首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
10.1152/jn.00224.2002. Dopamine (DA) modulates the cardiorespiratory reflex by peripheral and central mechanisms. The aim of this study was to examine the role of DA in synaptic transmission of the nucleus tractus solitarius (NTS), the major integration site for cardiopulmonary reflexes. To examine DA's role, we used whole cell, voltage-clamp recordings in a rat horizontal brain stem slice. Solitary tract stimulation evoked excitatory postsynaptic currents (EPSCs) that were reduced to 70 +/- 5% of control by DA (100 microM). The reduction in EPSCs by DA was accompanied by a decrease in the paired pulse depression ratio with little or no change in input resistance or EPSC decay, suggesting a presynaptic mechanism. The D1-like agonist SKF 38393 Br (30 microM) did not alter EPSC amplitude, whereas the D2-like agonist, quinpirole HCl (30 microM), depressed EPSCs to 73 +/- 4% of control. The D2-like receptor antagonist, sulpiride (20 microM), abolished DA modulation of EPSCs. Most importantly, sulpiride alone increased EPSCs to 131 +/- 10% of control, suggesting a tonic D2-like modulation of synaptic transmission in the NTS. Examination of spontaneous EPSCs revealed DA reversibly decreased the frequency of events from 9.4 +/- 2.2 to 6.2 +/- 1.4 Hz. Sulpiride, however, did not alter spontaneous events. Immunohistochemistry of NTS slices demonstrated that D2 receptors colocalized with synaptophysin and substance P, confirming a presynaptic distribution. D2 receptors also localized to cultured petrosal neurons, the soma of presynaptic afferent fibers. In the petrosal neurons, D2 was found in cells that were TH-immunopositive, suggesting they were chemoreceptor afferent fibers. These results demonstrate that DA tonically modulates synaptic activity between afferent sensory fibers and secondary relay neurons in the NTS via a presynaptic D2-like mechanism.  相似文献   

2.
The voltage-gated K(+) channel Kv1.3 has been reported to regulate transmitter release in select central and peripheral neurons. In this study, we evaluated its role at the synapse between visceral sensory afferents and secondary neurons in the nucleus of the solitary tract (NTS). We identified mRNA and protein for Kv1.3 in rat nodose ganglia using RT-PCR and Western blot analysis. In immunohistochemical experiments, anti-Kv1.3 immunoreactivity was very strong in internal organelles in the soma of nodose neurons with a weaker distribution near the plasma membrane. Anti-Kv1.3 was also identified in the axonal branches that project centrally, including their presynaptic terminals in the medial and commissural NTS. In current-clamp experiments, margatoxin (MgTx), a high-affinity blocker of Kv1.3, produced an increase in action potential duration in C-type but not A- or Ah-type neurons. To evaluate the role of Kv1.3 at the presynaptic terminal, we examined the effect of MgTx on tract evoked monosynaptic excitatory postsynaptic currents (EPSCs) in brain slices of the NTS. MgTx increased the amplitude of evoked EPSCs in a subset of neurons, with the major increase occurring during the first stimuli in a 20-Hz train. These data, together with the results from somal recordings, support the hypothesis that Kv1.3 regulates the duration of the action potential in the presynaptic terminal of C fibers, limiting transmitter release to the postsynaptic cell.  相似文献   

