首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RAD51D mutations have been recently identified in breast (BC) and ovarian cancer (OC) families. Although an etiological role in OC appears to be present, the association of RAD51D mutations and BC risk is more unclear. We aimed to determine the prevalence of germline RAD51D mutations in Spanish BC/OC families negative for BRCA1/BRCA2 mutations. We analyzed 842 index patients: 491 from BC/OC families, 171 BC families, 51 OC families and 129 patients without family history but with early‐onset BC or OC or metachronous BC and OC. Mutation detection was performed with high‐resolution melting, denaturing high‐performance liquid chromatography or Sanger sequencing. Three mutations were found in four families with BC and OC cases (0.82%). Two were novel: c.1A>T (p.Met1?) and c.667+2_667+23del, leading to the exon 7 skipping and one previously described: c.674C>T (p.Arg232*). All were present in BC/OC families with only one OC. The c.667+2_667+23del cosegregated in the family with one early‐onset BC and two bilateral BC cases. We also identified the c.629C>T (p.Ala210Val) variant, which was predicted in silico to be potentially pathogenic. About 1% of the BC and OC Spanish families negative for BRCA1/BRCA2 are carriers of RAD51D mutations. The presence of several BC mutation carriers, albeit in the context of familial OC, suggests an increased risk for BC, which should be taken into account in the follow‐up and early detection measures. RAD51D testing should be considered in clinical setting for families with BC and OC, irrespective of the number of OC cases in the family.  相似文献   

2.
Previous studies indicate that founder mutations may play a noticeable role in breast cancer (BC) predisposition in Russia. Here we performed a systematic analysis of eight recurrent mutations in 302 BC cases (St.-Petersburg, Russia), which were selected due to the presence of clinical indicators of hereditary disease (bilaterality and/or early onset (≤40 years) and/or family history). BC-associated alleles were revealed in 46 (15.2%) women. BRCA1 5382insC mutation was detected in 29 (9.6%) patients, CHEK2 1100delC in 9 (3.0%), BRCA1 4153delA in 3 (1.0%), CHEK2 IVS2+1G>A in 2 (0.7%), and BRCA1 185delAG, BRCA2 6174delT and NBS1 657del5 in 1 (0.3%) patient each. No cases with BRCA1 300T>G (C61G) mutation was identified. The obtained data suggest that a significant fraction of hereditary BC cases in Russia can be diagnosed using only a limited number of simple PCR tests.  相似文献   

3.
The majority of BRCA1 and BRCA2 deleterious mutations and variants of unknown significance have been identified in genomic DNA and their effects at the mRNA level have not been reported. Our aim was to ascertain the pathological effect of the BRCA1 IVS6-1G>A (c. 302-1G>A) and the BRCA2 IVS15+1G>A (c. 7617+1G>A) variants detected in Spanish breast/ovarian cancer families. Sequencing of cDNA from the BRCA1 IVS6-1G>A allele revealed an inappropriate splicing of exon 7. The analysis of the BRCA2 IVS15+1G>A allele showed the skipping of exon 15. Both alterations predicted the appearance of premature stop codons. Our findings highlight the importance of studying mutations at DNA and RNA levels in order to clarify the effect of the suspected mutation and to provide adequate counseling for breast/ovarian cancer families. An RNA analysis published online recently, showed that the BRCA2 IVS15+2T>G caused skipping of exon 15 in RNA isolated from skin fibroblasts [Vreeswijk MPG, Kraan JN, van der Klift HM et al (2008) Intronic variants in BRCA1 and BRCA2 that affect RNA splicing can be reliably selected by splice-site prediction programs. Hum Mutat Published Online. doi:].  相似文献   

4.
Founder mutations in BRCA1/2 genes have been detected in several Jewish communities in Israel, including in Ashkenazi Jews and Jews who immigrated to Israel from Iraq, Yemen, Iran and Afghanistan. We analyzed DNA samples of patients of Sephardic origin (descendents of Jews from the Iberian Peninsula) with breast cancer (BC) and/or ovarian cancer (OC) and additional family history of these cancers. In this study we identified 2 mutations: p.A1708E in BRCA1 and c.67 + 1G > A (IVS2 + 1G > A) in BRCA2, each in 3 unrelated patients. The frequency of the two mutations was 26–31% among Sephardic high risk families and about 3% among the full cohort of 177 patients of this origin who were tested in our center. Based on haplotype analysis we concluded that these mutations are most probably founder mutations in Sephardic Jews. We recommend testing the two mutations in women of Sephardic origin who apply for BRCA testing because of personal and/or family history of BC and/or OC. Furthermore, we suggest adding them to the 5 mutations included in “The Jewish panel” of BRCA1/2 mutations that are being tested in Israel.  相似文献   

