis inhibitors.  相似文献   

6.
Vascular endothelial growth factor (VEGF) is essential for the induction of angiogenesis and drives both endothelial cell (EC) proliferation and migration. It has been suggested that VEGF also regulates vessel diameter, although this has not been tested explicitly. The two most abundant isoforms, VEGF(121) and VEGF(165), both signal through VEGF receptor 2 (VEGFR-2). We recently optimized a three-dimensional in vitro angiogenesis assay using HUVECs growing on Cytodex beads and embedded in fibrin gels. Fibroblasts provide critical factors that promote sprouting, lumen formation, and vessel stability. Using this assay, we have examined the role of VEGF in setting vessel diameter. Low concentrations of both VEGF(121) and VEGF(165) promote growth of long, thin vessels, whereas higher concentrations of VEGF remarkably enhance vessel diameter. Placental growth factor, which binds to VEGFR-1 but not VEGFR-2, does not promote capillary sprouting. Moreover, specific inhibition of VEGFR-2 signaling results in a dramatic reduction of EC sprouting in response to VEGF, indicating the critical importance of this receptor. The increase in vessel diameter is the result of cell proliferation and migration, rather than cellular hypertrophy, and likely depends on MEK1-ERK1/2 signaling. Both phosphatidylinositol 3-kinase and p38 activity are required for cell survival. We conclude that the diameter of new capillary sprouts can be determined by the local concentration of VEGF and that the action of VEGF on angiogenic EC in this assay is critically dependent on signaling through VEGFR-2.  相似文献   

7.
血管内皮细胞生长因子对内皮细胞凋亡拮抗作用的研究   总被引:2,自引:0,他引:2  
目的 :初步探讨缺氧对培养人脐静脉内皮细胞凋亡的影响及血管内皮生长因子的干预性影响。方法 :( 1)人脐静脉内皮细胞的培养及鉴定。 ( 2 )建立人脐静脉内皮细胞缺氧模型 ,TUNEL法观测不同缺氧时间 ( 0、12、2 4、48h)对内皮细胞凋亡的影响及不同剂量血管内皮生长因子的拮抗作用。结果 :随缺氧时间延长 ,HUVECs凋亡率显著升高 ,呈时间相关性 ;血管内皮生长因子显著抑制缺氧导致的内皮细胞凋亡 ,呈剂量相关性。结论 :缺氧作为一种致病因素 ,对内皮细胞凋亡的促发作用是随缺氧时间的延长而加重的。内皮细胞的过度凋亡是引起内皮功能障碍的一个重要因素 ,血管内皮生长因子通过抑制内皮细胞凋亡 ,而具有内皮细胞保护作用。  相似文献   

8.
The use of monoclonal antibodies targeting the vascular endothelial growth factor (VEGF) pathway has been a significant addition to cancer therapy. One of the VEGF family members, VEGF-A (commonly referred to as VEGF), has been demonstrated to be important in angiogenesis. Although the mechanism of action of these antibodies is still under study, the anti-VEGF antibody bevacizumab has been approved for treatment of various solid cancers including colorectal, lung, and breast cancers as well as glioblastoma and renal cell carcinoma. Addition of bevacizumab to chemotherapy as adjuvant therapy in colorectal cancer did not improve disease-free survival. Bevacizumab is being tested in other clinical settings such as adjuvant therapy, maintenance therapy, and in combination with both chemotherapy and other targeted agents such as the epidermal growth factor receptor kinase inhibitor erlotinib. In addition to bevacizumab, other antibody-based therapies targeting the VEGF pathway are being tested. Ramucirumab and IMC-18F1 are monoclonal antibodies that target the VEGF receptors VEGFR-2 and VEGFR-1, respectively. Aflibercept (VEGF-Trap), a peptide-antibody fusion targeting VEGF ligand, is being tested in clinical trials. Much research is focused on identifying biomarkers to predict which patients will benefit from anti-VEGF therapy. Recent results suggest that VEGF single nucleotide polymorphisms may be predictive of patient response to bevacizumab. Improved imaging modalities such as dynamic contrast-enhanced MRI (DCE-MRI) can better characterize the efficacy of anti-angiogenic agents. As anti-VEGF treatments such as bevacizumab have been integrated into the treatment of many different types of cancers, the development of bevacizumab-resistant tumors has become more common. Recent studies show that targeting other angiogenesis signaling pathways such as platelet-derived growth factor-C (PDGF-C), Bombina variagata peptide 8 (Bv8, also known as prokineticin-2), and VEGFR-3 may lead to enhanced response in anti-VEGF resistant tumors. In the future, tailored treatments consisting of combinations of chemotherapy, other targeted therapies, and anti-angiogenesis agents will hopefully result in better patient outcomes.  相似文献   

