首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Two lateral wedged insoles were compared: one with, and the other without, subtalar strapping. METHODS: Twenty-one patients (age 58-83, mean 72) with medial knee osteoarthritis (OA) were enrolled. Thirty-seven knees in the patients were divided into three groups based on the Kellgren and Lawrence OA grading system; grades 2 (cases=20), 3 (cases=11), and 4 (cases=6). The subjects were tested during walking barefoot and during walking with a silicon rubber lateral wedged insole with elevation of 10 mm attached to a barefoot. Gait analysis was performed on a 10 m walkway for each subject under three different walking conditions; barefoot, wearing a conventional insole, and a subtalar strapping insole. Peak knee varus moment during gait was measured under each condition, and compared between the three conditions and between the OA grades. RESULTS: On the whole (cases=37), the peak varus moment was significantly reduced by wearing either of the insoles, compared to walking barefoot. The reduction was more obvious with the strapping insole (-13%, P<0.01), compared with the conventional insole (-8%, P<0.05). In moderate OA patients (grades 2 and 3), the moments were significantly lower with the strapping insole, compared with the conventional insole (P=0.0048 and 0.005, respectively). However, no significant difference was detected in severe OA patients (grade 4) between the two types of insoles (P=0.4). CONCLUSIONS: Both lateral wedged insoles significantly reduced the peak medial compartment load during gait. The subtalar strapping insole had a greater effect than the conventional insole, particularly in patients with moderate medial knee OA.  相似文献   

2.
Progression of medial compartment knee osteoarthritis (OA) has been associated with repetitive mechanical loading during walking, often characterized by the peak knee adduction (KAM) and knee flexion moments (KFM). However, the relative contributions of these components to the knee total joint moment (TJM) can change as the disease progresses since KAM and KFM are influenced by different factors that change over time. This study tested the hypothesis that the relative contributions of KAM, KFM, and the rotational moment (KRM) to the TJM change over time in subjects with medial compartment knee OA. Patients with medial compartment knee OA (n = 19) were tested walking at their self‐selected speed at baseline and a 5‐year follow‐up. For each frame during stance, the TJM was calculated using the KAM, KFM, and KRM. The peaks of the TJM and the relative contributions of the moment components at the time of the peaks of the TJM were tested for changes between baseline and follow‐up. The percent contribution of KFM to the first peak of the TJM (TJM1) significantly decreased (p < 0.001) and the percent contribution of KAM to TJM1 significantly increased (p < 0.001), while the magnitude of the TJM1 did not significantly change over the 5‐year follow‐up. These gait changes with disease progression appear to maintain a constant TJM1, but the transition from a KFM to a KAM dominance appears to reflect gait changes associated with progressing OA and pain. Thus, the TJM and its component analysis captures a comprehensive metric for total loading on the knee over time. Published 2018. This article is a U.S. Government work and is in the public domain in the USA. 36:2373–2379, 2018.
  相似文献   

3.
Many conservative treatments exist for medial knee osteoarthritis (OA) which aims to reduce the external knee adduction moment (EKAM). The objective of this study was to determine the difference between different shoes and lateral wedge insoles on EKAM, knee adduction angular impulse (KAAI), external knee flexion moment, pain, and comfort when walking in individuals with medial knee OA. Seventy individuals with medial knee OA underwent three‐dimensional walking gait analysis in five conditions (barefoot, control shoe, typical wedge, supported wedge, and mobility shoe) with pain and comfort recorded concurrently. The change in EKAM, KAAI, external knee flexion moment, pain, and comfort were assessed using multiple linear regressions and pairwise comparisons. Compared with the control shoe, lateral wedge insoles and barefoot walking significantly reduced early stance EKAM and KAAI. The mobility shoe showed no effect. A significant reduction in latter stance EKAM was seen in the lateral wedge insoles compared to the other conditions, with only the barefoot condition reducing the external knee flexion moment. However, the mobility shoe showed significant immediate knee pain reduction and improved comfort scores. Different lateral wedge insoles show comparable reductions in medial knee loading and in our study, the mobility shoe did not affect medial loading. © 2015 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 33:1646–1654, 2015.  相似文献   