5.
Mutations in the cell cycle checkpoint kinase 2 (CHEK2) tumor suppressor gene are associated with multi‐organ cancer susceptibility including cancers of the breast and prostate. A genetic association between thyroid and breast cancer has been suggested, however little is known about the determinants of this association. To characterize the association of CHEK2 mutations with thyroid cancer, we genotyped 468 unselected patients with papillary thyroid cancer and 468 (matched) cancer‐free controls for four founder mutations of CHEK2 (1100delC, IVS2 + 1G>A, del5395 and I157T). We compared the family histories reported by patients with a CHEK2 mutation to those of non‐carriers. A CHEK2 mutation was seen in 73 of 468 (15.6%) unselected patients with papillary thyroid cancer, compared to 28 of 460 (6.0%) age‐ and sex‐matched controls (OR 3.3; p < 0.0001). A truncating mutation (IVS2 + 1G>A, 1100delC or del5395) was associated with a higher risk of thyroid cancer (OR = 5.7; p = 0.006), than was the missense mutation I157T (OR = 2.8; p = 0.0001). CHEK2 mutation carriers reported a family history of breast cancer 2.2 times more commonly than non‐carriers (16.4% vs.8.1%; p = 0.05). A CHEK2 mutation was found in seven of 11 women (63%) with multiple primary cancers of the breast and thyroid (OR = 10; p = 0.0004). These results suggest that CHEK2 mutations predispose to thyroid cancer, familial aggregations of breast and thyroid cancer and to double primary cancers of the breast and thyroid.  相似文献   

6.
BRCA1 and BRCA2 germ-line mutations occur in a significant number of unselected ovarian cancer (OC) patients, thus making a noticeable contribution to OC morbidity. It is of interest whether CHEK2, which is frequently regarded as a third breast cancer specific gene, is also relevant to ovarian cancer pathogenesis. In this report we analyzed the presence of CHEK2 1100 delC founder mutation in 268 randomly recruited OC patients. The mutation was identified in 2 women with OC (0.8%) as compared to 1/448 (0.2%) healthy middle-aged and 0/373 elderly tumour-free women. Taken together this result and the negative findings of two other published reports on an association of CHEK2 with ovarian cancer indicate that there is no justification for intensive ovarian cancer screening in CHEK2 1100 delC carriers.  相似文献   

7.
Breast and ovarian cancer (BC/OC) predisposition has been attributed to a number of high‐ and moderate to low‐penetrance susceptibility genes. With the advent of next generation sequencing (NGS) simultaneous testing of these genes has become feasible. In this monocentric study, we report results of panel‐based screening of 14 BC/OC susceptibility genes (BRCA1, BRCA2, RAD51C, RAD51D, CHEK2, PALB2, ATM, NBN, CDH1, TP53, MLH1, MSH2, MSH6 and PMS2) in a group of 581 consecutive individuals from a German population with BC and/or OC fulfilling diagnostic criteria for BRCA1 and BRCA2 testing including 179 with a triple‐negative tumor. Altogether we identified 106 deleterious mutations in 105 (18%) patients in 10 different genes, including seven different exon deletions. Of these 106 mutations, 16 (15%) were novel and only six were found in BRCA1/2. To further characterize mutations located in or nearby splicing consensus sites we performed RT‐PCR analysis which allowed confirmation of pathogenicity in 7 of 9 mutations analyzed. In PALB2, we identified a deleterious variant in six cases. All but one were associated with early onset BC and a positive family history indicating that penetrance for PALB2 mutations is comparable to BRCA2. Overall, extended testing beyond BRCA1/2 identified a deleterious mutation in further 6% of patients. As a downside, 89 variants of uncertain significance were identified highlighting the need for comprehensive variant databases. In conclusion, panel testing yields more accurate information on genetic cancer risk than assessing BRCA1/2 alone and wide‐spread testing will help improve penetrance assessment of variants in these risk genes.  相似文献   

