首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anticonvulsants, including gabapentin and carbamazepine, have shown activity against several types of neuropathic pain; however, they have limiting side effects that may minimize their use. In this study the possible synergistic interaction between anticonvulsants and benfotiamine or cyanocobalamin on spinal nerve ligation-induced tactile allodynia was assessed. Oral administration of gabapentin (15-300 mg/kg), carbamazepine (10-300 mg/kg), benfotiamine (30-600 mg/kg) or cyanocobalamin (0.3-6.0 mg/kg) significantly reduced tactile allodynia in rats. Maximal antiallodynic effects were reached with gabapentin 300 mg/kg (approximately 70%), carbamazepine 300 mg/kg (approximately 66%), benfotiamine 600 mg/kg (approximately 51%) and cyanocobalamin 6 mg/kg (approximately 59%). At the highest tested doses, gabapentin, but not carbamazepine, benfotiamine or cyanocobalamin, significantly reduced motor coordination. Coadministration of gabapentin or carbamazepine with benfotiamine or cyanocobalamin in a fixed ratio markedly reduced spinal nerve ligation-induced tactile allodynia, showing a synergistic interaction between anticonvulsants and B vitamins. Data indicate that combinations of anticonvulsants with benfotiamine or cyanocobalamin are able to reduce tactile allodynia without affecting motor coordination in rats, and suggest the possible clinical use of these combinations in the treatment of neuropathic pain in humans.  相似文献   

2.
The effect of some B vitamins in chemical and thermal models of nociception in mice was investigated. The association thiamine/pyridoxine/cyanocobalamin (TPC, 20-200 mg/kg, i.p. or per os), thiamine, pyridoxine (50-200 mg/kg, i.p.) or riboflavin (3-100 mg/kg, i.p) induced an antinociceptive effect, not changed by naloxone (10 mg/kg, i.p.), in the acetic acid writhing model. Treatment for 7 days with thiamine/pyridoxine/cyanocobalamin (100 or 200 mg/kg, i.p.), thiamine (50 or 100 mg/kg) or pyridoxine (50 or 100 mg/kg) or acute treatment with riboflavin (6 or 12 mg/kg, i.p) inhibited the nociceptive response induced by formaldehyde. The B vitamins did not inhibit the nociceptive response in the hot-plate model. Both 7-day thiamine/pyridoxine/cyanocobalamin (100 mg/kg, i.p.) or acute riboflavin (25 or 50 mg/kg, i.p.) treatment partially reduced formaldehyde-induced hindpaw oedema. The B vitamins antinociceptive effect may involve inhibition of the synthesis and/or action of inflammatory mediators since it was not observed in the hot-plate model, was not reversed by naloxone, only the second phase of the formaldehyde-induced nociceptive response was inhibited, and formaldehyde-induced hindpaw oedema was reduced.  相似文献   

3.
This study was designed to evaluate the possible antiallodynic interaction between metamizol and gabapentin in rats submitted to L5/L6 spinal nerve ligation. Metamizol, gabapentin, or a combination of both drugs were assessed after oral and intrathecal administration in neuropathic rats. Metamizol partially reduced tactile allodynia after intrathecal, but not oral, administration. Conversely, gabapentin reduced tactile allodynia in a dose‐dependent manner after both administration routes. Oral administration of a constant dose of metamizol (600 mg/kg) significantly increased the gabapentin‐induced antiallodynic effect. Moreover, the gabapentin ED50 value was lower in the presence than in the absence of metamizol. Intrathecal co‐administration of metamizol and gabapentin in a dose‐fixed ratio (0.5:0.5) reduced tactile allodynia in rats. The theoretical ED30 value for the spinal combination estimated from the isobologram was 118.4±12 µg, whereas that experimental ED30 value was 66.2±10.1 µg indicating a synergistic interaction. Results indicate that metamizol, a cyclo‐oxygenase 2 inhibitor, is able to reduce tactile allodynia as well to increase the antiallodynic effect of gabapentin in the neuropathic rat. This combination could be useful to treat neuropathic pain in humans. Drug Dev Res 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Benfotiamine relieves inflammatory and neuropathic pain in rats   总被引:3,自引:0,他引:3  
Benfotiamine has shown therapeutic efficacy in the treatment of painful diabetic neuropathy in human beings. However, so far there is no evidence about the efficacy of this drug in preclinical models of pain. The purpose of this study was to assess the possible antinociceptive and antiallodynic effect of benfotiamine in inflammatory and neuropathic pain models in the rat. Inflammatory pain was induced by injection of formalin in non-diabetic and diabetic (2 weeks) rats. Reduction of flinching behavior was considered as antinociception. Neuropathic pain was induced by either ligation of left L5/L6 spinal nerves or administration of streptozotocin (50 mg/kg, i.p.) in Wistar rats. Benfotiamine significantly reduced inflammatory (10-300 mg/kg) and neuropathic (75-300 mg/kg) nociception in non-diabetic and diabetic rats. Results indicate that oral administration of benfotiamine is able to reduce tactile allodynia from different origin in the rat and they suggest the use of this drug to reduce inflammatory and neuropathic pain in humans.  相似文献   

