首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the postnatal development of nociceptive synaptic inputs in the superficial dorsal horn of the neonatal rat spinal cord, we examined the effect of capsaicin and menthol on glutamatergic mEPSCs in postnatal day (P) 0–1, P5–6 and P9–11 slices of spinal cord. Capsaicin (100 n m to 2 μ m ) increased the mEPSC frequency in a concentration-dependent manner at all ages tested, with a significant enhancement of the effect between P5 and P10. This effect was sensitive to vanilloid receptor (VR) antagonists. The elevation in mEPSC frequency occurred at concentrations of capsaicin (100 n m ) that did not alter the distribution of mEPSC amplitudes and was abolished by a dorsal rhizotomy, demonstrating that capsaicin acts via presynaptic VR1 receptors localized on primary afferents. Menthol significantly increased the mEPSC frequency with a similar developmental pattern to capsaicin without consistently affecting mEPSC amplitude. The increase in mEPSC frequency following capsaicin did not depend on transmembrane calcium influx since it persisted in zero [Ca2+]o. The facilitation of spontaneous glutamate release by capsaicin was sufficient to evoke action potentials in neonatal dorsal horn neurons but was accompanied by a block of EPSCs evoked by electrical stimulation of the dorsal root. These results indicate that VR1-expressing nociceptive primary afferents form functional synaptic connections in the superficial dorsal horn from birth and that activation of the VR1 receptor increases spontaneous glutamate release via an undetermined mechanism. In addition, the data suggest that immature primary afferents express functional menthol receptors that are capable of modulating transmitter release. These results have important functional implications for infant pain processing.  相似文献   

2.
Liu J  Zhao JW  Du JL  Yang XL 《Neuroscience》2005,132(1):103-113
GABA(B) receptors at the cone terminals in bullfrog retina were characterized by immunocytochemical and whole-cell patch clamp techniques in retinal slice preparations. Somata, axons and synaptic terminals (pedicles) of cones were both GABA(B) receptor (GABA(B)R) 1 and GABA(B)R2 immunoreactive. Physiologically, barium/calcium currents of cones to voltage steps were significantly reduced in size when GABA was puffed to cone terminals in the presence of picrotoxin that is supposed to block both GABA(A) and GABA(C) receptors. Similar reduction in barium currents was obtained with puff application of baclofen to cone terminals. These results suggest the presence of functional GABA(B) receptors at the bullfrog cone terminals. Suppression of barium currents of cones by baclofen was dose-dependent. Moreover, barium currents of cones were potentiated by background illumination, as compared with those recorded in the dark. 6,7-Dinitroquinoxaline-2,3-dione, an antagonist of non-NMDA receptors that hyperpolarizes horizontal cells and reduces GABA release from these cells, and saclofen, a GABA(B) receptor antagonist, both potentiated barium currents of cones in the dark, thereby mimicking the effects of background illumination. It is suggested that changes in calcium influx into the cone synaptic terminals due to activation of GABA(B) receptors may provide a negative feedback mechanism for regulating signal transmission between cones and second-order neurons in the retina by modifying the amount of glutamate released from the cones.  相似文献   

