首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of the CNS are constantly exposed to agents which damage DNA. Although much attention has been paid to the effects of this damage on nuclear DNA, the nucleus is not the only organelle containing DNA. Within each cell, there are hundreds to thousands of mitochondria. Within each mitochondrion are multiple copies of the mitochondrial genome. These genomes are extremely vulnerable to insult and mutations in mitochondrial DNA (mtDNA) have been linked to several neurodegenerative diseases, as well as the normal process of aging. The principal mechanism utilized by cells to avoid DNA mutations is DNA repair. Multiple pathways of DNA repair have been elucidated for nuclear DNA. However, it appears that only base excision repair is functioning in mitochondria. This repair pathway is responsible for the removal of most endogenous damage including alkylation damage, depurination reactions and oxidative damage. Within the rat CNS, there are cell-specific differences mtDNA repair. Astrocytes exhibit efficient repair, whereas, other glial cell types and neuronal cells exhibit a reduced ability to remove lesions from mtDNA. Additionally, a correlation was observed between those cells with reduced mtDNA repair and an increase in the induction of apoptosis. To demonstrate a causative relationship, a strategy of targeting DNA repair proteins to mitochondria to enhance mtDNA repair capacity was employed. Enhancement of mtDNA repair in oligodendrocytes provided protection from reactive oxygen species- and cytokine-induced apoptosis. These experiments provide a novel strategy for protecting sensitive CNS cells from genotoxic insults and thus provide new treatment options for neurodegenerative diseases.  相似文献   

2.
3.
Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. Here we demonstrate that depletion of the autophagic proteins LC3B and beclin 1 enhanced the activation of caspase-1 and secretion of interleukin 1β (IL-1β) and IL-18. Depletion of autophagic proteins promoted the accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial reactive oxygen species (ROS). Cytosolic mtDNA contributed to the secretion of IL-1β and IL-18 in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.  相似文献   

4.
The vast majority of Alzheimer's disease (AD) are late-onset forms (LOAD) likely due to the interplay of environmental influences and individual genetic susceptibility. Epigenetic mechanisms, including DNA methylation, histone modifications and non-coding RNAs, constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that epigenetic mechanisms play a pivotal role in aging the pathogenesis of AD. Here, we provide a review of the major mechanisms for epigenetic modification and how they are reportedly altered in aging and AD. Moreover, we also consider how aberrant epigenetic modifications may lead to AD pathogenesis, and we review the therapeutic potential of epigenetic treatments for AD.  相似文献   

5.
6.
Differentiation of neural stem cells (NSCs) involves the activation of aerobic metabolism, which is dependent on mitochondrial function. Here, we show that the differentiation of NSCs involves robust increases in mitochondrial mass, mitochondrial DNA (mtDNA) copy number, and respiration capacity. The increased respiration activity renders mtDNA vulnerable to oxidative damage, and NSCs defective for the mitochondrial 8-oxoguanine DNA glycosylase (OGG1) function accumulate mtDNA damage during the differentiation. The accumulated mtDNA damages in ogg1(-/-) cells inhibit the normal maturation of mitochondria that is manifested by reduced cellular levels of mitochondrial encoded complex proteins (complex I [cI], cIII, and cIV) with normal levels of the nuclear encoded cII present. The specific cI activity and inner membrane organization of respiratory complexes are similar in wt and ogg1(-/-) cells, inferring that mtDNA damage manifests itself as diminished mitochondrial biogenesis rather than the generation of dysfunctional mitochondria. Aerobic metabolism increases during differentiation in wild-type cells and to a lesser extent in ogg1(-/-) cells, whereas anaerobic rates of metabolism are constant and similar in both cell types. Our results demonstrate that mtDNA integrity is essential for effective mitochondrial maturation during NSC differentiation.  相似文献   

7.
8.
The risk of developing neurodegenerative disorders such as Alzheimer's disease or Parkinson's disease is influenced by genetic and environmental factors. Environmental events occurring during development or later in life can be related to disease susceptibility. One way by which the environment may exert its effect is through epigenetic modifications, which might affect the functioning of genes. These include nucleosome positioning, post-translational histone modifications, and DNA methylation. In this review we will focus in the potential role of DNA methylation in neurodegenerative disorders and in the approaches to explore such epigenetic changes. Advances in deciphering the role of epigenetic modifications in phenotype are being uncovered for a variety of diseases, including cancer, autoimmune, neurodevelopmental and cognitive disorders. Epigenetic modifications are now being also associated with cardiovascular and metabolic traits, and they are expected to be especially involved in learning and memory processes, as well as in neurodegenerative disease. The study of the role of methylation and other epigenetic modifications in disease development will provide new insights in the etiopathogenesis of neurodegenerative disorders, and should hopefully shape new avenues in the development of therapeutic strategies.  相似文献   