5.
Antiepileptic drugs (AEDs) are widely utilized in the management of neuropathic pain. The AED valproic acid (VPA) holds out particular promise as it engages a variety of different anticonvulsant mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but potentially life-threatening side effects: teratogenicity and hepatotoxicity. We have synthesized several tetramethylcyclopropyl analogues of VPA amides that are non-teratogenic, and are likely to be non-hepatotoxic, and that exhibit good antiepileptic efficacy. In the present study we have assessed the antiallodynic activity of these compounds in comparison to VPA and gabapentin (GBP) using the rat spinal nerve ligation (SNL) model of neuropathic pain. TMCA (2,2,3,3-tetramethylcyclopropanecarboxylic acid, 100–250 mg/kg), TMCD (2,2,3,3-tetramethylcyclopropanecarboxamide, 40–150 mg/kg), MTMCD (N-methyl-TMCD, 20–100 mg/kg), and TMCU (2,2,3,3-tetramethylcyclopropanecarbonylurea, 40–240 mg/kg) all showed dose-related reversal of tactile allodynia, with ED50 values of 181, 85, 41, and 171 mg/kg i.p., respectively. All were more potent than VPA (ED50 = 269 mg/kg). An antiallodynic effect was obtained for TMCD, MTMCD and TMCU at plasma concentrations as low as 23, 6 and 22 mg/L, respectively. MTMCD was found to be non-toxic, non-sedative and equipotent to gabapentin, currently the leading AED in neuropathic pain treatment. Tetramethylcyclopropyl analogues of VPA amides have potential to become a new series of drugs for neuropathic pain treatment.  相似文献   

6.
Antiepileptic drugs (AEDs) are often utilized in the treatment of neuropathic pain. The major AED valproic acid (VPA) is of particular interest as it is thought to engage a variety of different neural mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but life-threatening side effects: teratogenicity and hepatotoxicity. We synthesized VPA's corresponding amide: valpromide (VPD), two of VPAs isomers and their corresponding amides; valnoctic acid (VCA), valnoctamide (VCD), diisopropyl acetic acid (DIA), diisopropylacetamide (DID), and VPD's congener: N-methyl-VPD (MVPD). VCD, DID and VPD are nonteratogenic, potentially nonhepatotoxic, and exhibit better anticonvuslant potency than VPA. In this study, we assessed the antiallodynic activity of these compounds in comparison to VPA and gabapentin (GBP) using the rat spinal nerve ligation model of neuropathic pain (SNL, Chung model). VCA and MVPD were inactive. However, VPD (20-100 mg kg(- 1)), VCD (20-100 mg kg(- 1)) and DID (20-90 mg kg(- 1)) produced dose-related reversal of tactile allodynia with ED50 values of 61, 52 and 58 mgkg(- 1), respectively. All the amides were more potent than VPA (ED50=269 mgkg(- 1)). The antiallodynic effect of VPA, VPD, VCD and DID was obtained at plasma concentrations of 125, 24, 18 and 7 mg l(- 1), respectively, with a good pharmacokinetic-pharmacodynamic correlation and a minimal lag response. VCD and DID were found to have minimal motor and sedative side effects at analgesic doses, and were equipotent to GBP, currently the leading drug in neuropathic pain treatment. Consequently, VCD and DID have potential to become new drugs for the treatment of neuropathic pain.  相似文献   