9.
It is difficult to identify lymph vessels in tissue sections by histochemical staining, and thus a specific marker for lymphatic endothelial cells would be more practical in histopathological diagnostics. Here we have applied a specific antigenic marker for lymphatic endothelial cells in the human skin, the vascular endothelial growth factor receptor-3 (VEGFR-3), and show that it identifies a distinct vessel population both in fetal and adult skin, which has properties of lymphatic vessels. The expression of VEGFR-3 was studied in normal human skin by in situ hybridization, iodinated ligand binding, and immunohistochemistry. A subset of developing vessels expressed the VEGFR-3 mRNA in fetal skin as shown by in situ hybridization and radioiodinated vascular endothelial growth factor (VEGF)-C bound selectively to a subset of vessels in adult skin that had morphological characteristics of lymphatic vessels. Monoclonal antibodies against the extracellular domain of VEGFR-3 stained specifically endothelial cells of dermal lymph vessels, in contrast to PAL-E antibodies, which stained only blood vessel endothelia. In addition, staining for VEGFR-3 was strongly positive in the endothelium of cutaneous lymphangiomatosis, but staining of endothelial cells in cutaneous hemangiomas was weaker. These results establish the utility of anti-VEGFR-3 antibodies in the identification of lymphovascular channels in the skin and in the differential diagnosis of skin lesions involving lymphatic or blood vascular endothelium.  相似文献   

10.
Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases.  相似文献   

11.
目的 探讨炎性环境中内皮微粒(EMPs)在单核细胞参与的促内皮细胞增殖中的作用,并探讨EMPs对单核细胞表达内皮细胞标志物的影响.方法 体外培养人脐静脉内皮细胞(HUVECs),炎性因子肿瘤坏死因子α(TNF-α)刺激内皮细胞,超速离心法获取EMPs;用透射电镜观察其形态和结构;运用酶联免疫吸附法(ELISA)检测经EMPs激活的单核细胞株THP-1对血管内皮生长因子(VEGF)中VEGF-A、VEGF-C的表达情况;将HUVECs和THP-1细胞或者经EMPs诱导的THP-1细胞共培养,检测HUVECs的增殖情况;运用RT-PCR和免疫荧光细胞化学技术,观察经EMPs激活的THP-1细胞对内皮细胞标志物vWF和血管内皮生长因子受体2(VEGFR-2)的表达情况.结果 内皮细胞经炎性因子刺激后释放EMPs,EMPs刺激的THP-1细胞上清中VEGF-A和VEGF-C蛋白水平明显升高;HUVECs细胞增殖实验中,与THP-1细胞或者经EMPs诱导的THP-1共培养的两种情况下,HUVECs均显著增多;与EMPs共培养3d后,THP-1中vWF和VEGFR-2蛋白表达为阳性,基因表达为阴性,共培养8d后,vWF和VEGFR-2的蛋白和基因表达均为阴性.结论 炎性环境中内皮细胞释放EMPs可以促使单核细胞分泌VEGF-A和VEGF-C,后两者可使HUVECs增殖,EMPs仅能使单核细胞一过性呈现内皮表型,而不能将其转分化为内皮细胞.  相似文献   