3.
Internalization of spinal cord neurokinin-1 receptors following noxious stimulation provides a reliable measure of tachykinin signaling. In the present study, we examined the contribution of GABAergic mechanisms to the control of nociceptor processing involving tachykinins. Spinal administration of the GABA(B) receptor agonist R(+)-baclofen in the rat, at antinociceptive doses, significantly reduced the magnitude of neurokinin-1 receptor internalization in neurons of lamina I in response to acute noxious mechanical or thermal stimulation. By contrast, administration of even high doses of the GABA(A) receptor agonists, muscimol or isoguvacine, were without effect. CGP55845, a selective GABA(B) receptor antagonist, completely blocked the effects of baclofen, but failed to increase the incidence of internalization when administered alone. These results provide evidence for a presynaptic control of nociceptive primary afferent neurons by GABA(B) but not GABA(A) receptors in the superficial laminae of the spinal cord, limiting tachykinin release. Because CGP5584 alone did not increase the magnitude of neurokinin-1 receptor internalization observed following noxious stimulation, there appears to be little endogenous activation of GABA(B) receptors on tachykinin-releasing nociceptors under acute stimulus conditions. The contribution of pre- and postsynaptic regulatory mechanisms to GABA(B) receptor-mediated antinociception was also investigated by comparing the effect of baclofen on Fos expression evoked by noxious stimulation to that induced by intrathecal injection of substance P. In both instances, baclofen reduced Fos expression not only in neurons that express the neurokinin-1 receptor, but also in neurons that do not.We conclude that baclofen acts at presynaptic sites to reduce transmitter release from small-diameter nociceptive afferents. Presynaptic actions on non-tachykinin-containing nociceptors could similarly account for the reduction by baclofen of noxious stimulus-induced Fos expression in neurokinin-1 receptor-negative neurons. However, the inhibition of Fos expression induced by exogenous substance P indicates that actions at sites postsynaptic to tachykinin- and/or non-tachykinin-containing primary afferent terminals must also contribute to the antinociceptive actions of GABA(B) receptor agonists.  相似文献   

4.
Olfactory receptor neurons of the nasal epithelium send their axons, via the olfactory nerve (ON), to the glomeruli of the olfactory bulb (OB), where the axon terminals form glutamatergic synapses with the apical dendrites of mitral and tufted cells, the output cells of the OB, and with juxtaglomerular (JG) interneurons. Many JG cells are GABAergic. Here we show that, despite the absence of conventional synapses, GABA released from JG cells activates GABA(B) receptors on ON terminals and inhibits glutamate release both tonically and in response to ON stimulation. Field potential recordings and current-source density analysis, as well as intracellular and whole cell recording techniques were used in rat OB slices. Baclofen (2-5 microM), a GABA(B) agonist, completely suppressed ON-evoked synaptic responses of both mitral/tufted cells and JG cells, with no evidence for postsynaptic effects. Baclofen (0.5-1 microM) also reversed paired-pulse depression (PPD) of mitral/tufted cell responses to paired-pulse facilitation (PPF), and reduced depression of JG cell excitatory postsynaptic currents (EPSCs) during repetitive ON stimulation. These results suggest that baclofen reduced the probability of glutamate release from ON terminals. The GABA(B) antagonists CGP35348 or CGP55845A increased mitral/tufted cell responses evoked by single-pulse ON stimulation, suggesting that glutamate release from ON terminals is tonically suppressed via GABA(B) receptors. The same antagonists reduced PPD of ON-evoked mitral/tufted cell responses at interstimulus intervals 50-400 ms. This finding suggests that a single ON impulse evokes sufficient GABA release, presumably from JG cells, to activate GABA(B) receptors on ON terminals. Thus GABA(B) heteroreceptors on ON terminals are activated by ambient levels of extrasynaptic GABA, and by ON input to the OB. The time course of ON-evoked, GABA(B) presynaptic inhibition suggests that neurotransmission to M/T cells and JG cells will be significantly suppressed when ON impulses arrive in glomeruli at 2.5-20 Hz. GABA(B) receptor-mediated presynaptic inhibition of sensory input to the OB may play an important role in shaping the activation pattern of the OB glomeruli during olfactory coding.  相似文献   

