首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Differentiation of oligodendrocyte precursor cells (OPCs) is the most important event for the myelination of central nervous system (CNS) axons during development and remyelination in demyelinating diseases, while the underlying molecular mechanisms remain largely unknown. Here we show that NMDA receptor (NMDAR) is a functional regulator of OPCs differentiation and remyelination. First, GluN1, GluN2A, and GluN2B subunits are expressed in oligodendrocyte lineage cells (OLs) in vitro and in vivo by immunostaining and Western blot analysis. Second, in a purified rat OPC culture system, NMDARs specially mediate OPCs differentiation by enhancing myelin proteins expression and the processes branching at the immature to mature oligodendrocyte transition analyzed by a serial of developmental stage‐specific antigens. Moreover, pharmacological NMDAR antagonists or specific knockdown of GluN1 by RNA interference in OPCs prevents the differentiation induced by NMDA. NMDA can activate the mammalian target of rapamycin (mTOR) signal in OPCs and the pro‐differentiation effect of NMDA is obstructed by the mTOR inhibitor rapamycin, suggesting NMDAR exerts its effect through mTOR‐dependent mechanism. Furthermore, NMDA increases numbers of myelin segments in DRG‐OPC cocultures. Finally, NMDAR specific antagonist MK801 delays remyelination in the cuprizone model examined by LFB‐PAS, immunofluorescence and electron microscopy. This effect appears to result from inhibiting OPCs differentiation as more NG2+ OPCs but less GST‐π+ mature oligodendrocytes are observed. Together, these results indicate that NMDAR plays a critical role in the regulation of OPCs differentiation in vitro and remyelination in cuprizone model which may provide potential target for the treatment of demyelination disease.  相似文献   

2.
Elucidation of signaling pathways that control oligodendrocyte (OL) development is a prerequisite for developing novel strategies for myelin repair in neurological diseases. Despite the extensive work outlining the importance of Hedgehog (Hh) signaling in the commitment and generation of OL progenitor cells (OPCs), there are conflicting reports on the role of Hh signaling in regulating OL differentiation and maturation. In the present study, we systematically investigated OPC specification and differentiation in genetically modified mouse models of Smoothened (Smo), an essential component of the Hh signaling pathway in vertebrates. Through conditional gain-of-function strategy, we demonstrated that hyperactivation of Smo in neural progenitors induced transient ectopic OPC generation and precocious OL differentiation accompanied by the co-induction of Olig2 and Nkx2.2. After the commitment of OL lineage, Smo activity is not required for OL differentiation, and sustained expression of Smo in OPCs stimulated cell proliferation but inhibited terminal differentiation. These findings have uncovered the stage-specific regulation of OL development by Smo-mediated Hh signaling, providing novel insights into the molecular regulation of OL differentiation and myelin repair.  相似文献   

3.
4.
ST8SIA2 is a polysialyltransferase that attaches polysialic acid to the glycoproteins NCAM1 and CADM1. Polysialylation is involved in brain development and plasticity. ST8SIA2 is a schizophrenia candidate gene, and St8sia2 ?/? mice exhibit schizophrenia‐like behavior. We sought to identify new pathological consequences of ST8SIA2 deficiency. Our proteomic analysis suggested myelin impairment in St8sia2 ?/? mice. Histological and immune staining together with Western blot revealed that the onset of myelination was not delayed in St8sia2 ?/? mice, but the content of myelin was lower. Ultrastructure analysis of the corpus callosum showed thinner myelin sheaths, smaller and irregularly shaped axons, and white matter lesions in adult St8sia2 ?/? mice. Then we evaluated oligodendrocyte differentiation in vivo and in vitro . Fewer OLIG2+ cells in the cortex and corpus callosum, together with the higher percentage of undifferentiated oligodenroglia in St8sia2 ?/? mice suggested an impairment in oligodendrocyte generation. Experiment on primary cultures of oligodendrocyte precursor cells (OPCs) confirmed a cell‐autonomous effect of ST8SIA2 in oligodendroglia, and demonstrated that OPC to oligodendrocyte transition is inhibited in St8sia2 ?/? mice. Concluding, ST8SIA2‐mediated polysialylation influences on oligodendrocyte differentiation, and oligodendrocyte deficits in St8sia2 mice are a possible cause of the demyelination and degeneration of axons, resembling nerve fiber alterations in schizophrenia. GLIA 2016;65:34–49  相似文献   

