首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
PHOSPHO1 and tissue‐nonspecific alkaline phosphatase (TNAP) have nonredundant functions during skeletal mineralization. Although TNAP deficiency (Alpl?/? mice) leads to hypophosphatasia, caused by accumulation of the mineralization inhibitor inorganic pyrophosphate (PPi), comparably elevated levels of PPi in Phospho1?/? mice do not explain their stunted growth, spontaneous fractures, bowed long bones, osteomalacia, and scoliosis. We have previously shown that elevated PPi in Alpl?/? mice is accompanied by elevated osteopontin (OPN), another potent mineralization inhibitor, and that the amount of OPN correlates with the severity of hypophosphatasia in mice. Here we demonstrate that plasma OPN is elevated and OPN expression is upregulated in the skeleton, particularly in the vertebrae, of Phospho1?/? mice. Liquid chromatography/tandem mass spectrometry showed an increased proportion of phosphorylated OPN (p‐OPN) peptides in Phospho1?/? mice, suggesting that accumulation of p‐OPN causes the skeletal abnormalities in Phospho1?/? mice. We also show that ablation of the OPN gene, Spp1, leads to improvements in the skeletal phenotype in Phospho1?/? as they age. In particular, their scoliosis is ameliorated at 1 month of age and is completely rescued at 3 months of age. There is also improvement in the long bone defects characteristic of Phospho1?/? mice at 3 months of age. Mineralization assays comparing [Phospho1?/?; Spp1?/?], Phospho1?/?, and Spp1?/? chondrocytes display corrected mineralization by the double knockout cells. Expression of chondrocyte differentiation markers was also normalized in the [Phospho1?/?; Spp1?/?] mice. Thus, although Alpl and Phospho1 deficiencies lead to similar skeletal phenotypes and comparable changes in the expression levels of PPi and OPN, there is a clear dissociation in the hierarchical roles of these potent inhibitors of mineralization, with elevated PPi and elevated p‐OPN levels causing the respective skeletal phenotypes in Alpl?/? and Phospho1?/? mice. © 2014 American Society for Bone and Mineral Research.  相似文献   

6.
7.
We have previously shown that ablation of either the Phospho1 or Alpl gene, encoding PHOSPHO1 and tissue‐nonspecific alkaline phosphatase (TNAP) respectively, lead to hyperosteoidosis, but that their chondrocyte‐derived and osteoblast‐derived matrix vesicles (MVs) are able to initiate mineralization. In contrast, the double ablation of Phospho1 and Alpl completely abolish initiation and progression of skeletal mineralization. We argued that MVs initiate mineralization by a dual mechanism: PHOSPHO1‐mediated intravesicular generation of inorganic phosphate (Pi) and phosphate transporter‐mediated influx of Pi. To test this hypothesis, we generated mice with col2a1‐driven Cre‐mediated ablation of Slc20a1, hereafter referred to as Pit1, alone or in combination with a Phospho1 gene deletion. Pit1col2/col2 mice did not show any major phenotypic abnormalities, whereas severe skeletal deformities were observed in the [Phospho1–/–; Pit1col2/col2] double knockout mice that were more pronounced than those observed in the Phospho1–/– mice. Histological analysis of [Phospho1–/–; Pit1col2/col2] bones showed growth plate abnormalities with a shorter hypertrophic chondrocyte zone and extensive hyperosteoidosis. The [Phospho1–/–; Pit1col2/col2] skeleton displayed significant decreases in BV/TV%, trabecular number, and bone mineral density, as well as decreased stiffness, decreased strength, and increased postyield deflection compared to Phospho1–/– mice. Using atomic force microscopy we found that ~80% of [Phospho1–/–; Pit1col2/col2] MVs were devoid of mineral in comparison to ~50% for the Phospho1–/– MVs and ~25% for the WT and Pit1col2/col2 MVs. We also found a significant decrease in the number of MVs produced by both Phospho1–/– and [Phospho1–/–; Pit1col2/col2] chondrocytes. These data support the involvement of phosphate transporter 1, hereafter referred to as PiT‐1, in the initiation of skeletal mineralization and provide compelling evidence that PHOSPHO1 function is involved in MV biogenesis. © 2016 American Society for Bone and Mineral Research.  相似文献   