5.
Presynaptic GABA(B) receptor activation inhibits glutamate release from retinohypothalamic tract (RHT) terminals in the suprachiasmatic nucleus (SCN). Voltage-clamp whole cell recordings from rat SCN neurons and optical recordings of Ca2+-sensitive fluorescent probes within RHT terminals were used to examine GABA(B)-receptor modulation of RHT transmission. Baclofen inhibited evoked excitatory postsynaptic currents (EPSCs) in a concentration-dependent manner equally during the day and night. Blockers of N-, P/Q-, T-, and R-type voltage-dependent Ca2+ channels, but not L-type, reduced the EPSC amplitude by 66, 36, 32, and 18% of control, respectively. Joint application of multiple Ca2+ channel blockers inhibited the EPSCs less than that predicted, consistent with a model in which multiple Ca2+ channels overlap in the regulation of transmitter release. Presynaptic inhibition of EPSCs by baclofen was occluded by omega-conotoxin GVIA (< or = 72%), mibefradil (< or = 52%), and omega-agatoxin TK (< or = 15%), but not by SNX-482 or nimodipine. Baclofen reduced both evoked presynaptic Ca2+ influx and resting Ca2+ concentration in RHT terminals. Tertiapin did not alter the evoked EPSC and baclofen-induced inhibition, indicating that baclofen does not inhibit glutamate release by activation of Kir3 channels. Neither Ba2+ nor high extracellular K+ modified the baclofen-induced inhibition. 4-Aminopyridine (4-AP) significantly increased the EPSC amplitude and the charge transfer, and dramatically reduced the baclofen effect. These data indicate that baclofen inhibits glutamate release from RHT terminals by blocking N-, T-, and P/Q-type Ca2+ channels, and possibly by activation of 4-AP-sensitive K+ channels, but not by inhibition of R- and L-type Ca2+ channels or by Kir3 channel activation.  相似文献   

6.
Lacey CJ  Boyes J  Gerlach O  Chen L  Magill PJ  Bolam JP 《Neuroscience》2005,136(4):1083-1095
Although multiple effects of GABA(B) receptor activation on synaptic transmission in the striatum have been described, the precise locations of the receptors mediating these effects have not been determined. To address this issue, we carried out pre-embedding immunogold electron microscopy in the rat using antibodies against the GABA(B) receptor subunits, GABA(B1) and GABA(B2). In addition, to investigate the relationship between GABA(B) receptors and glutamatergic striatal afferents, we used antibodies against the vesicular glutamate transporters, vesicular glutamate transporter 1 and vesicular glutamate transporter 2, as markers for glutamatergic terminals. Immunolabeling for GABA(B1) and GABA(B2) was widely and similarly distributed in the striatum, with immunogold particles localized at both presynaptic and postsynaptic sites. The most commonly labeled structures were dendritic shafts and spines, as well as terminals forming asymmetric and symmetric synapses. In postsynaptic structures, the majority of labeling associated with the plasma membrane was localized at extrasynaptic sites, although immunogold particles were also found at the postsynaptic specialization of some symmetric, putative GABAergic synapses. Labeling in axon terminals was located within, or at the edge of, the presynaptic active zone, as well as at extrasynaptic sites. Double labeling for GABA(B) receptor subunits and vesicular glutamate transporters revealed that labeling for both GABA(B1) and GABA(B2) was localized on glutamatergic axon terminals that expressed either vesicular glutamate transporter 1 or vesicular glutamate transporter 2. The patterns of innervation of striatal neurons by the vesicular glutamate transporter 1- and vesicular glutamate transporter 2-positive terminals suggest that they are selective markers of corticostriatal and thalamostriatal afferents, respectively. These results thus provide evidence that presynaptic GABA(B) heteroreceptors are in a position to modulate the two major excitatory inputs to striatal spiny projection neurons arising in the cortex and thalamus. In addition, presynaptic GABA(B) autoreceptors are present on the terminals of spiny projection neurons and/or striatal GABAergic interneurons. Furthermore, the data indicate that GABA may also affect the excitability of striatal neurons via postsynaptic GABA(B) receptors.  相似文献   

7.
K Z Shen  S W Johnson 《Neuroscience》2001,108(3):431-436
Effects of baclofen on synaptic transmission were studied in rat subthalamic neurons using whole-cell patch clamp recording from brain slices. Focal electrical stimulation of the brain slice evoked GABAergic inhibitory postsynaptic currents and glutamatergic excitatory postsynaptic currents. Baclofen reduced the amplitude of evoked inhibitory postsynaptic currents in a concentration-dependent manner with an IC(50) of 0.6+/-0.2 microM. Evoked excitatory postsynaptic currents were also reduced by baclofen concentration-dependently (IC(50) of 1.6+/-0.2 microM), but baclofen was more potent at reducing the GABA(A) receptor inhibitory postsynaptic currents. The GABA(B) receptor antagonist CGP 35348 blocked these inhibitory effects of baclofen on evoked inhibitory and excitatory postsynaptic currents. Baclofen increased the paired-pulse ratios of evoked inhibitory and excitatory postsynaptic currents. Furthermore, baclofen reduced the frequency of spontaneous miniature excitatory postsynaptic currents, but had no effect on their amplitude.These results provide evidence for presence of presynaptic GABA(B) receptors that modulate both GABA and glutamate release from afferent terminals in the subthalamus.  相似文献   