8.
We present the first characterisation of the mutational spectrum of the entire coding sequences and exon–intron boundaries of the BRCA1 and BRCA2 genes as well as large BRCA1 rearrangements in Portuguese families with inherited predisposition to breast/ovarian cancer. Of the 100 probands studied, pathogenic mutations were identified in 22 (24.7%) of 89 breast and/or ovarian cancer families with more than one affected member (15 in BRCA1 and seven in BRCA2), but in none of the 11 patients without family history of cancer. One (6.7%) of the BRCA1 mutations is a large deletion involving exons 11–15. Seven pathogenic point mutations are novel: 2088C>T, 2156delinsCC, and 4255_4256delCT in BRCA1 and 4608_4609delTT, 5036delA, 5583_5584insT, and 8923C>T in BRCA2. The novel 2156delinsCC was identified in three probands from different families and probably represents a founder mutation in our population. We also found a previously reported 3450_3453del4 mutation in three unrelated patients. In addition to the 22 pathogenic mutations, we identified 19 missense mutations of uncertain pathogenic significance, three of them (5241G>C in BRCA1 and IVS6+13C>T and 3731T>C in BRCA2) previously undescribed. The percentage of cases with truncating mutations in BRCA1 and BRCA2 was higher in breast/ovarian cancer (37.0%, mostly BRCA1) and male breast cancer (40%, all BRCA2) families than in families with only female breast cancer (17.5%). Interestingly, we found evidence for genetic anticipation regarding age at diagnosis of both breast and ovarian cancer in those families presenting affected members in more than one generation. These findings should be taken into consideration while planning screening and prophylactic measures in families with inherited predisposition to breast and ovarian cancer.  相似文献   

9.
Multigene panel testing of breast cancer predisposition genes have been extensively conducted in Europe and America, which is relatively rare in Asia however. In this study, we assessed the frequency of germline mutations in 40 cancer predisposition genes, including BRCA1 and BRCA2, among a large cohort of Chinese patients with high hereditary risk of BC. From 2015 to 2016, consecutive BC patients from 26 centers of China with high hereditary risk were recruited (n = 937). Clinical information was collected and next-generation sequencing (NGS) was performed using blood samples of participants to identify germline mutations. In total, we acquired 223 patients with putative germline mutations, including 159 in BRCA1/2, 61 in 15 other BC susceptibility genes and 3 in both BRCA1/2 and non-BRCA1/2 gene. Major mutant non-BRCA1/2 genes were TP53 (n = 18), PALB2 (n = 11), CHEK2 (n = 6), ATM (n = 6) and BARD1 (n = 5). No factors predicted pathologic mutations in non-BRCA1/2 genes when treated as a whole. TP53 mutations were associated with HER-2 positive BC and younger age at diagnosis; and CHEK2 and PALB2 mutations were enriched in patients with luminal BC. Among high hereditary risk Chinese BC patients, 23.8% contained germline mutations, including 6.8% in non-BRCA1/2 genes. TP53 and PALB2 had a relatively high mutation rate (1.9 and 1.2%). Although no factors predicted for detrimental mutations in non-BRCA1/2 genes, some clinical features were associated with mutations of several particular genes.  相似文献   

10.
To study the potential contribution of genes other than BRCA1/2, PTEN, and TP53 to the biological and clinical characteristics of multiple early-onset cancers in Norwegian families, including early-onset breast cancer, Cowden-like and Li-Fraumeni-like syndromes (BC, CSL and LFL, respectively). The Hereditary Cancer Biobank from the Norwegian Radium Hospital was used to identify early-onset BC, CSL or LFL for whom no pathogenic variants in BRCA1/2, PTEN, or TP53 had been found in routine diagnostic DNA sequencing. Forty-four cancer susceptibility genes were selected and analyzed by our in-house designed TruSeq amplicon-based assay for targeted sequencing. Protein- and RNA splicing-dedicated in silico analyses were performed for all variants of unknown significance (VUS). Variants predicted as the more likely to affect splicing were experimentally analyzed by minigene assay. We identified a CSL individual carrying a variant in CHEK2 (c.319+2T>A, IVS2), here considered as likely pathogenic. Out of the five VUS (BRCA2, CDH1, CHEK2, MAP3K1, NOTCH3) tested in the minigene splicing assay, only NOTCH3 c.14090C>T (p.Ser497Leu) showed a significant effect on RNA splicing, notably by inducing partial skipping of exon 9. Among 13 early-onset BC, CSL and LFL patients, gene panel sequencing identified a potentially pathogenic variant in CHEK2 that affects a canonical RNA splicing signal. Our study provides new information on genetic loci that may affect the risk of developing cancer in these patients and their families, demonstrating that genes presently not routinely tested in molecular diagnostic settings may be important for capturing cancer predisposition in these families.  相似文献   