5.
The oligodendrocyte maturation process and the transition from the pre‐myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG‐1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin‐gene expression, myelination, and axonal function. The cuprizone model of central nervous system demyelination was further used to assess CNTN2 in pathology. During development, CNTN2 can transiently affect the expression levels of myelin and myelin‐regulating genes, while its absence results in reduced oligodendrocyte branching, hypomyelination of fiber tracts and impaired axonal conduction. In pathology, CNTN2 absence does not affect the extent of de‐ and remyelination. However during remyelination, a novel, CNTN2‐independent mechanism is revealed that is able to recluster voltage gated potassium channels (VGKCs) resulting in the improvement of fiber conduction.  相似文献   

6.
Kallikrein 6 (KLK6) is a secreted serine protease preferentially expressed by oligodendroglia in CNS white matter. Elevated levels of KLK6 occur in actively demyelinating multiple sclerosis (MS) lesions and in cases of spinal cord injury (SCI), stroke, and glioblastoma. Taken with recent evidence establishing KLK6 as a CNS‐endogenous activator of protease‐activated receptors (PARs), we hypothesized that KLK6 activates a subset of PARs to regulate oligodendrocyte physiology and potentially pathophysiology. Here, primary oligodendrocyte cultures derived from wild type or PAR1‐deficient mice and the murine oligodendrocyte cell line, Oli‐neu, were used to demonstrate that Klk6 (rodent form) mediates loss of oligodendrocyte processes and impedes morphological differentiation of oligodendrocyte progenitor cells (OPCs) in a PAR1‐dependent fashion. Comparable gliopathy was also elicited by the canonical PAR1 agonist, thrombin, as well as PAR1‐activating peptides (PAR1‐APs). Klk6 also exacerbated ATP‐mediated oligodendrogliopathy in vitro, pointing to a potential role in augmenting excitotoxicity. In addition, Klk6 suppressed the expression of proteolipid protein (PLP) RNA in cultured oligodendrocytes by a mechanism involving PAR1‐mediated Erk1/2 signaling. Microinjection of PAR1 agonists, including Klk6 or PAR1‐APs, into the dorsal column white matter of PAR1+/+ but not PAR1?/? mice promoted vacuolating myelopathy and a loss of immunoreactivity for myelin basic protein (MBP) and CC‐1+ oligodendrocytes. These results demonstrate a functional role for Klk6‐PAR1 signaling in oligodendroglial pathophysiology and suggest that antagonists of PAR1 or its protease agonists may represent new modalities to moderate demyelination and to promote myelin regeneration in cases of CNS white matter injury or disease.  相似文献   

7.
8.
9.
10.
Notch1 receptor signaling regulates oligodendrocyte progenitor differentiation and myelin formation in development, and during remyelination in the adult CNS. In active multiple sclerosis lesions, Notch1 localizes to oligodendrocyte lineage cells, and its ligand Jagged1 is expressed by reactive astrocytes. Here, we examined induction of Jagged1 in human astrocytes, and its impact on oligodendrocyte differentiation. In human astrocyte cultures, the cytokine TGFβ1 induced Jagged1 expression and blockade of the TGFβ1 receptor kinase ALK5 abrogated Jagged1 induction. TGFβ2 and β3 had similar effects, but induction was not observed in response to the TGFβ family member activin A or other cytokines. Downstream, TGFβ1 activated Smad‐dependent signaling, and Smad‐independent pathways that included PI3 kinase, p38, and JNK MAP kinase, but only inhibition of the Smad‐dependent pathway blocked Jagged1 expression. SiRNA inhibition of Smad3 downregulated induction of Jagged1, and this was potentiated by Smad2 siRNA. Purified oligodendrocyte progenitor cells (OPCs) nucleofected with Notch1 intracellular signaling domain displayed a shift towards proliferation at the expense of differentiation, demonstrating functional relevance of Notch1 signaling in OPCs. Furthermore, human OPCs plated onto Jagged1‐expressing astrocytes exhibited restricted differentiation. Collectively, these data illustrate the mechanisms underlying Jagged1 induction in human astrocytes, and suggest that TGFβ1‐induced activation of Jagged1‐Notch1 signaling may impact the size and differentiation of the OPC pool in the human CNS. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
CNS myelination defects occur in mice deficient in receptor-like protein tyrosine phosphatase alpha (PTPα). Here, we investigated the role of PTPα in oligodendrocyte differentiation and myelination using cells and tissues from wild-type (WT) and PTPα knockout (KO) mice. PTPα promoted the timely differentiation of neural stem cell-derived oligodendrocyte progenitor cells (OPCs). Compared to WT OPCs, KO OPC cultures had more NG2+ progenitors, fewer myelin basic protein (MBP)+ oligodendrocytes, and reduced morphological complexity. In longer co-cultures with WT neurons, more KO than WT OPCs remained NG2+ and while equivalent MBP+ populations of WT and KO cells formed, the reduced area occupied by the MBP+ KO cells suggested that their morphological maturation was impeded. These defects were associated with reduced myelin formation in KO OPC/WT neuron co-cultures. Myelin formation was also impaired when WT OPCs were co-cultured with KO neurons, revealing a novel role for neuronal PTPα in myelination. Canonical Wnt/β-catenin signaling is an important regulator of OPC differentiation and myelination. Wnt signaling activity was not dysregulated in OPCs lacking PTPα, but suppression of Wnt signaling by the small molecule XAV939 remediated defects in KO oligodendrocyte differentiation and enhanced myelin formation by KO oligodendrocytes. However, the myelin segments that formed were significantly shorter than those produced by WT oligodendrocytes, raising the possibility of a role for glial PTPα in myelin extension distinct from its pro-differentiating actions. Altogether, this study reveals PTPα as a molecular coordinator of oligodendroglial and neuronal signals that controls multiple aspects of oligodendrocyte development and myelination.  相似文献   

