首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin, one of the most important adaptations of vertebrates, is essential to ensure efficient propagation of the electric impulse in the nervous system and to maintain neuronal integrity. In the central nervous system (CNS), the development of oligodendrocytes and the process of myelination are regulated by the coordinated action of several positive and negative cell-extrinsic factors. We and others previously showed that secretases regulate the activity of proteins essential for myelination. We now report that the neuronal α-secretase ADAM17 controls oligodendrocyte differentiation and myelin formation in the CNS. Ablation of Adam17 in neurons impairs in vivo and in vitro oligodendrocyte differentiation, delays myelin formation throughout development and results in hypomyelination. Furthermore, we show that this developmental defect is, in part, the result of altered Notch/Jagged 1 signaling. Surprisingly, in vivo conditional loss of Adam17 in immature oligodendrocytes has no effect on myelin formation. Collectively, our data indicate that the neuronal α-secretase ADAM17 is required for proper CNS myelination. Further, our studies confirm that secretases are important post-translational regulators of myelination although the mechanisms controlling CNS and peripheral nervous system (PNS) myelination are distinct.  相似文献   

2.
During central nervous system development, oligodendrocyte progenitors (OLPs) establish multiple branched processes and axonal contacts to initiate myelination. A complete understanding of the molecular signals implicated in cell surface interaction to initiate myelination/remyelination is currently lacking. The objective of our study was to assess whether Cdon, a cell surface protein that was shown to participate in muscle and neuron cell development, is involved in oligodendrocyte (OLG) differentiation and myelination. Here, we demonstrate that endogenous Cdon protein is expressed in OLPs, increasing in the early differentiation stages and decreasing in mature OLGs. Immunocytochemistry of endogenous Cdon showed localization on both OLG cell membranes and cellular processes exhibiting puncta‐ or varicosity‐like structures. Cdon knockdown with siRNA decreased protein levels by 62% as well as two myelin‐specific proteins, MBP and MAG. Conversely, overexpression of full‐length rat Cdon increased myelin proteins in OLGs. The complexity of OLGs branching and contact point numbers with axons were also increased in Cdon overexpressing cells growing alone or in coculture with dorsal root ganglion neurons (DRGNs). Furthermore, myelination of DRGNs was decreased when OLPs were transfected with Cdon siRNA. Altogether, our results suggest that Cdon participates in OLG differentiation and myelination, most likely in the initial stages of development. GLIA 2016;64:1021–1033  相似文献   

3.
Dobson NR  Zhou YX  Flint NC  Armstrong RC 《Glia》2008,56(3):318-330
Expression of Musashi1 (Msi1), an evolutionarily conserved RNA-binding protein, in neural stem cells of the subventricular zone in the postnatal and adult CNS indicates a potential role in the generation of oligodendrocytes. We now show Msi1 expression in a subset of oligodendrocyte progenitor (OP) cells in white matter areas temporally and spatially associated with oligodendrogenesis in the postnatal CNS. Msi1 function was evaluated by infection of OP cells with retroviral transduction of Msi1 or knockdown of endogenous Msi1. Retroviral expression of Msi1 significantly reduced the proportion of mature oligodendrocytes generated from OP cells in vitro and in vivo during myelination. Msi1 transduction also promoted OP survival, particularly under conditions of challenge from oxidative stress, while Msi1 siRNA knockdown resulted in dramatic OP cell death. Furthermore, in experimental demyelination Msi1 expression was increased among cells associated with lesions, including OP cells, indicating a potential role in the generation of remyelinating oligodendrocytes.  相似文献   

4.
In the central nervous system, oligodendrocyte precursor cells are exclusive in their potential to differentiate into myelinating oligodendrocytes. Oligodendrocyte precursor cells migrate within the parenchyma and extend cell membrane protrusions that ultimately evolve into myelinating sheaths able to wrap neuronal axons and significantly increase their electrical conductivity. The subcellular force generating mechanisms driving morphological and functional transformations during oligodendrocyte differentiation and myelination remain elusive. In this review, we highlight the mechanical processes governing oligodendrocyte plasticity in a dynamic interaction with the extracellular matrix.  相似文献   

5.
Toll-like receptors (TLRs) play a key role in controlling innate immune responses to a wide variety of pathogen-associated molecules as well as endogenous signals. In addition, TLR expression within nonimmune cells has been recognized as as modulator of cell behavior. In this study we have addressed the question of whether functional TLRs are expressed on oligodendrocytes, the myelinating cells of the central nervous system. Primary cultures of rat oligodendrocytes at different maturation stages were found to express TLR2 and, to lesser extent, TLR3. Immunocytochemical analysis revealed that both TLRs were localized at the cell body and primary processes and were excluded from myelin-like membranes. Interestingly, innate immune receptor ligands were able to modulate oligodendrocyte survival, differentiation, and myelin-like membrane formation, indicating that TLRs on oligodendrocytes are functional. In highly purified oligodendrocytes cultures, the TLR2 agonist zymosan promoted survival, differentiation, and myelin-like membrane formation, whereas poly-I:C, a TLR3 ligand, was a potent inducer of apoptosis. Together, these data indicate that, in addition to other neural cell types, also oligodendrocytes express functional TLRs, which play a role in regulating various aspects of oligodendrocyte behavior.  相似文献   