11.
During the first 6 years of the Program of Genetic Counselling in Cancer of Valencia (eastern Spain), 310 mutations (155 in BRCA1 and 155 in BRCA2) in 1,763 hereditary breast (BC) and ovarian cancer (OC) families were identified. Of the mutations found 105 were distinct (53 in BRCA1 and 52 in BRCA2), eight new and 37 recurrent. Two of the novel mutations were frame-shift placed in exons 2 and 11 of BRCA1 and the remaining six were placed in BRCA2; four frame-shift (three in exon 11 and one in exon 23), one deletion of the entire exon 19 and one in the intervening sequence of exon 22. The BRCA1 mutations with higher recurrence were c.66_68delAG, c.5123C > A, c.1961delA, c.3770_3771delAG and c.5152+5G > A that covered 45.2 % of mutations of this gene. The age of onset of BCs of c.68_69delAG mutation carriers occurs later than for the other recurrent mutations of this gene (45 vs. 37 years; p = 0.008). The BRCA2 mutations with higher recurrence were c.9026_9030delATCAT, c.3264insT and c.8978_8991del14 which represented 43.2 % of all mutations in this gene, being the most recurrent mutation by far c.9026_9030delATCAT that represents 21.3 % of BRCA2 mutations and 10.6 % of all mutations. Probands with family histories of BC and OC, or OC and/or BC in at least two first degree relatives, were the more likely to have BRCA1/BRCA2 mutations (35.2 % of the total mutations). And that most BRCA1mutations (73.19 % mutations) occurred in probands with early-onset BC or with family history of OC.  相似文献   

12.
Genetic factors contribute to more than 40% of prostate cancer risk, and mutations in BRCA1 and BRCA2 are well-established risk factors. By using target capture-based deep sequencing to identify potential pathogenic germline mutations, followed by Sanger sequencing to determine the loci of the mutations, we identified a novel pathogenic BRCA2 mutation caused by a cytosine-to-guanine base substitution at position 4211, resulting in protein truncation (p.Ser1404Ter), which was confirmed by immunohistochemistry. Analysis of peripheral blood also identified benign polymorphisms in BRCA2 (c.7397T>C, p.Val2466Ala) and SRD5A2 (c.87G>C, p.Lys29Asn). Analysis of tumor tissues revealed seven somatic mutations in prostate tumor tissue and nine somatic mutations in esophageal squamous carcinoma tissue (single nucleotide polymorphisms, insertions, and deletions). Five-year follow-up results indicate that ADT combined with radiotherapy successfully treated the prostate cancer. To our knowledge, we are the first to report the germline BRCA2 mutation c.4211C>G (p.Ser1404Ter) in prostate cancer. Combined ADT and radiotherapy may be effective in treating other patients with prostate cancer caused by this or similar mutations.  相似文献   

13.
Germline mutations in BRCA1 were already linked to basal-like subtype of immunophenotypic molecular classification of breast cancer (BC). However, it is not known whether mutations in other BC susceptibility genes are associated with molecular subtypes of this cancer. We tested the hypothesis that distinct mutations in another BC susceptibility gene involved in DNA repair, i.e., CHEK2 may be associated with particular immunophenotypic molecular subtypes of this cancer. Two groups of patients: 1255 with BCs and 5496 healthy controls were genotyped for four CHEK2 mutations (I157T and three truncating mutations: 1100delC, IVS2 + 1G > A, del5395). BCs were tested by immunohistochemistry on tissue microarrays for ER, PR, HER-2, EGFR, and CK5/6 and were assigned to appropriate subtypes of immunophenotypic molecular classification. There was a significant association between CHEK2 mutations and the immunophenotypic molecular classification (P = 0.004). CHEK2-associated cancers were predominantly luminal (108/117 = 92.3%). CHEK2-I157T variant was associated with the luminal A subtype (P = 0.01), whereas CHEK2-truncating mutations were associated with the luminal B subtype (P = 0.005). Comparing the prevalence of CHEK2 mutations in BC with controls revealed that carriers of an I157T variant had OR of 1.80 for luminal A subtype and carriers of truncating mutations had OR of 6.26 for luminal B subtype of BC. To our knowledge, this is the first study showing that specific mutations in the same susceptibility gene are associated with different immunophenotypic molecular subtypes of BC. This association represents independent evidence supporting the biological significance of immunophenotypic molecular classification of BC.  相似文献   