12.
The contribution of chemokines toward angiogenesis is currently a focus of intensive investigation. Certain members of the CXC chemokine family can induce bovine capillary endothelial cell migration in vitro and corneal angiogenesis in vivo, and apparently act via binding to their receptors CXCR1 and CXCR2. We used an RNAse protection assay that permitted the simultaneous detection of mRNA for various CXC chemokine receptors in resting human umbilical vein endothelial cells (HUVECs) and detected low levels of only CXCR4 mRNA. Stimulation of HUVECs with vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) up-regulated levels of only CXCR4 mRNA. CXCR4 specifically binds the chemokine stromal-derived factor-1alpha (SDF-1alpha). Competitive binding studies using 125I-labeled SDF-1alpha with Scatchard analysis indicated that VEGF or bFGF induced an average number of approximately 16,600 CXCR4 molecules per endothelial cell, with a Kd = 1.23 x 10(-9) mol/L. These receptors were functional as HUVECs and human aorta endothelial cells (HAECs) migrated toward SDF-1alpha. Although SDF-1alpha-induced chemotaxis was inhibited by the addition of a neutralizing monoclonal CXCR4 antibody, endothelial chemotaxis toward VEGF was not altered; therefore, the angiogenic effect of VEGF is independent of SDF-1alpha. Furthermore, subcutaneous SDF-1alpha injections into mice induced formation of local small blood vessels that was accompanied by leukocytic infiltrates. To test whether these effects were dependent on circulating leukocytes, we successfully obtained SDF-1alpha-induced neovascularization from cross sections of leukocyte-free rat aorta. Taken together, our data indicate that SDF-1alpha acts as a potent chemoattractant for endothelial cells of different origins bearing CXCR4 and is a participant in angiogenesis that is regulated at the receptor level by VEGF and bFGF.  相似文献   

13.
14.
Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors.  相似文献   

15.
The growth and metastasis of human solid tumors and the development of conditions such as diabetic retinopathy, rheumatoid arthritis, inflammatory psoriasis, and others are regulated by the balance between angiogenic stimulators and inhibitors released in the angiogenic–pathological microenvironment. Vascular endothelial growth factor (VEGF), an angiogenic factor, is a potent endothelial-specific mitogen that activates endothelial cells in pathological angiogenesis. Recently, we demonstrated that caffeic acid phenethyl ester (CAPE) inhibits tumor growth, invasion, and metastasis. However, the precise molecular mechanism underlying the inhibitory effect of CAPE on VEGF-mediated angiogenesis remains unknown. Here, we show that CAPE suppressed VEGF-induced proliferation, tube formation, migration, the formation of actin stress fibers and loss of VE-cadherin at cell–cell contacts in endothelial cells, indicating the inhibition of VEGF-mediated VEGF receptor-2 (VEGFR-2) and its downstream signal activation in vitro. CAPE blocked VEGF-stimulated neovascularization in the Matrigel plugs assay, and reduced vascular permeability in mouse skin capillaries in vivo. CAPE inhibited the growth and neovascularization of primary tumor cells in C57BL/6 and BALB/c mice inoculated with Lewis lung carcinoma, colon carcinoma, and melanoma cells. These results suggest that CAPE negatively modulates VEGF-induced angiogenesis by suppressing VEGFR-2 activation, and might be a therapeutic avenue for anti-angiogenesis.  相似文献   

16.
Early placental development occurs in an environment of relative hypoxia. Hypoxia promotes angiogenesis and up-regulates vascular endothelial growth factor (VEGF) expression while it down-regulates placenta growth factor (PIGF) that possess 53% homology with VEGF. Morphological studies show poor placental vascular development and an increase in the mitotic index of cytotrophoblasts in intrauterine growth restriction (IUGR). We hypothesized that the reported relatively high oxygen level in the intervillous space in contact with IUGR placental villi will limit angiogenesis by changes in VEGF and PIGF expression and function. Western immunoblot analysis demonstrates a diametric expression of PIGF and VEGF proteins throughout pregnancy with PIGF levels increasing and VEGF levels decreasing, consistent with placental oxygenation. In IUGR placentae, the ratio of PIGF/GAPDH mRNA was increased by 2.3-fold (p < 0.03) and PIGF protein levels were also increased, (p < 0.05) as compared with gestationally-matched normal placentae. PIGF mRNA and protein were localized to the trophoblast bilayer and villous mesenchyme of the human placenta throughout gestation. In vitro studies demonstrated that increasing oxygen tension (hyperoxia) up-regulated PIGF protein in term placental villous explants, whereas hypoxic culture of a term trophoblast choriocarcinoma cell line (BeWo) down-regulated PIGF mRNA and protein and VEGFR-1 (Flt-1) autophosphorylation. The addition of PIGF-1 to a spontaneously transformed first trimester cytotrophoblast cell line stimulated DNA synthesis while PIGF-2 had little effect. VEGF and PIGF exert their biological actions by means of a common receptor VEGFR-1. In the first trimester trophoblast cells, PIGF-1 increased the association of phosphorylated extracellular signal-related kinase (ERK) with VEGFR-1 immunoprecipitates while both PIGF-1 and PIGF-2 also potentiated endogenous VEGF mediated association of phosphorylated extracellular related kinase (ERK) with VEGFR-2 (KDR). More importantly, the addition of PIGF-1 had little effect while PIGF-2 inhibited cell growth in cultured endothelial cells derived from human umbilical vein. Nitric oxide (NO) is reported to promote angiogenesis and PIGF-2 inhibited the basal release of NO from the first trimester trophoblast. The tissue expression and functional studies support the hypothesis of "placental hyperoxia" in early-onset IUGR because hypoxia down-regulates trophoblast PIGF levels, PIGF expression is increased in IUGR, and PIGF-2 inhibits endothelial cell growth. Taken together, these changes provide a cellular explanation for the observed poor angiogenesis in the pathogenesis of IUGR and show that the two PIGF isoforms may modulate trophoblast and endothelial cell function differently, possibly through potentiation of VEGF mediated activation of VEGF-2.  相似文献   