4.
External knee adduction moment can be reduced using footwear interventions, but the exact changes in in vivo medial joint loading remain unknown. An instrumented knee replacement was used to assess changes in in vivo medial joint loading in a single patient walking with a variable‐stiffness intervention shoe. We hypothesized that during walking with a load modifying variable‐stiffness shoe intervention: (1) the first peak knee adduction moment will be reduced compared to a subject's personal shoes; (2) the first peak in vivo medial contact force will be reduced compared to personal shoes; and (3) the reduction in knee adduction moment will be correlated with the reduction in medial contact force. The instrumentation included a motion capture system, force plate, and the instrumented knee prosthesis. The intervention shoe reduced the first peak knee adduction moment (13.3%, p = 0.011) and medial compartment joint contact force (12.3%; p = 0.008) compared to the personal shoe. The change in first peak knee adduction moment was significantly correlated with the change in first peak medial contact force (R2 = 0.67, p = 0.007). Thus, for a single subject with a total knee prosthesis the variable‐stiffness shoe reduces loading on the affected compartment of the joint. The reductions in the external knee adduction moment are indicative of reductions in in vivo medial compressive force with this intervention. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1548–1553, 2010  相似文献   

5.

Objective

To evaluate the effect of varying body weight support (BWS) with contralateral cane use on medial knee load, measured by external knee adduction moment (KAM), in medial knee osteoarthritis (OA) participants. Influences of cane use technique, pain and malalignment on the cane’s load-reducing effects were investigated.

Method

Participants (n = 23) underwent three-dimensional gait analysis to measure KAM peaks (early and late stance) and impulse. Unaided walking was firstly analyzed. Following cane use training, participants placed pre-determined magnitudes of BWS through the cane (10%, 15% and 20% in random order), with visual feedback provided via a force-instrumented cane and projection screen. Contributions of cane use technique (peak BWS magnitude and timing, cane impulse (BWS∗time) anterior and lateral cane distance from limb) and Western Ontario McMaster Universities OA Index (WOMAC) pain and malalignment to KAM outcomes were evaluated using linear mixed models.

Results

Cane use reduced all KAM variables, with a dose–response effect apparent. Cane BWS impulse was important in reducing the early stance peak KAM (P < 0.001), peak BWS for late stance KAM (P < 0.001) and both BWS measures for KAM impulse reductions (P < 0.001). Variables contributing to efficacy of load-reduction differed across outcomes. Generally, greater reductions were achieved with longer lateral cane distances, peak BWS timing similar to KAM peaks, and shorter anterior cane distances. Greater pain and varus alignment improved load-reduction for some outcomes.

Conclusion

Contralateral cane use significantly reduced medial knee load, with a dose–response effect. Medial knee OA patients should be encouraged to maintain greater BWS across stance, with cane placement more lateral for optimum benefit.  相似文献   

6.
This study tested the effects of variable‐stiffness shoes on knee adduction moment, pain, and function in subjects with symptoms of medial compartment knee osteoarthritis over 6 months. Patients were randomly and blindly assigned to a variable‐stiffness intervention or constant‐stiffness control shoe. The Western Ontario and McMaster Universities (WOMAC) score served as the primary outcome measure. Joint loading, the secondary outcome measure, was assessed using the external knee adduction moment. Peak external knee adduction moment, total WOMAC, and WOMAC pain scores were assessed at baseline and after 6 months. The total WOMAC and WOMAC pain scores for the intervention group were reduced from baseline to 6 months (p = 0.017 and p = 0.002, respectively), with no significant reductions for the control group. There was no difference between groups in magnitude of the reduction in total WOMAC (p = 0.50) or WOMAC pain scores (p = 0.31). The proportion of patients achieving a clinically important improvement in pain was greater in the intervention group than in the control group (p = 0.012). The variable‐stiffness shoes reduced the peak knee adduction moment (?6.6% vs. control, p < 0.001) in the 34 intervention subjects at 6 months. The adduction moment reduction significantly improved (p = 0.03) from the baseline reduction. The constant‐stiffness control shoe increased the peak knee adduction moment (+6.3% vs. personal, p = 0.004) in the 26 control subjects at 6 months. The results of this study showed that wearing the variable‐stiffness shoe lowered the adduction moment, reduced pain, and improved functionality after 6 months of wear. The lower adduction moment associated with wearing this shoe may slow the rate of progression of osteoarthritis after long‐term use. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:873–879, 2010  相似文献   