9.
10.
Cancer initiation and progression is controlled by both genetic and epigenetic events. The complexity of carcinogenesis cannot be accounted for by genetic alterations alone but also involves epigenetic changes. Epigenetics refers to the study of mechanisms that alter gene expression without altering the primary DNA sequence. Epigenetic mechanisms are heritable and reversible, and include changes in DNA methylation, histone modifications and small noncoding microRNAs (miRNA). Disruption of epigenetic processes can lead to altered gene function and malignant cellular transformation. Aberrant epigenetic modifications probably occur at a very early stage in neoplastic development, and they are widely described as essential players in cancer progression. Recent advances in epigenetics offer a better understanding of the underlying mechanism(s) of carcinogenesis and provide insight into the discovery of putative cancer biomarkers for early detection, disease monitoring, prognosis, and risk assessment. In this review, we summarize the current literature on epigenetic changes causing genetic alterations that are thought to contribute to cancer, and discuss the potential impact of epigenetics future research.  相似文献   

11.
12.
Fiegl H  Elmasry K 《Disease markers》2007,23(1-2):89-96
Epigenetic alterations are heritable changes in gene expression without an accompanying change in primary DNA sequence. Two major mechanisms that cause epigenetic changes are post-translational histone modifications and DNA methylation at cytosine bases within a CpG dinucleotide. Epigenetic defects have turned out to be one of the most common molecular alterations in human neoplasia. Promoter hypermethylation is associated with loss of expression of tumour suppressor genes in cancer. The analysis of aberrant DNA methylation is gaining strength in the fields of cancer risk assessment, diagnosis, and therapy monitoring in different cancer types. These issues are discussed in this review.  相似文献   

13.
It is becoming clear that epigenetic mechanisms are associated with disease. To date, a myriad of epigenetic alterations, including altered DNA methylation and aberrant histone post-translational modifications, have been linked with various conditions. The most widely investigated example is the link between aberrant DNA methylation and malignancy that has lead to the clinical use of the DNA methyltransferase inhibitors, azacitidine and decitabine, for the treatment of myelodysplastic syndromes. Similarly, defective histone acetylation status has been associated with malignancy, providing the basis for the clinical use of the histone deacetylase inhibitors suberoylanilide hydroxamic acid and depsipeptide for the treatment of cutaneous T-cell lymphoma. In addition, there is an emerging association between perturbed fetal epigenetic programming and developmental origins of disease due to both nutritional and environmental factors. In particular, epigenetic events associated with metabolic syndrome have been identified. Related epigenetic mechanisms as well potential pharmacological and dietary interventions at critical periods of development form a large part of the discussion in this Forum. Further, this Forum provides an in-depth account of the association between epigenetic mechanisms and carcinogenesis with a focus on disease prevention with dietary chromatin-modifying compounds. Finally, the association between aberrant epigenetic events and neurodegenerative conditions, such as Alzheimer's disease (AD), is becoming apparent. A research article in this Forum identifies a potential new polymorphism associated with one-carbon metabolism that may contribute to the pathogenesis of AD. Overall, this Forum provides a detailed account of known epigenetic processes in developmental programming and human disease.  相似文献   

14.
Mitochondria are the organelles responsible for producing the majority of a cell's ATP and also play an essential role in gamete maturation and embryo development. ATP production within the mitochondria is dependent on proteins encoded by both the nuclear and the mitochondrial genomes, therefore co-ordination between the two genomes is vital for cell survival. To assist with this co-ordination, cells normally contain only one type of mitochondrial DNA (mtDNA) termed homoplasmy. Occasionally, however, two or more types of mtDNA are present termed heteroplasmy. This can result from a combination of mutant and wild-type mtDNA molecules or from a combination of wild-type mtDNA variants. As heteroplasmy can result in mitochondrial disease, various mechanisms exist in the natural fertilization process to ensure the maternal-only transmission of mtDNA and the maintenance of homoplasmy in future generations. However, there is now an increasing use of invasive oocyte reconstruction protocols, which tend to bypass mechanisms for the maintenance of homoplasmy, potentially resulting in the transmission of either form of mtDNA heteroplasmy. Indeed, heteroplasmy caused by combinations of wild-type variants has been reported following cytoplasmic transfer (CT) in the human and following nuclear transfer (NT) in various animal species. Other techniques, such as germinal vesicle transfer and pronuclei transfer, have been proposed as methods of preventing transmission of mitochondrial diseases to future generations. However, resulting embryos and offspring may contain mtDNA heteroplasmy, which itself could result in mitochondrial disease. It is therefore essential that uniparental transmission of mtDNA is ensured before these techniques are used therapeutically.  相似文献   