14.
The distribution of BRCA1/2 germline mutations in breast/ovarian cancer (BC/OC) families varies among different populations. In the Chilean population, there are only two reports of mutation analysis of BRCA1/2, and these included a low number of BC and/or OC patients. Moreover, the prevalence of BRCA1/2 genomic rearrangements in Chilean and in other South American populations is unknown. In this article, we present the mutation-detection data corresponding to a set of 326 high-risk families analyzed by conformation-sensitive gel electrophoresis and heteroduplex analysis. To determine the contribution of BRCA1/2 LGRs in Chilean BC patients, we analyzed 56 high-risk subjects with no pathogenic BRCA1/2 point mutations. Germline BRCA1/2 point mutations were found in 23 (7.1%) of the 326 Chilean families. Families which had at least three BC and/or OC cases showed the highest frequency of mutations (15.9%). We identified 14 point pathogenic mutations. Three recurrent mutations in BRCA1 (c.187_188delAG, c.2605_2606delTT, and c.3450_3453delCAAG) and three in BRCA2 (c.4969_4970insTG, c.5374_5377delTATG, and c.6503_6504delTT) contributed to 63.6 and 66.7% of all the deleterious mutations of each gene, which may reflect the presence of region-specific founder effects. Taken together BRCA1/2 recurrent point mutations account for 65.2% (15/23) of the BRCA1/2 (+) families. No large deletions or duplications involving BRCA1/2 were identified in a subgroup of 56 index cases negative for BRCA1/2 point mutations. Our study, which is the largest conducted to date in a South American population, provides a comprehensive analysis on the type and distribution of BRCA1/2 mutations and allelic variants.  相似文献   

15.
The CHEK2 gene mutations I157T (c.470T > C) and IVS2 + 1G > A affecting the forkhead-associated domain (FHA) have been shown to increase the risk of breast cancer development in several populations. We analyzed the CHEK2 gene segment coding for FHA domain in 673 unselected breast cancer patients and 683 controls from the Czech Republic using the denaturant high-performance liquid chromatography. The found frequency of predominant FHA alteration I157T did not differ between breast cancer patients (19/673; 2.82%) and controls (17/683; 2.49%; P = 0.71). Besides this mutation we characterized another nine alterations—six located within FHA coding sequence and three occurring in introns 1 or 2). Eight variants occurred once each in patients with breast cancer and two were present in controls. Three alterations found in breast cancer patients were novel missense variants (Y159H, T172A, and L174F) affecting highly conservative residues in FHA domain. Despite the lack of association of I157T mutation with breast cancer development in our population we deduced that the FHA domain is the subject of rare population-specific alterations that might modify risk of various cancers. Zdenek Kleibl, Ondrej Havranek contributed equally to this work.  相似文献   

16.
The spectrum and frequency of BRCA1/2 pathogenic variants may be ethnicity-specific. Whether high-frequency founder mutations are present in Chinese women remains largely unknown. In the current study, germline pathogenic variants in the BRCA1/2 genes were determined in 9,505 unselected Chinese Han breast cancer (BC) patients by next-generation and/ or Sanger sequencing. Four hundred and seventy-one (5.0%) BC patients carried BRCA1/2 pathogenic variants in this cohort. A total of 25 recurrent pathogenic variants (at least found in four unrelated patients) were identified in this cohort (8 BRCA1 and 17 BRCA2 recurrent pathogenic variants), 161 patients carried one of these recurrent pathogenic variants in this cohort of 9,505 patients. All of these 25 recurrent pathogenic variants were further explored whether they had founder effect through haplotype analysis. The most common pathogenic variant, BRCA1 c.5470_5477del, was found in 30 BC patients from 29 unrelated families. Twenty-seven of these 29 unrelated patients who carried this BRCA1 c.5470_5477del mutation shared an identical haplotype, indicating that BRCA1 c.5470_5477del was a founder mutation in the Chinese Han population. Furthermore, BRCA1 c.5470_5477del mutation carriers had a significantly worse survival than noncarriers (disease-free survival, p = 0.049; overall survival, p = 0.029). Taken together, our data suggested that BRCA1 c.5470_5477del is a founder mutation in the Chinese Han population and BRCA1 c.5470_5477del mutation carriers have a poor survival.  相似文献   