12.
FGF signaling is important for numerous cellular processes and produces diverse cellular responses. Our recent studies using mice conditionally lacking FGF-Receptor-1 (Fgfr1) or Fgfr2 during different stages of myelinogenesis revealed that Fgfr signaling is first required embryonically for the specification of oligodendrocyte progenitors (OPCs) and then later postnatally for the growth of the myelin sheath during active myelination but not for OPC proliferation, differentiation, or ensheathment of axons. What intracellular signal transduction pathways are recruited immediately downstream of Fgfrs and mediate these distinct developmentally regulated stage-specific responses remain unclear. The adapter protein Fibroblast-Growth-Factor-Receptor-Substrate-2 (Frs2) is considered a key immediate downstream target of Fgfrs. Therefore, here, we investigated the in vivo role of Frs adapters in the oligodendrocyte lineage cells, using a novel genetic approach where mice were engineered to disrupt binding of Frs2 to Fgfr1 or Fgfr2, thus specifically uncoupling Frs2 and Fgfr signaling. In addition, we used conditional mutants with complete ablation of Frs2 and Frs3. We found that Frs2 is required for specification of OPCs in the embryonic telencephalon downstream of Fgfr1. In contrast, Frs2 is largely dispensable for transducing Fgfr2-mediated signals for the growth of the myelin sheath during postnatal myelination, implying the potential involvement of other adapters downstream of Fgfr2 for this function. Together, our data demonstrate a developmental stage-specific function of Frs2 in the oligodendrocyte lineage cells. This contextual requirement of adapter proteins, downstream of Fgfrs, could partly explain the distinct responses elicited by the activation of Fgfrs during different stages of myelinogenesis.  相似文献   

13.
14.
Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark‐Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone‐dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573–1589  相似文献   

15.
16.
Remyelination is limited in patients with multiple sclerosis (MS) due to the difficulties in recruiting proliferating oligodendrocyte precursors (OPCs), the inhibition of OPC differentiation and/or maturation, and/or failure in the generation of the myelin sheath. In vitro studies have revealed that miR‐219 is necessary for OPC differentiation and monocarboxylate transporter 1 (MCT1) plays a vital role in oligodendrocyte maturation and myelin synthesis. Herein, we hypothesized that miR‐219 might promote oligodendrocyte differentiation and attenuate demyelination in a cuprizone (CPZ)‐induced demyelinated model by regulating the expression of MCT1. We found that CPZ‐treated mice exhibited significantly increased anxiety in the open field test. However, miR‐219 reduced anxiety as shown by an increase in the total distance, the central distance and the mean amount of time spent in the central area. miR‐219 decreased the quantity of OPCs and increased the number of oligodendrocytes and the level of myelin basic protein (MBP) and cyclic nucleotide 3′ phosphodiesterase (CNP) protein. Ultrastructural studies further confirmed that the extent of demyelination was attenuated by miR‐219 overexpression. Meanwhile, miR‐219 also greatly enhanced MCT1 expression via suppression of oligodendrocyte differentiation inhibitors, Sox6 and Hes5, treatment with the MCT1 inhibitor α‐cyano‐4‐hydroxycinnamate (4‐CIN) reduced the number of oligodendrocytes and the protein levels of MBP and CNP. Taken together, these results suggest a novel mode of action of miR‐219 via MCT1 in vivo and may provide a new potential remyelination therapeutic target.  相似文献   