7.
The purpose of this study was to evaluate shoe sole material stiffness changes and angle changes that are intended to reduce the peak knee adduction moment during walking. Fourteen physically active adults were tested wearing their personal shoes (control) and five intervention pairs, two with stiffness variations, two with angle variations, and a placebo shoe. The intervention shoes were evaluated based on how much they reduced the peak knee adduction moment compared to the control shoe. An ANOVA test was used to detect differences between interventions. Linear regression analysis was used to determine a relationship between the magnitude of the knee adduction moment prior to intervention and the effectiveness of the intervention in reducing the peak knee adduction moment. Peak knee adduction moments were reduced for the altered stiffness and altered angle shoes (p < 0.010), but not for the placebo shoe (p = 0.363). Additionally, linear regression analysis showed that subjects with higher knee adduction moments prior to intervention had larger reductions in the peak knee adduction moment (p < 0.010). These results demonstrate that shoe sole stiffness and angle interventions can be used to reduce the peak knee adduction moment and that subjects with initially higher peak knee adduction moments have higher reductions in their peak knee adduction moments.  相似文献   

8.
Excessive contact force is believed to contribute to the development of medial compartment knee osteoarthritis. The external knee adduction moment (KAM) has been identified as a surrogate measure for medial contact force during gait, with an abnormally large peak value being linked to increased pain and rate of disease progression. This study used in vivo gait data collected from a subject with a force‐measuring knee implant to assess whether KAM decreases accurately predict corresponding decreases in medial contact force. Changes in both quantities generated via gait modification were analyzed statistically relative to the subject's normal gait. The two gait modifications were a “medial thrust” gait involving knee medialization during stance phase and a “walking pole” gait involving use of bilateral walking poles. Reductions in the first (largest) peak of the KAM (32–33%) did not correspond to reductions in the first peak of the medial contact force. In contrast, reductions in the second peak and angular impulse of the KAM (15–47%) corresponded to reductions in the second peak and impulse of the medial contact force (12–42%). Calculated reductions in both KAM peaks were highly sensitive to rotation of the shank reference frame about the superior–inferior axis of the shank. Both peaks of medial contact force were best predicted by a combination of peak values of the external KAM and peak absolute values of the external knee flexion moment (R2 = 0.93). Future studies that evaluate the effectiveness of gait modifications for offloading the medial compartment of the knee should consider the combined effect of these two knee moments. Published by Wiley Periodicals, Inc. J Orthop Res 28:1348–1354, 2010  相似文献   

9.
Studies of lateral wedge insoles (LWIs) in medial knee osteoarthritis (OA) have shown reductions in the average external knee adduction moment (EKAM) but no lessening of knee pain. Some treated patients actually experience increases in the EKAM which could explain the overall absence of pain response. We examined whether, in patients with painful medial OA, reductions in the EKAM were associated with lessening of knee pain. Each patient underwent gait analysis whilst walking in a control shoe and two LWI's. We evaluated the relationship between change in EKAM and change in knee pain using Spearman Rank Correlation coefficients and tested whether dichotomizing patients into biomechanical responders (decreased EKAM) and non‐responders (increased EKAM) would identify those with reductions in knee pain. In 70 patients studied, the EKAM was reduced in both LWIs versus control shoe (?5.21% and ?6.29% for typical and supported wedges, respectively). The change in EKAM using LWIs was not significantly associated with the direction of knee pain change. Further, 54% were biomechanical responders, but these persons did not have more knee pain reduction than non‐responders. Whilst LWIs reduce EKAM, there is no clearcut relationship between change in medial load when wearing LWIs and corresponding change in knee pain. © 2014 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 32:1147–1154, 2014.
  相似文献   