3.
Grabauskas G  Bradley RM 《Neuroscience》1999,94(4):1173-1182
Whole-cell recordings were made from neurons in the rostral nucleus of the solitary tract in horizontal brainstem slices. Monosynaptic GABAA receptor-mediated inhibitory postsynaptic potentials were evoked by single stimulus shocks or by high-frequency tetanic stimulation in the presence of glutamate receptor blockers. While single stimulus-evoked inhibitory postsynaptic potentials had variable amplitudes, tetanic stimulation-induced, hyperpolarizing postsynaptic potentials were of a more constant amplitude. Furthermore, tetanic stimulation resulted in potentiation of the amplitude of single stimulus shock-evoked inhibitory postsynaptic potentials. Of 55 neurons that were tested, potentiation lasted over 30 min for 11, 10-30 min for 13, less than 10 min for 23 and no potentiation occurred in eight. Tetanic stimulation did not result in potentiation of the tetanic stimulus-evoked hyperpolarizing postsynaptic potentials. Both the single stimulus shock- and tetanic stimulus-evoked potentials had similar inhibition concentration-response curves to the GABAA antagonist, bicuculline methiodide (EC50 = 0.75 and 0.83, respectively), indicating that they were mediated by the same postsynaptic receptors. By comparing the effect of bicuculline methiodide on the amplitude of the single stimulus shock-evoked inhibitory postsynaptic potentials and the tetanic stimulus-evoked hyperpolarizing potentials, we concluded that a single stimulus shock does not activate all postsynaptic GABAA receptors. However, tetanic stimulation results in activation of all postsynaptic GABAA receptors and induces long-lasting changes in the presynaptic GABAergic neuron. These long-lasting changes of the presynaptic neuron facilitate the release of GABA during single stimulus shock and, as a consequence, more postsynaptic receptors are activated during single stimulus shock-evoked synaptic transmission. This conclusion is supported by the results of experiments in which the extracellular Ca2+ concentration was manipulated to change the amount of neurotransmitter released from the presynaptic GABAergic terminals. The single stimulus shock-evoked inhibitory postsynaptic potentials were sensitive to the extracellular Ca2+ concentration, whereas tetanic stimulus-evoked inhibitory post-synaptic potentials were essentially insensitive to extracellular Ca2+ concentration. The relationship between the single stimulus shock-evoked inhibitory postsynaptic potential amplitude and extracellular Ca2+ concentration indicates that, in control physiological saline containing 2.5 mM Ca2+, a single stimulus shock activates less than half the postsynaptic GABA receptors. The phenomenon of long-lasting potentiation of inhibitory transmission within the rostral nucleus of the solitary tract may be important in the processing of gustatory information and play a role in taste-guided behaviors.  相似文献   

4.
Miles  R. 《Journal of neurophysiology》1986,55(5):1076-1090
Afferent fibers from visceral sensory receptors enter the medulla oblongata, form the solitary tract, and synapse with neurons in the nucleus of the solitary tract. In the present study longitudinal slices were prepared from guinea pig medulla in order to examine the properties of transmission at these synapses in vitro. Synaptic responses to selective stimulation of solitary tract fibers were recorded intracellularly from neurons in an area, close to the obex and immediately medial and lateral to the tract, where arterial baroreceptor fibers are known to terminate. The amplitude of maximally evoked postsynaptic potentials (PSPs) in solitary tract neurons was strongly dependent on stimulus frequency. On increasing frequency from 0.5 to 20 Hz, a PSP depression of 80% was reached in 4-8 s. The mean depression was 35% at 5 Hz and 60% at 10 Hz. Sufficient local connections were retained in vitro that solitary tract stimulation evoked disynaptic inhibitory potentials and long latency, possibly polysynaptic, excitatory potentials in some neurons. The possibility that frequency-dependent changes in the efficacy of these local synaptic circuits contributed to PSP depression was examined. The role of postsynaptic inhibition in synaptic depression was tested by examining the frequency dependence of PSPs at membrane potentials close to the reversal of their excitatory component. The resulting hyperpolarizing PSPs were also depressed suggesting that a facilitation of postsynaptic inhibition at high frequency does not underlie the depression. The contribution of depression in multisynaptic excitatory pathways to PSP depression was assessed by exclusion. At low stimulus intensities, excitatory synaptic events with no long latency components were evoked. These events exhibited a similar frequency dependence to that of maximal PSPs. These results suggest that mechanisms operating at synapses made by solitary tract fibers are responsible for the frequency dependence of PSPs recorded in solitary tract neurons. Such mechanisms might contribute to the adaptation of some cardiovascular reflexes initiated by baroreceptors.  相似文献   

5.
Whole-cell patch clamp recordings were made from neurons of the rat subpostremal region of the nucleus tractus solitarius (NTS) in transverse brainstem slices. Neurotensin (NT) enhanced the firing rate of action potentials from 0.8 +/- 0.4 Hz in control to 1.9 +/- 1.3 Hz (n = 9) and increased their decay time. The peak amplitude of the after-hyperpolarization was decreased by 34+/-5% (n = 9). These effects were associated with a depolarization of 4 +/- 1 mV (n = 10) in the resting membrane potential and an increase in the input resistance (from 768 +/- 220 MOmega to 986+/-220 MOmega; n = 5) and were compensated by manually hyperpolarizing the cell to control values. In voltage clamp experiments NT decreased an outward current (from 488 +/- 161 to 340 +/- 96 pA at +40 mV; n = 5) which reversed near the potassium equilibrium potential. In addition, NT increased the frequency of both excitatory and inhibitory spontaneous synaptic currents, an effect blocked by tetrodotoxin, and did not change the evoked excitatory or inhibitory postsynaptic currents. The selective NTR1 receptor antagonist SR48692 reversibly blocked the effects of NT on both action potentials and spontaneous synaptic currents. Our results suggest that NTR1 receptors can modulate post-synaptic responses in neurons of the subpostremal NTS by increasing cell excitability as a result of blockade of a potassium conductance.  相似文献   