7.
In this work, synthetic integration of substituted semicarbazides and various aliphatic, aryl and heteroaryl acids into 1,2,4‐triazol‐5‐ones was accomplished. Following the assessment of neurotoxicity and peripheral analgesic activity, the compounds were evaluated in two peripheral models of neuropathic pain, the chronic constriction injury and partial sciatic nerve ligation to assess their antihyperalgesic and antiallodynic potential. ED50 studies undertaken for selected compounds exhibiting promising efficacies ( 1c , 3c and 4a ) revealed values ranging from 13.21 to 39.85 mg/kg in four behavioral assays of hyperalgesia and allodynia (spontaneous pain, tactile allodynia, cold allodynia, and mechanical hyperalgesia). Mechanistic studies revealed that the compounds suppressed the inflammatory component of the neuropathic pain inhibiting tumor necrosis factor‐alpha and preventing oxidative and nitrosative stress.  相似文献   

8.
Propylisopropylacetamide (PID) is a chiral CNS-active constitutional isomer of valpromide, the amide derivative of the major antiepileptic drug valproic acid (VPA). The purpose of this work was: a) To evaluate enantiospecific activity of PID on tactile allodynia in the Chung (spinal nerve ligation, SNL) model of neuropathic pain in rats; b) To evaluate possible sedation at effective antiallodynic doses, using the rotorod ataxia test; c) To investigate enantioselectivity in the pharmacokinetics of (R)- and (S)-PID in comparison to (R,S)-PID; and d) To determine electrophysiologically whether PID has the potential to affect tactile allodynia by suppressing ectopic afferent discharge in the peripheral nervous system (PNS). (R)-, (S)- and (R,S)-PID produced dose-related reversal of tactile allodynia with ED(50) values of 46, 48, 42 mg/kg, respectively. The individual PID enantiomers were not enantioselective in their antiallodynic activity. No sedative side-effects were observed at these doses. Following i.p. administration of the individual enantiomers, (S)-PID had lower clearance (CL) and volume of distribution (V) and a shorter half-life (t(1/2)) than (R)-PID. However following administration of (R,S)-PID, both enantiomers had similar CL and V, but (R)-PID had a longer t(1/2). Systemic administration of (R,S)-PID at antiallodynic doses did not suppress spontaneous ectopic afferent discharge generated in the injured peripheral nerve, suggesting that its antiallodynic action is exerted in the CNS rather than the PNS. Both of PID's enantiomers, and the racemate, are more potent antiallodynic agents than VPA and have similar potency to gabapentin. Consequently, they have the potential to become new drugs for treating neuropathic pain.  相似文献   

9.
Preclinical Research
Treatment of neuropathic pain is an area of largely unmet medical need. Pregabalin and gabapentin are anticonvulsants widely used for the treatment of neuropathic pain. Unfortunately, these drugs are only effective in 50–60% of the treated patients. In addition, both drugs have substantial side effects. Several studies have reported that ultralow doses of opioid receptor antagonists can induce analgesia and enhance the analgesic effect of opioids in rodents and humans. The objective of the present study was to assess the antiallodynic synergistic interaction between gabapentinoids and naltrexone in rats. Oral administration of pregabalin (ED50 = 2.79 ± 0.16 mg/kg) or gabapentin (ED50 = 21.04 ± 2.87 mg/kg) as well as intrathecal naltrexone (ED50 = 0.11 ± 0.02 ng) reduced in a dose‐dependent manner tactile allodynia in rats. Maximal antiallodynic effects (∼100%) were reached with 30 mg/kg of pregabalin, 300 mg/kg of gabapentin or 0.5 ng of naltrexone. Co‐administration of pregabalin or gabapentin and naltrexone in a fixed‐dose ratio (1:1) remarkably reduced spinal nerve ligation‐induced tactile allodynia showing a synergistic interaction. The data indicate that combinations of pregabalin or gabapentin and ultra‐low doses of naltrexone are able to reduce tactile allodynia in neuropathic rats with lower doses that those used when drugs are given individually and with an improved side effects profile. Drug Dev Res 78 : 371‐380, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