10.
This study investigated sex differences in knee biomechanics and investigated determinants for difference in a geriatric population. Age‐matched healthy volunteers (42 males and 42 females, average age 65 years) without knee OA were included in the study. Subjects underwent physical examination on their knee and standing full‐limb radiography for anthropometric measurements. Linear, kinetic, and kinematic parameters were compared using a three‐dimensional, 12‐camera motion capture system. Gait parameters were evaluated and determinants for sex difference were evaluated with multiple regression analysis. Females had a higher peak knee adduction moment (KAM) during gait (p = 0.004). Females had relatively wider pelvis and narrower step width (both p < 0.001). However, coronal knee alignment was not significantly different between the sexes. Multiple regression analysis revealed that coronal alignment (b = 0.014, p < 0.001), step width (b = −0.010, p = 0.011), and pelvic width/height ratio (b = 1.703, p = 0.046) were significant determinants of peak KAM. Because coronal alignment was not different between the sexes, narrow step width and high pelvic width/height ratio of female were the main contributors to higher peak KAM in females. Sex differences in knee biomechanics were present in the geriatric population. Increased mechanical loading on the female knee, which was associated with narrow step width and wide pelvis, may play an important role in future development and progression of OA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1283–1289, 2017.
  相似文献   

11.
This study investigated the load‐modifying and clinical efficacy of variable‐stiffness shoes after 12 months in subjects with medial compartment knee osteoarthritis. Subjects who completed a prior 6‐month study were asked to wear their assigned constant‐stiffness control or variable‐stiffness intervention shoes during the remainder of the study. Changes in peak knee adduction moment, total Western Ontario and McMaster Universities (WOMAC), and WOMAC pain scores were assessed. Seventy‐nine subjects were enrolled, and 55 completed the trial. Using an intention‐to‐treat analysis, the variable‐stiffness shoes reduced the within‐day peak knee adduction moment (?5.5%, p < 0.001) in the intervention subjects, while the constant‐stiffness shoes increased the peak knee adduction moment in the control subjects (+3.1%, p = 0.015) at the 12‐month visit. WOMAC pain and total scores for the intervention group were significantly reduced from baseline to 12 months (?32%, p = 0.002 and ?35%, p = 0.007, respectively). The control group had a reduction of 27% in WOMAC pain score (p = 0.04) and no significant reduction in total WOMAC score. Reductions in WOMAC pain and total scores were similar between groups (p = 0.8 and p = 0.47, respectively). In the intervention group, reductions in adduction moment were related to improvements in pain and function (R2 = 0.11, p = 0.04). Analysis by disease severity revealed greater efficacy in adduction moment reduction in the less severe intervention group. While the long‐term effects of the intervention shoes on pain and function did not differ from control, the data suggest wearing the intervention shoe reduces the within‐day adduction moment after long‐term wear, and thus should reduce loading on the affected medial compartment of the knee. © 2011 Orthopaedic Research Society. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 30:514–521, 2012  相似文献   

12.
Knee osteoarthritis (OA) is one of the most prevalent forms of this disease, with the medial compartment most commonly affected. The direction of external forces and limb orientation during walking results in an adduction moment that acts around the knee, and this parameter is regarded as a surrogate measure of medial knee compression. The knee adduction moment is intimately linked with the development and progression of knee OA and is, therefore, a target for conservative biomechanical intervention strategies, which are the focus of this Review. We examine the evidence for walking barefoot and the use of lateral wedge insoles and thin-soled, flexible shoes to reduce the knee adduction moment in patients with OA. We review strategies that directly affect the gait, such as walking with the foot externally rotated ('toe-out gait'), using a cane, lateral trunk sway and gait retraining. Valgus knee braces and muscle strengthening are also discussed for their effect upon reducing the knee adduction moment.  相似文献   