15.
Fine-tuning of neuronal connections during development is regulated through environmental interactions. Some fine-tuning occurs through changes in gene expression and/or epigenetic gene-specific DNA methylation states. DNA methylation occurs by transfer of a methyl group from S-adenosyl methionine to cytosine residues in the dinucleotide sequence CpG. Although CpG sequences spread throughout the genome are usually heavily methylated, those occurring in CpG islands in the promoter regions of genes are less methylated. In most cases, the extent of DNA methylation correlates with the extent of gene inactivation. Other known epigenetic mechanisms include histone deacetylation and chromatin remodeling, RNA inhibition, RNA modification, and DNA rearrangement. Exposure memory expressed as epigenetic DNA modifications allows genomic plasticity and short-term adaptation of each generation to their environment. Environmental factors that affect DNA methylation include diet, proteins, drugs, and hormones. Induced methylation changes may produce altered gene response upon subsequent hormonal stimulation. The gene-specific DNA methylation state may be preserved upon transmission through mitosis and meiosis. An increasing amount of data implicates a role for DNA methylation in multi-factorial psychiatric disorders. For example, L-methionine treatment can exacerbate psychosis; while valproate, a drug producing hypomethylated DNA, reduces such symptoms. Hypermethylation of the promoter region of the RELN gene correlates with reduced gene expression. This gene's protein Reelin, which is necessary for neuronal migration and synaptogenesis, is reduced in schizophrenia and bipolar disorder, suggesting hypermethylation of the promoter region in these disorders. Some evidence implicates methylation of the promoter regions of the DRD2 and HTR2A genes in schizophrenia and mood disorders as well. DNA methylation usually increases with age, although hypomethylation of the promoter region of the amyloid A4 precursor gene during aging may play a role in Alzheimer's disease. More studies are needed to define the role of methylomics and other epigenetic phenomena in the nervous system.  相似文献   

16.
In a newborn boy with characteristics of Brachmann-de Lange syndrome (BDLS) high temperatures were observed on the second day after birth and recurred 2-6 times daily during the 7 months of the patient's life. After transient hypertonia hypotonia developed. In muscle biopsy specimen taken on the 51st day of life, serious and progressive distortion of mitochondria was observed. In several mitochondria the cristae structure was broken, other mitochondria were shrunken and the damage progressed towards further deterioration in other organelles. At several points between the myofibrils amorphous material was seen possible debris of destroyed mitochondria. Most myofibrils seemed to be intact; however, in some areas myolytic signs were present. Analysis of the mitochondrial DNA (mtDNA) showed multiple deletions in skeletal and heart muscles, liver, lung and kidney. Since the mtDNA encodes several proteins of the respiratory complexes, the deleted mtDNA certainly affected the integrity of the mitochondrial oxidative phosphorylation process by synthesis of abnormal proteins. In the present case the hyperthermia may have been a result of the mtDNA damage. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
As regulators of bioenergetics in the cell and the primary source of endogenous reactive oxygen species (ROS), dysfunctional mitochondria have been implicated for decades in the process of aging and age-related diseases. Mitochondrial DNA (mtDNA) is replicated and repaired by nuclear-encoded mtDNA polymerase γ (Pol γ) and several other associated proteins, which compose the mtDNA replication machinery. Here, we review evidence that errors caused by this replication machinery and failure to repair these mtDNA errors results in mtDNA mutations. Clonal expansion of mtDNA mutations results in mitochondrial dysfunction, such as decreased electron transport chain (ETC) enzyme activity and impaired cellular respiration. We address the literature that mitochondrial dysfunction, in conjunction with altered mitochondrial dynamics, is a major driving force behind aging and age-related diseases. Additionally, interventions to improve mitochondrial function and attenuate the symptoms of aging are examined.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号