8.
Sun H  Ma CL  Kelly JB  Wu SH 《Neuroscience letters》2006,399(1-2):151-156
Whole-cell patch clamp recordings were made from ICC neurons in brain slices of 9-16 day old rats. Postsynaptic currents were evoked by electrical stimulation of the lemniscal inputs. Excitatory postsynaptic currents (EPSCs) were isolated pharmacologically by blocking GABA(A) and glycine receptors. EPSCs were further dissected into AMPA and NMDA receptor-mediated responses by adding the receptor antagonists, APV and CNQX, respectively. The internal solution in the recording electrodes contained CsF and TEA to block K(+) channels that might be activated by postsynaptic GABA(B) receptors. The modulatory effects of GABA(B) receptors on EPSCs in ICC neurons were examined by bath application of the GABA(B) receptor agonist, baclofen, and the antagonist, CGP 35348. The amplitudes of EPSCs in ICC neurons were reduced to 34.4+/-3.2% of the control by baclofen (5-10 microM). The suppressive effect by baclofen was concentration-dependent. The reduction of the EPSC amplitude was reversed by CGP35348. The ratio of the 2nd to 1st EPSCs evoked by paired-pulse stimulation was significantly increased after application of baclofen. These results suggest that glutamatergic excitation in the ICC can be modulated by presynaptic GABA(B) receptors. In addition, baclofen reduced NMDA EPSCs more than AMPA EPSCs. The GABA(B) receptor-mediated modulation of glutamatergic excitation in the ICC provides a likely mechanism for preventing overstimulation and/or regulating the balance of excitation and inhibition involved in processing auditory information.  相似文献   

9.
Olfactory bulb glomeruli are formed by a network of three major types of neurons collectively called juxtaglomerular (JG) cells, which include external tufted (ET), periglomerular (PG), and short axon (SA) cells. There is solid evidence that gamma-aminobutyric acid (GABA) released from PG neurons presynaptically inhibits glutamate release from olfactory nerve terminals via activation of GABA(B) receptors (GABA(B)-Rs). However, it is still unclear whether ET cells have GABA(B)-Rs. We have investigated whether ET cells have functional postsynaptic GABA(B)-Rs using extracellular and whole cell recordings in olfactory bulb slices. In the presence of fast synaptic blockers (CNQX, APV, and gabazine), the GABA(B)-R agonist baclofen either completely inhibited the bursting or reduced the bursting frequency and increased the burst duration and the number of spikes/burst in ET cells. In the presence of fast synaptic blockers and tetrodotoxin, baclofen induced an outward current in ET cells, suggesting a direct postsynaptic effect. Baclofen reduced the frequency and amplitude of spontaneous EPSCs in PG and SA cells. In the presence of sodium and potassium channel blockers, baclofen reduced the frequency of miniature EPSCs, which were inhibited by the calcium channel blocker cadmium. All baclofen effects were reversed by application of the GABA(B)-R antagonist CGP55845. We suggest that activation of GABA(B)-Rs directly inhibits ET cell bursting and decreases excitatory dendrodendritic transmission from ET to PG and SA cells. Thus the postsynaptic GABA(B)-Rs on ET cells may play an important role in shaping the activation pattern of the glomeruli during olfactory coding.  相似文献   