13.
This study aimed to determine the extent to which changes over 2.5 years in medial knee cartilage thickness and volume were predicted by: (1) Peak values of the knee adduction (KAM) and flexion moments; and (2) KAM impulse and loading frequency, representing cumulative load, after controlling for age, sex and body mass index (BMI). Adults with clinical knee osteoarthritis participated. At baseline and approximately 2.5 years follow‐up, cartilage thickness and volume of the medial tibia and femur were segmented from magnetic resonance imaging scans. Gait kinematics and kinetics, and daily knee loading frequency were also collected at baseline. Multiple linear regressions predicted changes in cartilage morphology from baseline gait mechanics. Data were collected from 52 participants (41 women) [age 61.0 (6.9) y; BMI 28.5 (5.7) kg/m2] over 2.56 (0.51) years. There were significant KAM peak‐by‐BMI (p = 0.023) and KAM impulse‐by‐BMI (p = 0.034) interactions, which revealed that larger joint loads in those with higher BMIs were associated with greater loss of medial tibial cartilage volume. In conclusion, with adjustments for age, sex, and cartilage measurement at baseline, large magnitude KAM peak and KAM impulse each interacted with BMI to predict loss of cartilage volume of the medial tibia over 2.5 years among individuals with knee osteoarthritis. These data suggest that, in clinical knee osteoarthritis, exposure to large KAMs may be detrimental to cartilage in those with larger BMIs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2476–2483, 2017.
  相似文献   

14.
The purpose of this study was to examine interlimb differences in gait kinematics and kinetics in patients with symptomatic medial knee OA. The main objective was to identify hip joint movement strategies that might lower the knee adduction moment and also compensate for decreased knee flexion during weight acceptance. Gait analysis was performed on 32 patients with moderate medial compartment knee OA. Kinetic and kinematic data were calculated and side‐to‐side comparisons made. Radiographs were used to identify frontal plane alignment. No interlimb difference in the peak knee adduction moment was found (p = 0.512), whereas a greatly reduced hip adduction moment was seen on the involved side (p < 0.001) during the early part of stance. The involved limb flexed significantly less and hip and knee flexion moments were smaller compared to the uninvolved side. Gait adaptations involving a lateral sway of the trunk may successfully lead to relatively lower ipsilateral knee adduction moments, and would further be reflected by a lower adduction moment at the hip. Subjects did not compensate for less knee flexion by any dynamic means, and likely experience a resulting higher joint impact. These gait adaptations may have implications with respect to development of weakness of the ipsilateral hip musculature and progression of multiarticular OA. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:78–83, 2009  相似文献   

15.
Purpose: This study evaluated the angular kinematic and moment of the ankle and foot during shod walking and barefoot walking in individuals with unilateral chronic ankle instability (CAI). Methods: Recreational soccer players with unilateral CAI were recruited for this cross sectional study conducted between January and August 2019. A total of 40 participants were screened for eligibility but only 31 met the inclusion criteria based on the methods of Delahunt et al and Gribble et al. Except for 3 participants not attending the evaluation session, 28 participants were finally included. A three dimensional motion analysis system made up of ProReflex motion capture unit and an AMTIb Kistler force plate, embedded in the middle of nine meter walkway, were used to assess the ankle and foot angles and moment during shod walking and barefoot walking conditions. A Statistical Package for Social Sciences (version 20.0) was used to analyze data. Results: During shod walking, the ankle joint plantar-flexion range of motion (ROM) at 10% of the gait cycle (GC) and dorsiflexion ROM at 30% of the GC were significantly higher than those during barefoot walking for both feet (p = 0.001, 0.001, 0.027, and 0.036 respectively). The inversion ROM during shod walking was significantly higher than that during barefoot walking for both feet at 10% and 30% of the GC (p = 0.001. 0.001, 0.001, and 0.042 respectively). At 10% of the GC, the eversion moment was significantly higher between barefoot and shod walking for both feet (both p = 0.001). At 30% of the GC, there was no significant difference between shod and barefoot walking plantar-flexion moment of both feet (p = 0.975 and 0.763 respectively), and the eversion moment of both feet (p = 0.116 and 0.101 respectively). Conclusion: At the early stance, shod walking increases the ankle plantar-flexion and foot inversion ROM, and decreases the eversion moment for both feet in subjects with unilateral CAI. Therefore, the foot wearing condition should be considered during evaluation of ankle and foot kinematics and kinetics.  相似文献   