10.
Agents which decrease conductance of N-type voltage-gated Ca(2+) channels have been shown to attenuate measures of neuropathic pain in animal models and to provide symptom relief in humans. The omega-conotoxins have demonstrated efficacy but have a low therapeutic index. We have investigated the effects of a new omega-conotoxin, CVID (AM-336), and compared them with omega-conotoxin GVIA (SNX-124), omega-conotoxin MVIIA (SNX-111) and morphine in a spinal nerve ligation model of neuropathic pain in the rat. The ED(50) (and 95% CI) for attenuation of tactile allodynia by intrathecal administration for omega-conotoxin CVID, GVIA, MVIIA and morphine was 0.36 (0.27-0.48), 0.12 (0.06-0.24), 0.32 (0.23-0.45) and 4.4 (2.9-6.5) microg/kg, respectively. Only morphine significantly prolonged acute tail flick responses (ED(50) 2.3 (1.1-4.9) microg/kg). Of the omega-conotoxins, omega-conotoxin CVID showed the highest ratio of efficacy to behavioural toxicity. These observations show that intrathecal omega-conotoxins are effective in attenuating tactile allodynia in the rat without significantly affecting acute nociceptive responses. Omega-conotoxin CVID had similar potency to omega-conotoxin MVIIA but showed less toxicity in the therapeutic range.  相似文献   

11.
Rationale Fluphenazine is a potent antipsychotic drug used to treat schizophrenia and other psychotic symptoms. Its clinical benefit is mainly mediated by the antagonism of dopamine D2 receptors. We have recently discovered, however, that fluphenazine is also a potent sodium channel blocker, a property that may offer additional therapeutical indications, including analgesia. Objectives The present study sought to determine the analgesic effect of fluphenazine on neuropathic pain in animal models. Methods The effect of fluphenazine on mechanical allodynia was assessed in three animal neuropathic pain models, including spinal nerve ligation, chronic constriction nerve injury (CCI), and sural-spared sciatic nerve injury models. Results Systemic fluphenazine effectively attenuated mechanical allodynia in all three rat neuropathic pain models at doses (0.03–0.3 mg/kg) that approximate those used in rodent models of psychosis. In parallel with its in vivo antiallodynic effect, fluphenazine (3–30 μM) effectively suppressed the ectopic discharges in injured afferent fibers without affecting the propagation of action potentials evoked by electrical nerve stimulation in an ex vivo dorsal root ganglia (DRG)-nerve preparation excised from CCI rats. Furthermore, similar concentrations of fluphenazine significantly blocked sodium channels in DRG neurons. Conclusions The inhibitory action of fluphenazine on ectopic afferent discharges may be due to its ability to block voltage-gated sodium channels, and this may also provide a mechanistic basis for the drug’s antiallodynic effect in animal models of neuropathic pain. In summary, our study demonstrates that the classic antipsychotic drug fluphenazine has antiallodynic properties in multiple rodent models of nerve injury-induced neuropathic pain. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
There is evidence that B vitamins produce antinociception in animals. However, potentiation of NSAID‐induced antinociception by B vitamins is unclear. The current study was designed to investigate the antinociceptive interaction between a mixture of B vitamins and either acetaminophen or metamizol. Acetaminophen (56–316 mg/kg), metamizol (32–178 mg/kg), and the mixture of B vitamins (32–178 mg/kg of thiamine, pyridoxine, and cyanocobalamin in a 100:100:1 proportion, respectively) or a combination of each drug with the B vitamins mixture was administered orally to female Wistar rats, and the antinociceptive effect determined in the formalin test. Isobolographic analyses were used to define the nature of the interaction between NSAIDs and B vitamins. Oral administration of either drug produced a dose‐related antinociceptive effect. Isobolographic analyses revealed that both acetaminophen or metamizol and the B vitamins mixture interacted synergistically in the formalin test, suggesting that these two combinations could be useful in treating inflammatory pain states. Drug Dev. Res. 66:286–294, 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