17.
Matrix metalloproteinases (MMPs), a specialized group of enzymes capable of proteolytically degrading extracellular matrix proteins, have been postulated to play an important role in angiogenesis. It has been suggested that MMPs can regulate neovascularization using mechanisms other than simple remodeling of the capillary basement membrane. To determine the interplay between vascular endothelial growth factor (VEGF) and MMPs, we investigated the induction of angiogenesis by recombinant active MMPs and VEGF in vivo. Using a rat corneal micropocket in vivo angiogenesis assay, we observed that the active form of MMP-9 could induce neovascularization in vivo when compared with the pro- form of the enzyme as a control. This angiogenic response could be inhibited by neutralizing VEGF antibody, which suggests that MMPs acts upstream of VEGF. Additional in vitro studies using extracellular matrix loaded with radiolabeled VEGF determined that active MMPs can enzymatically release sequestered VEGF. Interestingly, in vivo angiogenesis induced by VEGF could be inhibited by MMP inhibitors, indicating that MMPs also act downstream of VEGF. In addition, inflammation plays an important role in the induction of angiogenesis mediated by both VEGF and MMPs. Our results suggest that MMPs act both upstream and downstream of VEGF and imply that potential combination therapies of VEGF and MMP inhibitors may be a useful therapeutic approach in diseases of pathological neovascularization.Angiogenesis, the sprouting of new capillaries from pre-existing blood vessels, is a multistep process requiring the degradation of the basement membrane, endothelial cell migration, endothelial cell proliferation, and capillary tube formation. Precise spatial and temporal regulation of extracellular proteolytic activity mediated by matrix-degrading enzymes appears to be important in the initial process of endothelial cell invasion into the extracellular matrix (ECM).1 Three families of enzymes, the matrix metalloproteinases (MMPs), a disintegrin and metalloprotease domain (ADAM) family, and a disintegrin-like and metalloprotease domain (reprolysin type) with thrombospondin type I repeats (ADAMTS) family2 mediate the proteolysis of ECM proteins.MMPs (eg, collagenases, gelatinases, and stromelysins) are a family of zinc binding, Ca2+-dependent neutral endopeptidases that can act together or in concert with other enzymes to degrade most components of the ECM.3,4 These enzymes have been implicated in invasive cell behavior and recent studies have indicated that MMPs play an important role in the regulation of angiogenesis.5–8 Mice deficient in MMP-2 (gelatinase A), MMP-9 (gelatinase B), or MMP-14 exhibit reduced angiogenesis in vivo,9–11 and members of the tissue inhibitor of metalloproteinase family are potent angiogenesis inhibitors.12,13A number of mechanisms by which remodeling of the ECM by MMPs and other proteases can regulate angiogenesis have been proposed.6,14,15 Since MMPs degrade proteins in the ECM, their primary function has been considered to be the breakdown of the capillary basement membrane to allow the migration of endothelial cells into the surrounding matrix. More recently, additional ectodomain shedding and release of matrix-bound angiogenic factors, cytokine receptors, and adhesion molecules, mediated by MMPs,5 have been suggested to contribute to this process. Tumorigenesis experiments have proposed that vascular endothelial growth factor (VEGF) may be released from the ECM by gelatinase B (MMP-9) and result in the angiogenic switch.5 Other in vitro studies have suggested that VEGF mediates its angiogenic effects by up-regulation of MMPs.16,17 In an effort to determine the interplay between VEGF and MMPs in the mediation of angiogenesis and to ascertain if MMPs act upstream or downstream of VEGF, we investigated the induction of angiogenesis in vivo by recombinant active MMPs and VEGF and the potential inhibitory activities of their respective inhibitors.  相似文献   