6.
To explore the postnatal development of inhibitory synaptic activity in the rostral (gustatory) nucleus of the solitary tract (rNST), whole cell and gramicidin perforated patch-clamp recordings were made in five age groups of rats [postnatal day 0-7 (P0-7), P8-14, P15-21, P22-30, and P >55]. The passive membrane properties of the developing rNST neurons as well as the electrophysiological and pharmacological characteristics of single and tetanic stimulus-evoked inhibitory postsynaptic potentials (IPSPs) were studied in brain slices under glutamate receptor blockade. During the first postnatal weeks, significant changes in resting membrane potential, spontaneous activity, input resistance, and neuron membrane time constant of the rNST neurons occurred. Although all the IPSPs recorded were hyperpolarizing, the rise and decay time constants of the single stimulus shock-evoked IPSPs decreased, and the inhibition response-concentration function to the gamma-aminobutyric acid (GABA) receptor antagonist bicuculline methiodide (BMI) shifted to the left during development. In P0-7 and P8-14, but not in older animals, the IPSPs had a BMI-insensitive component that was sensitive to block by picrotoxin, suggesting a transient expression of GABA(C) receptors. Tetanic stimulation resulted in both short- and long-term changes of inhibitory synaptic transmission in the rNST. For P0-7 and P8-14 animals tetanic stimulation resulted in a sustained hyperpolarization that was maintained for some time after termination of the tetanic stimulation. In contrast, tetanic stimulation of neurons in P15-21 and older animals resulted in hyperpolarization that was not sustained but decayed back to a more positive level with an exponential time course. Tetanic stimulation resulted in potentiation of single stimulus shock-evoked IPSPs in ~50% of neurons in all age groups. These developmental changes in inhibitory synaptic transmission in the rNST may play an important role in shaping synaptic activity in early development of the rat gustatory system during a time of maturation of taste preferences and aversions.  相似文献   

7.
Activation of opioid receptors in the periphery and centrally in the brain results in inhibition of gastric and other vagally mediated functions. The aim of this study was to examine the role of the endogenous opioid agonist endomorphin 1 (EM-1) in regulating synaptic transmission within the nucleus tractus solitarius (NTS), an integration site for autonomic functions. We performed whole cell patch-clamp recordings from coronal brain slices of the rat medulla. A subset of the neurons studied was prelabeled with a stomach injection of the transsynaptic retrograde virus expressing EGFP, PRV-152. Solitary tract stimulation resulted in constant latency excitatory postsynaptic currents (EPSCs) that were decreased in amplitude by EM-1 (0.01-10 microM). The paired-pulse ratio was increased with little change in input resistance, suggesting a presynaptic mechanism. Spontaneous EPSCs were decreased in both frequency and amplitude by EM-1, and miniature EPSCs were reduced in frequency but not amplitude, suggesting a presynaptic mechanism for the effect. Spontaneous inhibitory postsynaptic currents (IPSCs) were also reduced in frequency by EM-1, but the effect was blocked by TTX, suggesting activity at receptors on the somata of local inhibitory neurons. Synaptic input arising from local NTS neurons, which were activated by focal photolysis of caged glutamate, was inhibited by EM-1. The actions of EM-1 were similar to those of D-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) and were blocked by naltrexone, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP). These results suggest that EM-1 acts at mu-opioid receptors to modulate viscerosensory input and specific components of local synaptic circuitry in the NTS.  相似文献   