10.
We investigated the mechanisms of presynaptic inhibition of GABAergic neurotransmission by group III metabotropic glutamate receptors (mGluRs) and GABA(B) receptors, in dopamine (DA) neurons of the substantia nigra pars compacta (SNc). Both the group III mGluRs agonist L-(+)-2-amino-4-phosphonobutyric acid (AP4, 100 microM) and the GABA(B) receptor agonist baclofen (10 microM) reversibly depressed the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) to 48.5 +/- 2.7 and 79.3 +/- 1.6% (means +/- SE) of control, respectively. On the contrary, the frequency of action potential-independent miniature IPSCs (mIPSCs), recorded in tetrodotoxin (TTX, 1 microM) and cadmium (100 microM) were insensitive to AP4 but were reduced by baclofen to 49.7 +/- 8.6% of control. When the contribution of voltage-dependent calcium channels (VDCCs) to synaptic transmission was boosted with external barium (1 mM), AP4 became effective in reducing TTX-resistant mIPSCs to 65.4 +/- 3.9% of control, thus confirming a mechanism of presynaptic inhibition involving modulation of VDCCs. Differently from AP4, baclofen inhibited to 58.5 +/- 6.7% of control the frequency mIPSCs recorded in TTX and the calcium ionophore ionomycin (2 microM), which promotes Ca2+-dependent, but VDCC-independent, transmitter release. Moreover, in the presence of alpha-latrotoxin (0.3 nM), to promote a Ca2+-independent vesicular release of GABA, baclofen reduced mIPSC frequency to 48.1 +/- 3.2% of control, while AP4 was ineffective. These results indicate that group III mGluRs depress GABA release to DA neurons of the SNc through inhibition of presynaptic VDCCs, while presynaptic GABA(B) receptors directly impair transmitter exocytosis.  相似文献   

11.
Patch-clamp recordings in a whole-cell mode were performed on dorsal sensory cells enzymatically isolated from the spinal cord of two lamprey species, Ichthyomyzon unicuspis and Lampetra fluviatilis. The voltage-activated currents through calcium channels were analysed. GABA and the specific GABA(B) receptor agonist baclofen reduced the peak amplitude of inward Ba2+ current, as a robust alternate charge carrier through voltage-dependent Ca2+ channels. These effects were dose-dependent and reversible. GABA(B) receptor antagonists, 2-hydroxysaclofen and delta-amino-n-valeric acid, blocked the reduction of Ba2+ currents by GABA and baclofen, while bicuculline, a GABA(A) receptor antagonist, had no blocking action. GABA and baclofen did not modify the dorsal sensory cell membrane conductance, indicating that they did not activate ligand-gated channels. However, GABA, but not baclofen, considerably increased membrane conductance and induced Cl- currents in isolated multipolar neurons (presumably interneurons and/or motoneurons). These findings suggest that GABA and baclofen action on lamprey dorsal sensory cells is mediated by GABA(B) receptors. We concluded that GABA-mediated presynaptic inhibition of lamprey dorsal sensory cell fibers results from GABA(B) receptor activation followed by a decrease of inward voltage-activated calcium currents. Appositions of GABA-immunoreactive boutons to horseradish peroxidase-labeled fibers from the dorsal root were observed at the ultrastructural level in the dorsal column using postembedding immunogold cytochemistry. It seems likely that these appositions represent the morphological substrate of dorsal sensory cell fiber presynaptic inhibition. In very rare cases, ultrastructural features were observed which could be interpreted as synaptic specializations between the GABA-immunoreactive boutons and the primary afferent fibers. The extrasynaptic action of GABA as a basis of presynaptic inhibition of this population of primary afferent neurons is discussed.  相似文献   

12.
Cortical inhibition plays an important role in the processing of sensory information, and the enlargement of receptive fields by the in vivo application of GABAB receptor antagonists indicates that GABAB receptors mediate some of this cortical inhibition. Although there is evidence of postsynaptic GABAB receptors on cortical neurons, there is no evidence of GABAB receptors on thalamocortical terminals. Therefore to determine if presynaptic GABAB receptors modulate the thalamic excitation of layer IV inhibitory neurons and excitatory neurons in layers II-III and IV of the somatosensory "barrel" cortex of mice, we used a thalamocortical slice preparation and patch-clamp electrophysiology. Stimulation of the ventrobasal thalamus elicited excitatory postsynaptic currents (EPSCs) in cortical neurons. Bath application of baclofen, a selective GABAB receptor agonist, reversibly decreased AMPA receptor-mediated and N-methyl-D-aspartate (NMDA) receptor-mediated EPSCs in inhibitory and excitatory neurons. The GABAB receptor antagonist, CGP 35348, reversed the inhibition produced by baclofen. Blocking the postsynaptic GABAB receptor-mediated effects with a Cs+ -based recording solution did not affect the inhibition, suggesting a presynaptic effect of baclofen. Baclofen reversibly increased the paired-pulse ratio and the coefficient of variation, consistent with the presynaptic inhibition of glutamate release. Our results indicate that the presynaptic activation of GABAB receptors modulates thalamocortical excitation of inhibitory and excitatory neurons and provide another mechanism by which cortical inhibition can modulate the processing of sensory information.  相似文献   