17.
Mutations in the BRCA1 and BRCA2 genes significantly contribute to hereditary breast cancer and ovarian cancer, but the phenotypic effect from different mutations is insufficiently recognized. We used a western Danish clinic-based cohort of 299 BRCA families to study the female cancer risk in mutation carriers and their untested first-degree relatives. Founder mutations were characterized and the risk of cancer was assessed in relation to the specific mutations. In BRCA1, the cumulative cancer risk at age 70 was 35 % for breast cancer and 29 % for ovarian cancer. In BRCA2, the cumulative risk was 44 % for breast cancer and 15 % for ovarian cancer. We identified 47 distinct BRCA1 mutations and 48 distinct mutations in BRCA2. Among these, 8 founder mutations [BRCA1 c.81-?_4986+?del, c.3319G>T (p.Glu1107*), c.3874delT and c.5213G>A (p.Gly1738Glu) and BRCA2 c.6373delA, c.7008?1G>A, c.7617+1G>A and c.8474delC] were found to account for 23 % of the BRCA1 mutations and for 32 % of the BRCA2 mutations. The BRCA1 mutation c.3319G>T was, compared to other BRCA1 mutations, associated with a higher risk for ovarian cancer. In conclusion, founder mutations in BRCA1 and BRCA2 contribute to up to one-third of the families in western Denmark and among these the BRCA1 c.3319G>T mutation is potentially linked to an increased risk of ovarian cancer.  相似文献   

18.
Understanding of the etiology and risk of pancreatic cancer (PaCa) is still poorly understood. This study evaluated the prevalence of 10 Polish founder mutations in four genes among PaCa patients and assessed their possible association with the risk of disease in Poland. In the study 383 PaCa patients and 4,000 control subjects were genotyped for founder mutations in: BRCA1 (5382insC, 4153delA, C61G), CHEK2 (1100delC, IVS2 + 1G > A, del5395, I157T), NBS1 (657del5) and PALB2 (509_510delGA, 172_175delTTGT). A statistically significant association between the 657del5 mutation and an increased risk of pancreatic cancer was observed for NBS1 gene. The Slavic NBS1 gene mutation (657delACAAA) was detected in 8 of 383 (2.09%) unselected cases compared with 22 of 4,000 (0.55%) controls (OR: 3.80, p = 0.002). The PALB2 509_510delGA and 172_175delTTGT mutations combined were seen in 2 (0.52%) unselected cases of PaCa and in 8 (0.20%) of 4,000 controls (OR: 2.61, p = 0.49). For BRCA1, the three mutations combined were detected in 4 of 383 (1.04%) PaCa patients and in 17 of 4,000 (0.42%) controls (OR: 2.46, p = 0.20). CHEK2 mutations were not associated with the risk of pancreatic cancer (OR: 1.11, p = 0.72). The founder mutation in NBS1 (657del5) was associated with an increased risk of PaCa in heterozygous carriers, indicating that this mutation appears to predispose to cancer of the pancreas. By identifying pancreatic cancer risk groups, founder mutation testing in Poland should be considered for people at risk for PaCa.  相似文献   

19.

Objectives

This study was undertaken to determine: 1) Type and prevalence of founder mutations BRCA1 and BRCA2 genes in Polish families with strong aggregation of breast and/or ovarian cancer. 2) Risk of breast and/or ovarian cancer depending on type of BRCA1 gene mutation. 3) Prevalence of BRCA1 mutation and of other alleles presumably linked with predisposition to breast cancer in unselected Polish patients with breast cancer. 4) Risk of breast cancer in patients with 5972C/T polymorphism that alters the BRCA2 protein structure.