8.
Concentration and time course of neurotransmitter in the synaptic cleft determines the amplitude and the duration of the resulting postsynaptic current. However, technical limitations involved in monitoring the time course of neurotransmitter concentration in the extra-cellular space have prevented direct evaluation of factors that influence neurotransmitter level in the cleft. Tetanic stimulation results in saturation of postsynaptic GABA(A) receptors in the rostral nucleus of the solitary tract (rNST) and GABA diffusion defines the decay time course of the inhibitory potentials or currents (IPSP/Cs). By applying a GABA concentration-response curve to these data it is possible to calculate the GABA concentration transient in the clefts of rNST inhibitory synapses. The analysis indicates that tetanic stimulation produces a GABA concentration that exceeds the concentration of neurotransmitter required to activate all postsynaptic GABA(A) receptors, resulting in short-term modification of the IPSP/Cs decay time. Moreover, the results also demonstrate that the rate of diffusion of GABA from the synaptic cleft is defined by two exponentials. A mathematical model of this process has been developed that supports these conclusions.  相似文献   

9.
10.
R. Norgren 《Neuroscience》1978,3(2):207-218
The axonal projections of neurons in and near the nucleus of the solitary tract have been visualized using titrated amino acid autoradiography. Axons of neurons of this nucleus ramify extensively within the nucleus itself, but much less so in the nucleus commissuralis. They also enter cranial motor nuclei within the medulla. Axons originating in the anterior part of the nucleus of the solitary tract extend to the hypoglossal, facial and probably trigeminal motor nuclei, but not to the dorsal motor nucleus of the vagus or the nucleus ambiguus. The posterior part of the nucleus of the solitary tract projects to all these motor nuclei. In the spinal cord solitary nucleus axons remain in the medial gray directly caudal to the solitary nucleus itself. The distribution becomes very weak by C3 after some fibers spread laterally into the caudal trigeminal nucleus. Fibers are labeled in the contralateral ventral columns, but they could not be unequivocably attributed to solitary neurons. Axons ascending from the nucleus of the solitary tract extend no further rostrally than the pons, where they terminate in the caudal end of the parabrachial nuclei.Although often treated as entirely separate systems, the present results indicate that secondary gustatory neurons in the anterior solitary nucleus and secondary visceral afferent neurons in the posterior solitary nucleus have very similar rostral and caudal projections. The pontine parabrachial nuclei, the rostral termination of solitary nucleus neurons, have extensive direct connections to the thalamus, the hypothalamus and the limbic forebrain. Assuming similar connections occur in other mammals, these findings establish the existence of di-synaptic visceral afferent access to the highest autonomic integrative centers in the brain.  相似文献   

11.
The cerebellar afferents from the nucleus of the solitary tract were studied in cat by means of retrograde axonal transport of horseradish peroxidase. Labelled cells occurred bilaterally in the nucleus of the solitary tract following injections in various folia of the cerebellar vermis and in the flocculus (the positive cases are shown in Fig. 1A). Injections in the anterior lobe vermis labelled cells in the caudal part of the nucleus, injections in the posterior vermis labelled cells in the rostral part (Fig. 2). The findings are discussed in relation to other efferent and afferent connections of the nucleus of the solitary tract.  相似文献   

12.
The retrotrapezoid nucleus (RTN) contains central respiratory chemoreceptors that are inhibited by activation of slowly adapting pulmonary stretch receptors (SARs). Here we examine whether RTN inhibition by lung inflation could be mediated by a direct projection from SAR second-order neurons (pump cells). Pump cells (n = 56 neurons, 13 rats) were recorded in the nucleus of solitary tract (NTS) of halothane-anesthetized rats with intact vagus nerves. Pump cells had discharges that coincided with lung inflation as monitored by the tracheal pressure. Their activity increased when end-expiratory pressure was raised and stopped instantly when ventilation was interrupted in expiration. Many pump cells could be antidromically activated from RTN (12/36). Nine of those were labeled with biotinamide. Of these nine cells, eight contained glutamic acid decarboxylase 67 (GAD67) mRNA and seven were found to reside in the lower half of the interstitial subnucleus of NTS (iNTS). Using the retrograde tracer cholera toxin-B, we confirmed that neurons located in or close to iNTS innervate RTN (two rats). Many such neurons contained GAD67 mRNA and a few contained glycine transporter2 (GLYT2) mRNA. Anterograde tract tracing with biotinylated dextranamide (four rats) applied to iNTS also confirmed that this region innervates RTN by a predominantly GABAergic projection. This work confirms that many rat NTS pump cells are located in and around the interstitial subnucleus at area postrema level. We demonstrate that a GABAergic subset of these pump cells innervates the RTN region. We conclude that these inhibitory neurons probably contact RTN chemoreceptors and mediate their inhibition by lung inflation.  相似文献   