18.
Angiogenesis is a complex process whereby new blood vessels form from pre-existing vasculature in response to proangiogenic factors such as basic fibroblast growth factor (bFGF) and the 165-kd isoform of vascular endothelial growth factor (VEGF165). Angiogenesis inhibitors show considerable potential in the treatment of cancer because angiogenesis is necessary for tumor growth beyond a few millimeters in diameter because of the tumor's need for oxygen and nutrient supply, as well as waste removal. Bovine lactoferricin (LfcinB) is a peptide fragment of iron- and heparin-binding lactoferrin obtained from cow's milk. Here we provide in vivo and in vitro evidence that LfcinB has potent antiangiogenic activity. LfcinB strongly inhibited both bFGF- and VEGF165-induced angiogenesis in Matrigel plugs implanted in C57BL/6 mice. In addition, LfcinB inhibited the in vitro proliferation and migration of human umbilical vein endothelial cells (HUVECs) in response to bFGF or VEGF165 but was not cytotoxic to HUVECs. Rather, LfcinB complexed with heparin-like structures on the HUVEC surface that are involved in the binding of bFGF and VEGF165 to their respective receptors, thereby preventing receptor-stimulated angiogenesis. These findings suggest that LfcinB may have utility as an antiangiogenic agent for the treatment of human cancers.  相似文献   

19.
Vascular endothelial growth factor (VEGF) induces endothelial cell proliferation, and the beginning of angiogenesis, by interacting with specific endothelial receptors termed VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1). In this study, Flk-1 expression was evaluated immunohistochemically in 10 benign and 40 malignant canine mammary tumours. There was immunolabelling of endothelial cells located within the neoplastic proliferation and at the infiltrating periphery, and also of neoplastic cells. The number of positive endothelial and neoplastic cells, was higher in malignant than in benign tumours. Moreover, in the malignant tumours, expression of Flk-1 increased from well to less differentiated phenotypes (grade 1-3). The presence of VEGF receptor on neoplastic cells suggests that VEGF has an autocrine function in which neoplastic cells act as both VEGF producers and target cells. Thus, in malignant tumours, VEGF may contribute to neoplastic growth by inducing angiogenesis and by stimulating the proliferation of neoplastic cells.  相似文献   

20.
Abstract Aims: Vascular endothelial growth factor (VEGF) increases angiogenesis by stimulating endothelial cell (EC) migration. VEGF-induced nitric oxide ((?)NO) release from (?)NO synthase plays a critical role, but the proteins and signaling pathways that may be redox-regulated are poorly understood. The aim of this work was to define the role of (?)NO-mediated redox regulation of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) in VEGF-induced signaling and EC migration. Results: VEGF-induced EC migration was prevented by the (?)NO synthase inhibitor, N (G)-nitro-L-arginine methyl ester (LNAME). Either VEGF or (?)NO stimulated endoplasmic reticulum (ER) (45)Ca(2+) uptake, a measure of SERCA activity, and knockdown of SERCA2 prevented VEGF-induced EC migration and (45)Ca(2+) uptake. S-glutathione adducts on SERCA2b, identified immunochemically, were increased by VEGF, and were prevented by LNAME or overexpression of glutaredoxin-1 (Glrx-1). Furthermore, VEGF failed to stimulate migration of ECs overexpressing Glrx-1. VEGF or (?)NO increased SERCA S-glutathiolation and stimulated migration of ECs in which wild-type (WT) SERCA2b was overexpressed with an adenovirus, but did neither in those overexpressing a C674S SERCA2b mutant, in which the reactive cysteine-674 was mutated to a serine. Increased EC Ca(2+) influx caused by VEGF or (?)NO was abrogated by overexpression of Glrx-1 or the C674S SERCA2b mutant. ER store-emptying through the ryanodine receptor (RyR) and Ca(2+) entry through Orai1 were also required for VEGF- and (?)NO-induced EC Ca(2+) influx. Innovation and Conclusions: These results demonstrate that (?)NO-mediated activation of SERCA2b via S-glutathiolation of cysteine-674 is required for VEGF-induced EC Ca(2+) influx and migration, and establish redox regulation of SERCA2b as a key component in angiogenic signaling. Antioxid. Redox Signal. 00, 000-000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号