13.
Henderson Z  Jones GA 《Neuroscience》2005,132(3):789-800
GABA(B) receptors are believed to play a role in rhythmic activity in the mammalian brain. The aim of our study was to examine the presynaptic and postsynaptic locations of these receptors in the medial septal diagonal band area (MS/DB), an area known to pace the hippocampus theta rhythm. Whole-cell patch recordings were made from parasagittal MS/DB slices obtained from the 16-25 day rat. Neurons were classified into GABAergic and cholinergic subtypes according to previous electrophysiological criteria. Bath application of the GABA(B) receptor agonist baclofen in the presence of tetrodotoxin, and brief tetanic fiber stimulation in the presence of ionotropic receptor antagonists, provided evidence for the presence of postsynaptic GABA(B) receptor transmission to GABAergic but not cholinergic neurons. Bath application of baclofen, at concentrations too low to elicit postsynaptic activity in MS/DB neurons, significantly reduced the amplitudes of stimulus-evoked ionotropic receptor inhibitory postsynaptic potentials (IPSPs) and excitatory postsynaptic potentials (EPSPs) and the paired pulse depression of these evoked potentials. Baclofen also significantly reduced the frequencies but not the amplitudes of miniature inhibitory postsynaptic currents (IPSCs) and excitatory postsynaptic currents (EPSCs), indicating the presence of presynaptic GABA(B) receptors on GABAergic and glutamatergic terminals in the MS/DB. Baclofen, also at a concentration too low to elicit postsynaptic activity, reduced the frequencies and amplitudes of spontaneous IPSCs and EPSCs recorded in the presence of 200-400 nM kainate. Rhythmic compound IPSCs at theta frequencies were recorded under these conditions in some neurons, and these rhythmic compound IPSCs were disrupted by the activation but not by the inhibition of GABA(B) receptors. These results suggest that GABA(B) receptors modulate rather than generate rhythmic activity in the MS/DB, and that this modulatory effect occurs via receptors located on presynaptic terminals.  相似文献   

14.
Jang IS  Ito Y  Akaike N 《Neuroscience》2005,135(3):737-748
Disynaptic GABAergic inputs from Schaffer collateral (SC) afferents on to the soma of glutamatergic CA1 pyramidal neurons are involved in feed-forward inhibition in the hippocampal neural circuits. Here we report the functional roles of presynaptic GABA(A) receptors on SC afferents projecting to CA1 pyramidal neurons. Muscimol (0.5 microM), a selective GABA(A) receptor agonist, increased SC-evoked EPSC amplitude and decreased paired-pulse ratio in the slice preparation, in addition, it facilitated spontaneous glutamate release on to mechanically dissociated CA1 pyramidal neurons in an external Ca2+-dependent manner. In field recordings, muscimol at low concentrations (< or = 0.5 microM) increased not only the excitability of SC afferents but glutamate release, however, it at high concentrations (> or = 1 microM) changed bidirectionally. These results suggest that the moderate activation of presynaptic GABA(A) receptors depolarizes SC afferents and enhances SC-mediated glutamatergic transmission. When endogenous GABA was disynaptically released by brief trains of stimulation of SC afferents, the axonal excitability in addition to glutamate release was increased. The effects of endogenous GABA on the excitability of SC afferents were blocked by either SR95531 or AMPA receptor blockers, which would be expected to block disynaptic feed-forward neural circuits. The present results provide a novel form of presynaptic modulation (feed-forward facilitation) of glutamatergic transmission by presynaptic GABA(A) receptors within the intrinsic hippocampal neural circuits.  相似文献   