13.
The commissural nucleus of the solitary tract (commNTS) is a main area that receives afferent signals involved in the cardiovascular and respiratory control like those related to chemoreceptor activation, however, the importance of the commNTS for the cardiorespiratory responses to chemoreceptor activation is still controversial. In the present study, we investigated the cardiorespiratory responses to hypoxia or hypercapnia in anesthetized and conscious rats treated with injections of the GABA-A agonist muscimol into the caudal portion of the commNTS. Male Holtzman rats (280-300 g) were used. In conscious rats that had a stainless steel cannula previously implanted into the commNTS, the injection of muscimol (2 mM) into the commNTS reduced the pressor response (16±2 mmHg, vs. saline: 36±3 mmHg) and the increase in ventilation (250±17 ml/min/kg, vs. saline: 641±28 ml/min/kg) produced by hypoxia (8-10% O(2)). In urethane anesthetized rats, the injection of muscimol into the commNTS eliminated the pressor response (5±2 mmHg, vs. saline: 26±5 mmHg) and the increase in phrenic nerve discharge (PND) (20±6%, vs. saline: 149±15%) and reduced the increase in splanchnic sympathetic nerve discharge (sSND) (93±15%, vs. saline: 283±19% of baseline) produced by hypoxia. However, muscimol injected into the commNTS did not change hypercapnia (8-10% CO(2)) induced pressor response or the increase in the sSND or PND in urethane anesthetized rats or the increase in ventilation in conscious rats. The present results suggest that the cardiorespiratory responses to hypoxia are strongly dependent on the caudal portion of the commNTS, however, this area is not involved in the responses to hypercapnia.  相似文献   

14.
Based on the molecular findings that many bitter taste receptors (T2Rs) are expressed within the same receptor cells, it has been proposed that bitter taste is encoded by the activation of discrete neural elements. Here we examined how a variety of bitter stimuli are represented by neural activity in central gustatory neurons. Taste responses (spikes/s) evoked by bathing the tongue and palate with intensity-matched concentrations (in M) of 2 sugars (0.32 sucrose and 0.5 D-fructose), ethanol (40%), 4 salts (0.01 NaCl, 0.008 NaNO(3), 0.01 MgCl(2), and 0.05 KCl), 2 acids (0.003 HCl and 0.005 citric acid), and 10 bitter ligands (0.007 quinine-HCl, 0.015 denatonium benzoate, 0.003 l-cysteine, 0.001 nicotine, 0.005 strychnine-HCl, 0.04 tetraethylammonium chloride, 0.03 atropine-SO(4), 0.005 brucine-SO(4), 0.03 papaverine-HCl, and 0.009 sparteine) were recorded from 51 neurons in the nucleus of the solitary tract of anesthetized rats. Cluster analysis was used to categorize neurons into types based on responses to sucrose, NaCl, HCl, and quinine-HCl. Three groupings emerged: type S (responded optimally to sweets), type N (sodium-optimal), and type H/Q (responded robustly to bitters, acids, and salts). Multivariate analyses revealed that across-neuron patterns of response among bitter stimuli were strongly correlated. However, neural type H/Q, which was most responsive to bitter tastants, was not differentially sensitive to bitter stimuli and Na(+) salts, which rats perceive as distinct. Thus central neurons most responsive to bitter substances receive significant input from receptors that mediate other tastes, indicating that bitter stimuli are not represented by activity in specifically tuned neurons.  相似文献   