16.
High gait‐induced knee frontal plane moment is linked with the development of knee osteoarthritis. Gait patterns across the normal population exhibit large inter‐individual variabilities especially at the knee sagittal plane moment profile during loading response and terminal stance phase. However, the effects of different gait patterns on this moment remain unknown. Therefore, we examined whether different gait patterns are associated with atypically high knee frontal plane moments. Profiles of knee joint moments divided a sample of 24 subjects into three subgroups (11, 7, 6) through cluster analysis. Kinetics, kinematics, and spatio‐temporal parameters were compared among clusters. Subjects who showed a typical sagittal plane moment pattern (n = 11) had 43% lower first peak of knee frontal plane moment compared to the cluster, which showed the dominance of the knee extensor moment during stance phase (n = 7, p < 0.01). In addition, a typical gait pattern cluster had 44% lower second peak knee frontal plane moment than the cluster, which showed the dominance of the knee flexor moment during the terminal stance phase (n = 6, p < 0.05). These findings indicate that different knee strategies driving gait considerably impact knee loading, suggesting that knee extensor and flexor dominant gait patterns demonstrate atypically high knee frontal plane moments. People in these subgroups may, therefore, be at higher risk of developing knee osteoarthritis. © 2013 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 31:1013–1019, 2013  相似文献   

17.
This study tested whether the peak external knee adduction moments during walking in subjects with knee osteoarthritis (OA) were correlated with the mechanical axis of the leg, radiographic measures of OA severity, toe out angle or clinical assessments of pain, stiffness or function. Gait analysis was performed on 62 subjects with knee OA and 49 asymptomatic control subjects (normal subjects). The subjects with OA walked with a greater than normal peak adduction moment during early stance (p = 0.027). In the OA group, the mechanical axis was the best single predictor of the peak adduction moment during both early and late stance (R = 0.74, p < 0.001). The radiographic measures of OA severity in the medial compartment were also predictive of both peak adduction moments (R = 0.43 to 0.48, p < 0.001) along with the sum of the WOMAC subscales (R = -0.33 to -0.31, p < 0.017). The toe out angle was predictive of the peak adduction moment only during late stance (R = -0.45, p < 0.001). Once mechanical axis was accounted for, other factors only increased the ability to predict the peak knee adduction moments by 10 18%. While the mechanical axis was indicative of the peak adduction moments, it only accounted for about 50% of its variation, emphasizing the need for a dynamic evaluation of the knee joint loading environment. Understanding which clinical measures of OA are most closely associated with the dynamic knee joint loads may ultimately result in a better understanding of the disease process and the development of therapeutic interventions.  相似文献   