15.
Synaptic transmission from cones is faster than transmission from rods. Using paired simultaneous recordings from photoreceptors and second-order neurones in the salamander retina, we studied the contributions of rod–cone differences in glutamate receptor properties and synaptic release rates to shaping postsynaptic responses. Depolarizing steps evoked sustained calcium currents in rods and cones that in turn produced transient excitatory postsynaptic currents (EPSCs) in horizontal and OFF bipolar cells. Cone-driven EPSCs rose and decayed faster than rod-driven EPSCs, even when comparing inputs from a rod and cone onto the same postsynaptic neurone. Thus, rod–cone differences in EPSCs reflect properties of individual rod and cone synapses. Experiments with selective AMPA and KA agonists and antagonists showed that rods and cones both contact pharmacologically similar AMPA receptors. Spontaneous miniature EPSCs (mEPSCs) exhibited unimodal distributions of amplitude and half-amplitude time width and there were no rod–cone differences in mEPSC properties. To examine how release kinetics shape the EPSC, we convolved mEPSC waveforms with empirically determined release rate functions for rods and cones. The predicted EPSC waveform closely matched the actual EPSC evoked by cones, supporting a quantal release model at the photoreceptor synapse. Convolution with the rod release function also produced a good match in rod-driven cells, although the actual EPSC was often somewhat slower than the predicted EPSC, a discrepancy partly explained by rod–rod coupling. Rod–cone differences in the rates of exocytosis are thus a major factor in producing faster cone-driven responses in second-order retinal neurones.  相似文献   

16.
GABA release from cerebellar molecular layer interneurons can be modulated by presynaptic glutamate and/or GABA B receptors upon perfusing the respective agonists. However, it is unclear how release and potential spillover of endogenous transmitter lead to activation of presynaptic receptors. High frequency firing of granule cells, as observed in vivo upon sensory stimulation, could lead to glutamate and/or GABA spillover. Here, we established sustained glutamatergic activity in the granule cell layer of acute mouse cerebellar slices and performed 190 paired recordings from connected stellate cells. Train stimulation at 50 Hz reduced by about 30% the peak amplitude of IPSCs evoked by brief depolarization of the presynaptic cell in 2-week-old mice. A presynaptic mechanism was indicated by changes in failure rate, paired-pulse ratio and coefficient of variation of evoked IPSCs. Furthermore, two-photon Ca2+ imaging in identified Ca2+ hot spots of stellate cell axons confirmed reduced presynaptic Ca2+ influx after train stimulation within the granular layer. Pharmacological experiments indicated that glutamate released from parallel fibres activated AMPARs in stellate cells, evoking GABA release from surrounding cells. Consequential GABA spillover activated presynaptic GABA B Rs, which reduced the amplitude of eIPSCs. Two-thirds of the total disinhibitory effect were mediated by GABA B Rs, one-third being attributable to presynaptic AMPARs. This estimation was confirmed by the observation that bath applied baclofen induced a more pronounced reduction of evoked IPSCs than kainate. Granule cell-mediated disinhibition persisted at near-physiological temperature but was strongly diminished in 3-week-old mice. At this age, GABA release probability was not reduced and presynaptic GABA B Rs were still detectable, but GABA uptake appeared to be advanced, attenuating GABA spillover. Thus, sustained granule cell activity modulates stellate cell-to-stellate cell synapses, involving transmitter spillover during a developmentally restricted period.  相似文献   