Summary of the results

1. Among 66 families from several regions in Poland with a strong aggregation of breast/ovarian cancer, founder mutation of the BRCA1 gene were disclosed in 34 families and of the BRCA2 gene in on family. Altogether, seven different mutations were disclosed. Five mutations were found in at least two families in this group. The most frequent mutation was 5382insC (18 families), followed by C61G (7 families) and 4153delA (4 families). 2. Among 200 families representative for Poland with strong aggregation of breast/ovarian cancer, mutation of the BRCA1 gene were found in 122 families (61%) and of the BRCA2 gene in seven families (3,5%). 119 out of 122 mutations of the BRCA1 gene (97,5%) were repeatable. Three recurrent mutations of the BRCA1 gene (5382insC, C61G, 4153delA) characteristic for the Polish population were disclosed in 111 families representing 86% of all pathogenic sequences of this gene. 3. The risk of ovarian cancer in carriers of the three most frequent recurrent mutation of the BRCA1 gene in Poland is similar (OR 43.6 for 5382insC and 50 for 4153delA). The risk of breast cancer is significantly different for 4153delA (OR 1) and for other mutations (OR 10.9). 4. Among 2012 unselected breast cancers diagnosed in hospitals of nine Polish cities, mutations of the BRCA1 gene (5382insC, C61G, 4153delA) were disclosed in 2.9% patients. CHEK2 alternation (1100delC, IVS2+1G>A, I157T) was discovered in 8.1% and NBS1 mutation (657del5) in 0.8% of the patients. The changes were more frequent in the study than the control group. However, the risk of breast cancer was significantly higher for only three of them. Two changes, namely 5382insC and C61G of the BRCA1 gene revealed a high penetrance (OR 6.2 and 15.0, respectively), while I157T of the CHEK2 gene was associated with a low risk of breast cancer (OR 1.4). Mutations of the BRCA1, CHEK2 and NSB1 genes were significantly more frequent in patients with breast cancer diagnosed prior to 50 years of age. The mean age at diagnosis was 47.2 years for carriers of the BRCA1 mutation, 50.7 years for NBS1 and 54.2 for CHEK2. The mean age at diagnosis in the group of patients without any if the mutations described above was 56.1 years. When breast cancer patients with the diagnosis before and after 50 years of age were compared, the greatest difference in the frequency of mutation was revealed for the BRCA1 gene (5.5% vs 1.5%).BRCA1 mutations were significantly more frequent I familial aggregates of the tumor (10.8%), but were also present in sporadic cases (1.8%). For the CHEK2 and NBS1 genes, there was no correlation between frequency and family history of cancer in probands. 5. A higher frequency of heterozygous carriers of 5972C/T polymorphism of the BRCA2 gene was demonstrated for breast cancer prior to 50 years of age (OR 1.4). the risk of breast cancer prior to 50 years of age was particularly high in 5972T/T homozygote (OR 4.7). This polymorphism was associated with breast cancer notable for intraductal growth.

Conclusions

1. Efficient molecular diagnostics of genetic predisposition to breast/ovarian cancer in Poland could be based on relatively simple tests disclosing some of the most frequent recurrent mutations of the BRCA1 gene. 2. The risk of breast cancer seems to be only slightly higher in carriers of some BRCA1 gene mutations. This finding should be taken into account during work on prevention schemes for carriers of the BRCA1 mutations. 3. 5382insC and C61G mutations of the BRCA1 gene are linked with high risk of breast cancer. Changes in the CHEK2 and NBS1 genes appear to be linked with a higher risk of breast cancers, particularly at young age. However, penetrance in this case is low. All patients with breast cancer should be tested for BRCA1 gene mutations because the percentage of mutations is also high in patients older than 50 years of age or without familiar aggregation of breast/ovarian cancer. 4. Polymorphic changes in the BRCA2 gene sequence previously regarded as non-pathogenic may nevertheless predispose, homozygotes in particular, to breast cancer. Apparently, the recessive character of these changes is responsible for the negative family history in most cases. The use of DNA tests is the only way to disclose increased risk of breast cancer in carriers of the 5972T/T mutation.
  相似文献   

20.
Germ-line mutations in the tumour suppressor proteins BRCA1 and BRCA2 predispose to breast and ovarian cancer. We have recently identified a Greenlandic Inuit BRCA1 nucleotide 234T>G/c.115T>G (p.Cys39Gly) founder mutation, which at that time was the only disease-causing BRCA1/BRCA2 mutation identified in this population. Here, we describe the identification of a novel disease-causing BRCA1 nucleotide 4803delCC/c.4684delCC mutation in a Greenlandic Inuit with ovarian cancer. The mutation introduces a frameshift and a premature stop at codon 1572. We have also identified a BRCA1 nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in another Greenlandic individual with ovarian cancer. This patient share a 1–2 Mb genomic fragment, containing the BRCA1 gene, with four Danish families harbouring the same mutation, suggesting that the 249T>A/c.130T>A (p.Cys44Ser) mutation originates from a Danish ancestor. We conclude that screening of Greenlandic Inuits with high risk of breast or ovarian cancer should include sequencing of the entire BRCA1 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号