15.
Extracellular responses from neurons in the nucleus of the solitary tract (NST) were studied in rats aged 5 days to adulthood during chemical stimulation of the tongue with monochloride salts, citric and hydrochloric acids, sucrose, sodium saccharin, and quinine hydrochloride. Multiunit taste responses were recorded in rats at 5-7 days of age and single-unit responses were recorded from 111 neurons in four other age groups of 14-20 days, 25-35 days, 50-60 days, and adult. NST neurons in rats aged 5-7 days consistently responded to relatively high concentrations (0.5 M) of NH4Cl and KCl and to citric and hydrochloric acid. However, they often did not respond to 0.5 M NaCl or to 0.1 M NH4Cl. Single NST neurons in rats aged 14 days and older characteristically responded to all 0.1 and 0.5 M salts and to both acids. At least 75% of neurons also responded to sucrose and sodium saccharin, and 46% responded to all of these stimuli and quinine hydrochloride. After 14 days, no developmental changes occurred in the number of stimuli to which neurons responded. There were substantial developmental alterations in the response magnitudes to some chemical stimuli. Average response frequencies increased after 35 days of age for 0.1 and 0.5 M NaCl, LiCl, KCl, and for sucrose and sodium saccharin. Response frequencies for NH4Cl, citric and hydrochloric acid, and quinine hydrochloride, however, did not change throughout development. The proportion of single NST neurons that responded maximally to specific monochloride salts did not change during development. Most single neurons in all age groups responded equally well to NH4Cl, NaCl, and LiCl. No NST neuron responded maximally to KCl. There were also no developmental differences in response latencies in rats aged 14 days and older. Response frequencies of second-order NST neurons generally reflect changes in responses from the primary afferent, chorda tympani fibers, throughout development; however, the increases in salt response frequencies from NST neurons occur comparatively later in development. Furthermore, at all ages, the taste responses to monochloride salts include higher response frequencies and a general loss in response specificity in NST compared to chorda tympani neurons.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Electrophysiological studies were performed to determine if neurons of the nucleus of the solitary tract (NTS) which receive inputs from the stomach via vagal afferents also respond to olfactory bulb (OB) stimulation. The frequency of neuronal activity of the rostral ventral portion of the NTS was increased by gastric distension (GD). The evoked potentials in the same site due to vagal stimulation displayed short latencies; whereas, the evoked potentials in the dorsomedial part of the NTS due to vagal stimulation had considerably longer latencies. Gastric distension decreased neuronal activity in the dorsomedial NTS. Evoked potentials and increases in neuronal activity were also observed in the dorsomedial NTS due to electrical stimulation. In the dorsomedial NTS, OB stimulation enhanced the decrease in neuronal activity due to GD. Olfactory and visceral functions apparently interact in the NTS in modulating taste mechanisms involved in food selection and ingestion.  相似文献   

17.
For nervous tissue, lactate is a valuable energy substrate that can be extracted from glucose by astrocytes and released for neuronal use. Therefore, we hypothesized that the glucose-sensing neurons that signal the glycemic changes involved in the control of body energy homeostasis may be responsive to extracellular lactate as well. To test this hypothesis, neuronal activity was recorded extracellularly in the solitary tract nucleus of anesthetized rats in order to compare the effects of microelectrophoretic applications of glucose and lactate and of moderate hyperglycemia and to assess the possible effects of lactate on the response to glucose. About 90% of the investigated neurons behaved in a similar manner after local ejections of glucose and lactate. Among them, most neurons activated by glucose were also activated by lactate and all neurons depressed by glucose were also depressed by lactate. This result suggests that the response to these two compounds is mediated by a common mechanism related to their utilization as oxidizible substrates. In half of the tested neurons, the response to glucose was eliminated or significantly reduced after repeated lactate ejections. This inhibitory effect is a likely result of a modification in glucose metabolism induced by a high extracellular lactate level. Most glycemia-sensitive neurons responded similarly to moderate hyperglycemia and to local lactate ejection, suggesting that high brain lactate levels might interfere with the brain mechanisms that mediate glucoprivic eating.  相似文献   