13.
The possible participation of the nitric oxide (NO)-cyclic GMP-protein kinase G (PKG)-K+ channels pathway in the antiallodynic action of resveratrol and YC-1 in spinal nerve injured rats was assessed. Ligation of L5/L6 spinal nerves produced a clear-cut tactile allodynia in the rats. Intrathecal administration of resveratrol (100-600 microg) and 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (0.1-2.7 microg, YC-1, a soluble guanylyl cyclase activator) decreased tactile allodynia induced by ligation of L5/L6 spinal nerves. Intrathecal treatment with NG-L-nitro-arginine methyl ester (10-100 microg, L-NAME, a NO synthase inhibitor), 1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one (1-10 microg, ODQ, a soluble guanylyl cyclase inhibitor), KT-5823 (5-500 ng, a PKG inhibitor) and iberiotoxin (5-500 ng, a large-conductance Ca2+ -activated K+ channel blocker), but not NG-D-nitro-arginine methyl ester (100 microg, D-NAME, an inactive isomer of L-NAME), glibenclamide (12.5-50 microg, ATP-sensitive K+ channel blocker) or vehicle, significantly diminished resveratrol (300 microg)- and YC-1 (2.7 microg)-induced spinal antiallodynia. These effects were independent of prostaglandin synthesis inhibition as indomethacin did not affect resveratrol-induced antiallodynia. Results suggest that resveratrol and YC-1 could activate the proteins of the NO-cyclic GMP-PKG spinal pathway or large-conductance Ca2+ -activated, but not ATP-sensitive, K+ channels at the spinal cord in order to produce at least part of their antiallodynic effect in this model of neuropathy.  相似文献   

14.
Transient receptor potential vanilloid 1 (TRPV1) is primarily expressed in central and peripheral terminals of non-myelinated primary afferent neurons. We previously showed that AS1928370, a novel TRPV1 antagonist that can prevent ligand-induced activation but not proton-induced activation, ameliorates neuropathic pain in rats without hyperthermic effect. In this study, we investigated its analgesic profile in mice. AS1928370 showed good oral bioavailability and high penetration into the brain and spinal cord in mice. The mean plasma-to-brain and plasma-to-spinal cord ratios were 4.3 and 3.5, respectively. Pretreatment with AS1928370 significantly suppressed both capsaicin-induced acute pain and withdrawal response in hot plate test at 10-30 mg/kg per os (p.o.). At lower oral doses (0.3-1.0 mg/kg), AS1928370 improved mechanical allodynia in mice undergoing spinal nerve ligation. Intrathecal administration of AS1928370 (30 μg/body) also significantly suppressed mechanical allodynia. In addition, AS1928370 showed no effect on locomotor activity up to 30 mg/kg p.o. These results suggest that spinal TRPV1 has an important role in the transmission of neuropathic pain and that the central nervous system (CNS) penetrant TRPV1 receptor antagonist AS1928370 is a promising candidate for treating neuropathic pain.  相似文献   

15.
Endogenous inhibitory controls were studied in the spinal nerve ligation model of neuropathic pain. Atipamezole, a selective alpha2-adrenoceptor antagonist, produced both mechanical and cold allodynia in those rats which had not developed clear neuropathic symptoms. The same doses (50 microg i.t. or 1 mg/kg s.c.) did not increase the severity of symptoms in rats which had developed them. The opioid receptor antagonist naloxone (20 microg i.t. or 1 mg/kg s.c.) had no effect on the neuropathic symptoms. These results indicate that mechanical and cold allodynia are under endogenous noradrenergic rather than opioidergic control in this model of neuropathic pain.  相似文献   

16.
Pain is the most common physical symptom of cancer patients, with most patients experiencing more than one site of pain. Current treatments lack full efficacy. Based on the need for new approaches in that field the effect of systemic administration of lacosamide (SPM 927, (R)-2-acetamido-N-benzyl-3-methoxypropionamide, previously referred to as harkoseride or ADD 234037), a member of a series of functionalized amino acids that were specifically synthesized as anticonvulsive drug candidates, was examined in rats in a tumor-induced bone cancer pain model and in a chemotherapy-induced neuropathic pain model. Lacosamide inhibited tactile allodynia (20, 40 mg/kg, i.p.), thermal hyperalgesia (30 mg/kg) and reduced weight-bearing differences (40 mg/kg) in the rat model of bone cancer pain induced by injection of MRMT-1 cells into the tibia. Morphine (5 mg/kg, s.c) was effective inhibiting tactile allodynia and weight bearing but could not reduce thermal hyperalgesia. In the vincristine-induced neuropathic pain model, lacosamide attenuated thermal allodynia, on the cold plate (4 degrees C), at 10 and 30 mg/kg, and in the warm (38 degrees C) and hot plate (52 degrees C) even at 3 mg/kg. Tactile allodynia and mechanical hyperalgesia were inhibited by lacosamide at 10 and 30 mg/kg. In contrast to lacosamide, morphine (3 mg/kg, s.c.) had no effect on mechanical hyperalgesia. Lacosamide is effective as an analgesic in a bone cancer pain model as well as chemotherapy-induced neuropathic pain model in animals and even reduced hyperalgesia where morphine did not (3 or 5 mg/kg, s.c.).  相似文献   