18.
Reducing the knee adduction moment (KAM) is a promising treatment for medial compartment knee osteoarthritis (OA). Although several gait modifications to lower the KAM have been identified, the potential to combine modifications and individual dose‐responses remain unknown. This study hypothesized that: (i) there is a general scheme consisting of modifications in trunk sway, step width, walking speed, and foot progression angle that reduces the KAM; (ii) gait modifications can be combined; and (iii) dose‐responses differ among individuals. Walking trials with simultaneous modifications in step width, walking speed, progression angle, and trunk sway were analyzed for 10 healthy subjects. Wider step width, slower speed, toeing‐in, and increased trunk sway resulted in reduced first KAM peak, whereas wider step width, faster speed, and increased trunk sway reduced the KAM angular impulse. Individual regressions accurately modeled the amplitude of the KAM variables relative to the amplitude of the gait modification variables, while the dose‐responses varied strongly among participants. In conclusion, increasing trunk sway, increasing step width, and toeing‐in are three gait modifications that could be combined to reduce KAM variables related to knee OA. Results also indicated that some gait modifications reducing the KAM induced changes in the knee flexion moment possibly indicative of an increase in knee loading. Taken together with the different dose‐responses among subjects, this study suggested that gait retraining programs should consider this general scheme of modifications with individualization of the modification amplitudes. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1547–1556, 2016.  相似文献   

19.
The purpose of this study was to longitudinally investigate changes in knee joint kinematics and kinetics from 2 to 8 years post‐ACLR. Seventeen subjects with primary unilateral transtibial ACLR performed bilateral gait analysis approximately 2 years and 8 years post‐ACLR. Seventeen matched healthy control subjects were also analyzed. Kinematic and kinetic comparisons between the ACLR and contralateral limbs over time were completed using a 2 × 2 (time, limb) repeated‐measures ANOVA. Unpaired Student's t‐tests were used to compare the ACLR and contralateral kinematics and kinetics to the control group. The ACLR and contralateral limbs had similar gait changes over time. Kinetic changes over time included a reduction in first (p = 0.048) and second (p < 0.001) peak extension moments, internal rotation moment (p < 0.001), adduction moment (first peak: p = 0.002, second peak: p = 0.009, impulse: p = 0.004) and an increase in peak knee flexion moment (p = 0.002). Kinematic changes over time included increases in peak knee flexion angle in the first half of stance (p = 0.026), minimum knee flexion angle in the second half of stance (p < 0.001), and average external rotation angle during stance (p = 0.007), and a reduction in average anterior femoral displacement during stance (p = 0.006). Comparison to healthy controls demonstrated improvement in some gait metrics over time. The results demonstrated longitudinal changes from 2 to 8 years after ACLR in knee joint kinetics and kinematics that have been related to clinical outcome after ACLR and the progression of knee OA, and support future larger and comprehensive investigations into long‐term changes in joint mechanics in the ACLR population. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1478–1486, 2018.
  相似文献   

20.
OBJECTIVE: This study was conducted in order to assess the effect of wearing a lateral wedged insole with a subtalar strap for 2 years in patients with osteoarthritis varus deformity of the knee (knee OA). DESIGN: The setting was an outpatient clinic. The efficacies of the strapped insole and a traditional shoe insert wedged insole (the inserted insole), as a positive control, were compared at the baseline and after 2 years of treatment. Randomization was performed according to birth date. The 61 female outpatients with knee OA who completed a prior 6-month study were asked to wear their respective insoles continuously as treatment during the course of the 2-year study. The femorotibial angle (FTA) was assessed by standing radiographs obtained while the subjects were barefoot and the Lequesne index of the knee OA at 2 years was compared with those at baseline in each insole group. RESULTS: There were 61 patients in the original study, but 13 patients (21.3%) did not want to wear the insole continuously and five (8.2%) withdrew for other reasons. The 42 patients who completed the 2-year study were evaluated. At the 2-year assessment, participants wearing the subtalar strapped insole (n=21) demonstrated significantly decreased FTA (P=0.015), and significantly improved Lequesne index (P=0.031) in comparison with their baseline assessments. These significant differences were not found in the group with the traditional shoe inserted wedged insole (n=21). CONCLUSION: Only those participants using the subtalar strapped insole demonstrated significant change in the FTA in comparison with the baseline assessments. If the insole with a subtalar strap maintains FTA for more than 2 years, it may restrict the progression of degenerative articular cartilage lesions of knee OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号