17.
Activation of presynaptic GABA(B) receptors inhibits neurotransmitter release at most cortical synapses, at least in part because of inhibition of voltage-gated calcium channels. One synapse where this is not the case is the lateral perforant pathway synapse onto dentate granule cells in the hippocampus. The current study was conducted to determine whether the neurons that make these synapses express GABA(B) receptors that can couple to ion channels. Perforant pathway projection neurons were labeled by injecting retrograde tracer into the dorsal hippocampus. The GABA(B) receptor agonist baclofen (10 microM) activated inwardly rectifying potassium channels and inhibited currents mediated by voltage-gated calcium channels in retrogradely labeled neurons in layer II of the lateral entorhinal cortex. These effects were reversed by coapplication of the selective GABA(B) receptor antagonist CGP 55845A (1 microM). Equivalent effects were produced by 100 microM adenosine, which inhibits neurotransmitter release at lateral perforant pathway synapses. The effects of baclofen and adenosine on inward currents were largely occlusive. These results suggest that the absence of GABA(B) receptor-mediated presynaptic inhibition at lateral perforant pathway synapses is not simply due to a failure to express these receptors and imply that GABA(B) receptors can either be selectively localized or regulated at terminal versus somatodendritic domains.  相似文献   

18.
Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the olfactory bulb may represent a physiologic mechanism that is involved in the inhibitory shaping of the activation pattern of principal neurons.  相似文献   

19.
Amino acids and presynaptic inhibition in the rat cuneate nucleus   总被引:8,自引:0,他引:8       下载免费PDF全文
1. Presynaptic inhibition was evoked in the rat cuneate nucleus by a peripheral conditioning stimulus. The dicarboxylic amino acid salts glutamate and aspartate and the neutral amino acids glycine and gamma-aminobutyric acid (GABA) were topically applied to a restricted area of the cuneate nucleus and their effects on both resting primary afferent terminal excitability and the increase in excitability of afferent terminals during presynaptic inhibition determined.2. Aspartate had no effect on either resting primary afferent terminal excitability or on the increase in excitability during presynaptic inhibition.3. Glycine reduced both resting primary afferent terminal excitability and presynaptic inhibition.4. Glutamate increased both resting primary afferent terminal excitability and presynaptic inhibition while GABA increased resting primary afferent terminal excitability but reduced the increase in excitability during presynaptic inhibition.5. The convulsant alkaloids picrotoxin (given intravenously) and bicuculline (topically applied) blocked presynaptic inhibition. The blocking action of picrotoxin was overcome by topical application of GABA but not glutamate.6. Simultaneous measurement of pre- and post-synaptic excitability in the cuneate nucleus showed that while glutamate increased excitability at both sites, GABA increased primary afferent terminal excitability but depressed post-synaptic excitability.7. It is concluded that glycine and glutamate exert non-specific actions on primary afferent terminals similar to their effects at post-synaptic sites elsewhere in the C.N.S. while GABA depolarizes primary afferent terminals by a specific action at the same receptor site as the presynaptic inhibitory transmitter. The possibility is discussed that the presynaptic inhibitory transmitter in the cuneate nucleus is GABA or a closely related substance.  相似文献   

20.
The hypothesis that plastic changes in the efficacy of excitatory neurotransmission occur in areas of chronic cortical injury was tested by assessing short-term plasticity of evoked excitatory synaptic currents (EPSCs) in neurons of partially isolated neocortical islands (undercut cortex). Whole cell recordings were obtained from layer V pyramidal neurons of sensorimotor cortical slices prepared from P36-P43 control and undercut rats. AMPA/kainate receptor-mediated EPSCs elicited by stimuli delivered at 40 to 66.7 Hz exhibited more paired-pulse depression (PPD) in undercut cortex than control, the time constant of depression evoked by trains of 20- to 66.7-Hz stimuli was faster, and the steady-state amplitude of EPSCs reached after five to seven EPSCs was lower. An antagonist of the glutamate autoreceptor, group II mGluR, increased the steady-state amplitude of EPSCs from undercut but not control cortex, suggesting that activation of presynaptic receptors by released glutamate is more prominent in undercut cortex. In contrast, the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid had no effect. Increasing [Ca(2+)](o) from 2 to 4 mM increased PPD, with a smaller effect in neurons of the undercut. The I-V relationship of AMPA/kainate receptor-mediated EPSCs was close to linear in both control and undercut neurons, and spermine had no significant effect on the EPSCs, suggesting that decreases in postsynaptic glutamate receptors containing the GluR2 subunit were not involved in the alterations in short-term plasticity. Results are compatible with an increase in the probability of transmitter release at excitatory synapses in undercut cortex due to functional changes in presynaptic terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号