8.
Although nullizygous loss of NF1 leads to myeloid malignancies, haploinsufficient loss of NF1 (Nf1) has been shown to contribute to osteopenia and osteoporosis which occurs in approximately 50% of neurofibromatosis type 1 (NF1) patients. Bone marrow mononuclear cells of haploinsufficient NF1 patients and Nf1+/– mice exhibit increased osteoclastogenesis and accelerated bone turnover; however, the culprit hematopoietic lineages responsible for perpetuating these osteolytic manifestations have yet to be elucidated. Here we demonstrate that conditional inactivation of a single Nf1 allele within the myeloid progenitor cell population (Nf1‐LysM) is necessary and sufficient to promote multiple osteoclast gains‐in‐function, resulting in enhanced osteoclastogenesis and accelerated osteoclast bone lytic activity in response to proresorptive challenge in vivo. Surprisingly, mice conditionally Nf1 heterozygous in mature, terminally differentiated osteoclasts (Nf1‐Ctsk) do not exhibit any of these skeletal phenotypes, indicating a critical requirement for Nf1 haploinsufficiency at a more primitive/progenitor stage of myeloid development in perpetuating osteolytic activity. We further identified p21Ras‐dependent hyperphosphorylation of Pu.1 within the nucleus of Nf1 haploinsufficient myelomonocytic osteoclast precursors, providing a novel therapeutic target for the potential treatment of NF1 associated osteolytic manifestations. © 2015 American Society for Bone and Mineral Research  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
X‐linked hypophosphatemia (XLH) is characterized by impaired renal tubular reabsorption of phosphate owing to increased circulating FGF23 levels, resulting in rickets in growing children and impaired bone mineralization. Increased FGF23 decreases renal brush border membrane sodium‐dependent phosphate transporter IIa (Npt2a) causing renal phosphate wasting, impairs 1‐α hydroxylation of 25‐hydroxyvitamin D, and induces the vitamin D 24‐hydroxylase, leading to inappropriately low circulating levels of 1,25‐dihydroxyvitamin D (1,25D). The goal of therapy is prevention of rickets and improvement of growth in children by phosphate and 1,25D supplementation. However, this therapy is often complicated by hypercalcemia and nephrocalcinosis and does not always prevent hyperparathyroidism. To determine if 1,25D or blocking FGF23 action can improve the skeletal phenotype without phosphate supplementation, mice with XLH (Hyp) were treated with daily 1,25D repletion, FGF23 antibodies (FGF23Ab), or biweekly high‐dose 1,25D from d2 to d75 without supplemental phosphate. All treatments maintained normocalcemia, increased serum phosphate, and normalized parathyroid hormone levels. They also prevented the loss of Npt2a, α‐Klotho, and pERK1/2 immunoreactivity observed in the kidneys of untreated Hyp mice. Daily treatment with 1,25D decreased urine phosphate losses despite a marked increase in bone FGF23 mRNA and in circulating FGF23 levels. Daily 1,25D was more effective than other treatments in normalizing the growth plate and metaphyseal organization. In addition to being the only therapy that normalized lumbar vertebral height and body weight, daily 1,25D therapy normalized bone geometry and was more effective than FGF23Ab in improving trabecular bone structure. Daily 1,25D and FGF23Ab improved cortical microarchitecture and whole‐bone biomechanical properties more so than biweekly 1,25D. Thus, monotherapy with 1,25D improves growth, skeletal microarchitecture, and bone strength in the absence of phosphate supplementation despite enhancing FGF23 expression, demonstrating that 1,25D has direct beneficial effects on the skeleton in XLH, independent of its role in phosphate homeostasis. © 2016 American Society for Bone and Mineral Research.  相似文献   

17.
18.
19.
Genomewide association studies (GWAS) have improved our understanding of the genetic architecture of common complex diseases such as osteoporosis. Nevertheless, to attribute functional skeletal contributions of candidate genes to osteoporosis-related traits, there is a need for efficient and cost-effective in vivo functional testing. This can be achieved through CRISPR-based reverse genetic screens, where phenotyping is traditionally performed in stable germline knockout (KO) mutants. Recently it was shown that first-generation (F0) mosaic mutant zebrafish (so-called crispants) recapitulate the phenotype of germline KOs. To demonstrate feasibility of functional validation of osteoporosis candidate genes through crispant screening, we compared a crispant to a stable KO zebrafish model for the lrp5 gene. In humans, recessive loss-of-function mutations in LRP5, a co-receptor in the Wnt signaling pathway, cause osteoporosis-pseudoglioma syndrome. In addition, several GWAS studies identified LRP5 as a major risk locus for osteoporosis-related phenotypes. In this study, we showed that early stage lrp5 KO larvae display decreased notochord mineralization and malformations of the head cartilage. Quantitative micro-computed tomography (micro-CT) scanning and mass-spectrometry element analysis of the adult skeleton revealed decreased vertebral bone volume and bone mineralization, hallmark features of osteoporosis. Furthermore, regenerating fin tissue displayed reduced Wnt signaling activity in lrp5 KO adults. We next compared lrp5 mutants with crispants. Next-generation sequencing analysis of adult crispant tissue revealed a mean out-of-frame mutation rate of 76%, resulting in strongly reduced levels of Lrp5 protein. These crispants generally showed a milder but nonetheless highly comparable skeletal phenotype and a similarly reduced Wnt pathway response compared with lrp5 KO mutants. In conclusion, we show through faithful modeling of LRP5-related primary osteoporosis that crispant screening in zebrafish is a promising approach for rapid functional screening of osteoporosis candidate genes. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号