17.
18.
In demyelinating diseases, such as multiple sclerosis, primary loss of myelin and subsequent neuronal degeneration throughout the CNS impair patient functionality. While the importance of mechanistic target of rapamycin (mTOR) signaling during developmental myelination is known, no studies have yet directly examined the function of mTOR signaling specifically in the oligodendrocyte (OL) lineage during remyelination. Here, we conditionally deleted Mtor from adult oligodendrocyte precursor cells (OPCs) using Ng2-CreERT in male adult mice to test its function in new OLs responsible for remyelination. During early remyelination after cuprizone-induced demyelination, mice lacking mTOR in adult OPCs had unchanged OL numbers but thinner myelin. Myelin thickness recovered by late-stage repair, suggesting a delay in myelin production when Mtor is deleted from adult OPCs. Surprisingly, loss of mTOR in OPCs had no effect on efficiency of remyelination after lysophosphatidylcholine lesions in either the spinal cord or corpus callosum, suggesting that mTOR signaling functions specifically in a pathway dysregulated by cuprizone to promote remyelination efficiency. We further determined that cuprizone and inhibition of mTOR cooperatively compromise metabolic function in primary rat OLs undergoing differentiation. Together, our results support the conclusion that mTOR signaling in OPCs is required to overcome the metabolic dysfunction in the cuprizone-demyelinated adult brain.SIGNIFICANCE STATEMENT Impaired remyelination by oligodendrocytes contributes to the progressive pathology in multiple sclerosis, so it is critical to identify mechanisms of improving remyelination. The goal of this study was to examine mechanistic target of rapamycin (mTOR) signaling in remyelination. Here, we provide evidence that mTOR signaling promotes efficient remyelination of the brain after cuprizone-mediated demyelination but has no effect on remyelination after lysophosphatidylcholine demyelination in the spinal cord or brain. We also present novel data revealing that mTOR inhibition and cuprizone treatment additively affect the metabolic profile of differentiating oligodendrocytes, supporting a mechanism for the observed remyelination delay. These data suggest that altered metabolic function may underlie failure of remyelination in multiple sclerosis lesions and that mTOR signaling may be of therapeutic potential for promoting remyelination.  相似文献   

19.
Hemorrhagic white matter injuries in the perinatal period are a growing cause of cerebral palsy yet no neuroprotective strategies exist to prevent the devastating motor and cognitive deficits that ensue. We demonstrate that the thrombin receptor (protease‐activated receptor 1, PAR1) exhibits peak expression levels in the spinal cord at term and is a critical regulator of the myelination continuum from initiation to the final levels achieved. Specifically, PAR1 gene deletion resulted in earlier onset of spinal cord myelination, including substantially more Olig2‐positive oligodendrocytes, more myelinated axons, and higher proteolipid protein (PLP) levels at birth. In vitro, the highest levels of PAR1 were observed in oligodendrocyte progenitor cells (OPCs), being reduced with differentiation. In parallel, the expression of PLP and myelin basic protein (MBP), in addition to Olig2, were all significantly higher in cultures of PAR1?/? oligodendroglia. Moreover, application of a small molecule inhibitor of PAR1 (SCH79797) to OPCs in vitro increased PLP and MBP expression. Enhancements in myelination associated with PAR1 genetic deletion were also observed in adulthood as evidenced by higher amounts of MBP and thickened myelin sheaths across large, medium, and small diameter axons. Enriched spinal cord myelination in PAR1?/? mice was coupled to increases in extracellular‐signal‐regulated kinase 1/2 and AKT signaling developmentally. Nocturnal ambulation and rearing activity were also elevated in PAR1?/? mice. These studies identify the thrombin receptor as a powerful extracellular regulatory switch that could be readily targeted to improve myelin production in the face of white matter injury and disease. GLIA 2015;63:846–859  相似文献   

20.
Oligodendrocytes(OLs) are glial cells that form myelin sheaths around axons in the central nervous system(CNS).Loss of the myelin sheath in demyelinating and neurodegenerative diseases can lead to severe impairment of movement.Understanding the extracellular signals and intracellular factors that regulate OL differentiation and myelination during development can help to develop novel strategies for enhancing myelin repair in neurological disorders.Here,we report that TAPP1 was selectively expressed in differentiating OL precursor cells(OPCs).TAPP1 knockdown promoted OL differentiation and myelin gene expression in culture.Conversely,over-expression of TAPP1 in immature OPCs suppressed their differentiation.Moreover,TAPP1 inhibition in OPCs altered the expression of Erk1/2 but not AKT.Taken together,our results identify TAPP1 as an important negative regulator of OPC differentiation through the Mek/Erk signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号