17.
Previous studies suggested that combining N-methyl-d-aspartate (NMDA) receptor antagonists with either mu-opioid agonist morphine or alpha2-adrenoreceptor agonist clonidine results in the significant synergistic enhancement of analgesic activity in the animal models of acute and neuropathic pain. When given alone, NMDA receptor antagonists, morphine and clonidine are capable of attenuating tactile allodynia associated with chronic nerve injury. The present study aimed to assess anti-allodynic effects of these compounds and to test additivity of these interactions using isobolographic analysis. Adult male Wistar rats with unilateral loose ligation of sciatic nerve developed significant tactile allodynia (between-paw difference of about 18-20 g). In separate groups of animals, dose-dependent anti-allodynic activity was confirmed for memantine (1.8-17.8 mg/kg), neramexane (1.8-17.8 mg/kg), morphine (1-10 mg/kg) and clonidine (0.01-0.1 mg/kg). In a subsequent series of experiments, memantine (or neramexane) and morphine (or clonidine) were co-administered at the fixed equi-effective dose ratios (six dose levels per drug combination). None of the tested combinations produced supra-additive, synergistic effects. In fact, memantine+clonidine, neramexane+clonidine and morphine+neramexane were producing simple additive effects, while morphine+memantine was characterized as the infra-additive combination. Thus, despite expectations based on previous studies, NMDA receptor channel blockers, memantine and neramexane, produce no synergistic interactions with either morphine or clonidine when administered acutely to rats with nerve injury-induced tactile allodynia.  相似文献   

18.
19.
Kinin B1 and B2 receptor (R) gene expression (mRNA) is increased in the sensory system after peripheral nerve injury. This study measured the densities of B1R and B2R binding sites in the spinal cord and dorsal root ganglia (DRG) by quantitative autoradiography, and evaluated the effects of two selective non-peptide antagonists at B1R (LF22-0542) and B2R (LF16-0687) on pain behavior after partial ligation of the left sciatic nerve. Increases of B1R binding sites were seen in superficial laminae of the ipsi- and contralateral spinal cord at 2 and 14 days while B2R binding sites were increased on the ipsilateral side at 2 days and on both sides at 14 days. In DRG, B1R and B2R binding sites were significantly increased at 2 days (ipsilateral) and 14 days on both sides. Whereas tactile allodynia started to develop progressively from 2 to 25 days post-ligation, the occurrence of cold allodynia and thermal hyperalgesia became significant from day 8 and day 14 post-ligation, respectively. At day 21 after sciatic nerve ligation, thermal hyperalgesia was blocked by LF22-0542 (10 mg/kg, s.c.) and LF16-0687 (3 mg/kg, s.c.), yet both antagonists had no effect on tactile and cold allodynia. Data highlight the implication of both kinin receptors in thermal hyperalgesia but not in tactile and cold allodynia associated with peripheral nerve injury. Hence LF22-0542 and LF16-0687 present therapeutic potential for the treatment of some aspects of neuropathic pain.  相似文献   

20.
Tactile allodynia, the enhanced perception of pain in response to normally non-painful stimulation, represents a common complication of diabetic neuropathy. The activation of endothelin ET(A) receptors has been implicated in diabetes-induced reductions in peripheral neurovascularization and concomitant endoneurial hypoxia. Endothelin receptor activation has also been shown to alter the peripheral and central processing of nociceptive information. The present study was conducted to evaluate the antinociceptive effects of the novel endothelin ET(A) receptor-selective antagonist, 2R-(4-methoxyphenyl)-4S-(1,3-benzodioxol-5-yl)-1-(N, N-di(n-butyl)aminocarbonyl-methyl)-pyrrolidine-3R-carboxylic acid (ABT-627), in the streptozotocin-induced diabetic rat model of neuropathic pain. Rats were injected with 75 mg/kg streptozotocin (i. p.), and drug effects were assessed 8-12 weeks following streptozotocin treatment to allow for stabilization of blood glucose levels (>/=240 mg/dl) and tactile allodynia thresholds (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号