18.
Laaris N  Weinreich D 《Neuroscience》2007,146(2):792-801
Prostaglandin E(2) (PGE(2)) is a prototypical inflammatory mediator that excites and sensitizes cell bodies [Kwong K, Lee LY (2002) PGE(2) sensitizes cultured pulmonary vagal sensory neurons to chemical and electrical stimuli. J Appl Physiol 93:1419-1428; Kwong K, Lee LY (2005) Prostaglandin E(2) potentiates a tetrodotoxin (TTX)-resistant sodium current in rat capsaicin-sensitive vagal pulmonary sensory neurons. J Physiol 56:437-450] and peripheral nerve terminals [Ho CY, Gu Q, Hong JL, Lee LY (2000) Prostaglandin E (2) enhances chemical and mechanical sensitivities of pulmonary C fibers in the rat. Am J Respir Crit Care Med 162:528-533] of primary vagal sensory neurons. Nearly all central nerve terminals of vagal afferents are in the nucleus tractus solitarius (NTS), where they operate with a high probability of release [Doyle MW, Andresen MC (2001) Reliability of monosynaptic sensory transmission in brain stem neurons in vitro. J Neurophysiol 85:2213-2223]. We studied the effect of PGE(2) on synaptic transmission between tractus solitarius afferent nerve terminals and the second-order NTS neurons in brain stem slices of Sprague-Dawley rats. Whole-cell patch recording in voltage clamp mode was used to study evoked excitatory postsynaptic glutamatergic currents (evEPSCs) from NTS neurons elicited by electrical stimulation of the solitary tract (ST). In 34 neurons, bath-applied PGE(2) (200 nM) decreased the evEPSC amplitude by 49+/-5%. In 22 neurons, however, PGE(2) had no effect. We also tested 15 NTS neurons for capsaicin sensitivity. Seven neurons generated evEPSCs that were equally unaffected by PGE(2) and capsaicin. Conversely, evEPSCs of the other eight neurons, which were PGE(2)-responsive, were abolished by 200 nM capsaicin. Furthermore, the PGE(2-)induced depression of evEPSCs was associated with an increase in the paired pulse ratio and a decrease in both the frequency and amplitude of the spontaneous excitatory postsynaptic currents (sEPSCs) and TTX-independent spontaneous miniature excitatory postsynaptic currents (mEPSCs). These results suggest that PGE(2) acts both presynaptically on nerve terminals and postsynaptically on NTS neurons to reduce glutamatergic responses.  相似文献   

19.
20.
To explore the parameters that define the characteristics of either inhibitory postsynaptic potentials (IPSP) or currents (IPSC) in the gustatory nucleus of the solitary tract (rNST), whole cell patch-clamp recordings were made in horizontal brain stem slices of newborn rats. Neurons were labeled with biocytin to confirm both their location and morphology. IPSPs or IPSCs were evoked by delivering either single, paired-pulse, or tetanic stimulus shocks (0.1-ms duration) via a bipolar stimulating electrode placed on the rNST. Pure IPSP/IPSCs were isolated by the use of glutamate receptor antagonists. For 83% of the single-stimulus-evoked IPSCs, the decay time course was fitted with two exponentials having average time constants of 38 and 181 ms, respectively, while the remainder could be fitted with one exponential of 59 ms. Paired-pulse stimulation resulted in summation of the amplitude of the conditioning and test-stimulus-evoked IPSCs. The decay time course of the test-stimulus-evoked IPSC was slower when compared to the decay time of the conditioning stimulus IPSC. Repeated stimulation resulted in an increase in the decay time of the IPSP/Cs where each consecutive stimulus contributed to prolongation of the decay time constant. Most of the IPSP/Cs resulting from a 1-s >/= 30-Hz tetanic stimulus exhibited an S-shaped decay time course where the amplitude of the IPSP/Cs after termination of the stimulus was initially sustained before starting to decay back to the resting membrane potential. Elevation of extracellular Ca(2+) concentration 10 mM resulted in an increase in the amplitude and decay time of single-stimulus shock-evoked IPSP/Cs. The benzodiazepine GABA(A) receptor modulator diazepam increased the decay time of single-stimulus shock-evoked IPSCs. However, application of diazepam did not affect the decay time of tetanic-stimulation-evoked IPSP/Cs. These results suggest that the decay time of single-stimulus-evoked IPSCs is defined either by receptor kinetics or neurotransmitter clearance from the synaptic cleft or both, while the decay time course of the tetanic stimulus evoked IPSP/Cs is defined by neurotransmitter diffusion from the synaptic cleft. During repetitive stimulation, neurotransmitter accumulates in the synaptic cleft prolonging the decay time constant of the IPSCs. High-frequency stimulation elevates the GABA concentration in the synaptic cleft, which then oversaturates the postsynaptic receptors, and, as a consequence, after termination of the tetanic stimulus, the amplitude of IPSP/Cs is sustained resulting in an S shaped decay time course. This activity-dependent plasticity at GABAergic synapses in the rNST is potentially important in the encoding of taste responses because the dynamic range of stimulus frequencies that result in synaptic plasticity (0-70 Hz) corresponds to the breadth of frequencies that travels via afferent gustatory nerve fibers in response to taste stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号