6.
Oligodendrocyte precursors originate in the ventral ventricular zone of the developing spinal cord. To examine whether the notochord is essential for the development of oligodendrocytes in Xenopus spinal cord the notochord was prevented from forming, ablated, or transplanted during early stages of development. Differentiated oligodendrocytes did not appear in spinal cord regions lacking a notochord in animals in which notochord failed to develop after UV irradiation at the one-cell stage. Similarly, differentiated oligodendrocytes were not detected in the spinal cord adjacent to the site of segmental notochord ablation at embryonic or larval stages. Transplantation of an additional notochord dorsal to the spinal cord induced the premature appearance of differentiated oligodendrocytes in adjacent lateral and dorsal spinal cord white matter. These results indicate that the development of Xenopus spinal cord oligodendrocytes is dependent on local influences from the notochord and suggest that the notochord is essential for oligodendrocyte development in Xenopus spinal cord. J. Neurosci. Res. 47:361–371, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Type III neuregulin-1 promotes oligodendrocyte myelination   总被引:1,自引:0,他引:1  
The axonal signals that regulate oligodendrocyte myelination during development of the central nervous system (CNS) have not been established. In this study, we have examined the regulation of oligodendrocyte myelination by the type III isoform of neuregulin-1 (NRG1), a neuronal signal essential for Schwann cell differentiation and myelination. In contrast to Schwann cells, primary oligodendrocytes differentiate normally when cocultured with dorsal root ganglia (DRG) neurons deficient in type III NRG1. However, they myelinate type III NRG1-deficient neurites poorly in comparison to wild type cultures. Type III NRG1 is not sufficient to drive oligodendrocyte myelination as sympathetic neurons are not myelinated even with lentiviral-mediated expression of NRG1. Mice haploinsufficient for type III NRG1 are hypomyelinated in the brain, as evidenced by reduced amounts of myelin proteins and lipids and thinner myelin sheaths. In contrast, the optic nerve and spinal cord of heterozygotes are myelinated normally. Together, these results implicate type III NRG1 as a significant determinant of the extent of myelination in the brain and demonstrate important regional differences in the control of CNS myelination. They also indicate that oligodendrocyte myelination, but not differentiation, is promoted by axonal NRG1, underscoring important differences in the control of myelination in the CNS and peripheral nervous system (PNS).  相似文献   

8.
The AA dimeric form of platelet-derived growth factor (PDGF-AA) is implicated in the differentiation of cells of the oligodendrocyte lineage, which express PDGF receptors of the alpha subunit type (PDGF-αR). In the present study, we show that a single injection of PDGF-AA into the cerebrospinal fluid of neonatal rats delays oligodendrocyte differentiation and interrupts the progress of myelination in the anterior medullary velum (AMV), a white matter tract roofing the IVth ventricle of the brain. PDGF-AA or saline was injected intrathecally in postnatal day (P) 7 rats, and the AMV was subsequently removed and immunolabelled with the oligodendrocyte-specific antibody Rip, at P9, P12, and P21, corresponding to postinjection days (PID) 2, 5, and 14. At P9 (PID2), myelination was retarded in PDGF-AA-treated rats as opposed to saline-treated controls but progressed rapidly after P12 (PID5). Quantification supported the qualitative observations that PDGF-AA mediated an acute decrease in the number of Rip+ oligodendrocytes at P9–12, which largely recovered by P21, suggesting that PDGF-AA may have delayed recruitment of myelinating oligodendrocytes. However, the definitive number of Rip+ oligodendrocytes in the AMV was not increased, suggesting that its action as a promoter of early oligodendrocyte survival may not ultimately affect the definitive number of myelinating oliogdendrocytes in vivo. We discuss the possibilities that excess PDGF-AA may have acted on early oligodendrocytes (precursors or preoligodendrocytes) to either (1) delay their differentiation by maintaining them in the cell cycle or (2) accelerate their differentiation, which may result in premature cell death in the absence of synchronised survival signals. This study supports a role for PDGF-AA in the timing of oligodendrocyte differentiation in vivo, as has been shown in vitro. J. Neurosci. Res. 48:588–596, 1997. © 1997 Wiley-Liss Inc.  相似文献   

9.
10.
Oligodendrocyte development may be divided into three distinct stages: I) commitment of neuroectoderm cells to the oligodendrocyte lineage, II) migration of precursors into the surrounding parenchyma concomitant with increased proliferation, and III) cessation of migration and proliferation and initiation of myelination. Stage II of development has remained enigmatic because of the paucity of known molecules that distinguish these immature migratory cells. We describe a novel surface protein, termed OlP-1, which is restricted in expression to this developmental stage in the mouse. Cytofluorographic comparisons with known developmental markers showed OlP-1 to be expressed primarily by stage II precursors in vitro. Histologic analyses supported this conclusion by showing co-localization of OlP-1 with stage II molecules in vivo. Two conclusions were drawn from these results. First, OlP-1 was a novel protein expressed by murine oligodendrocyte precursors at a point in development that suggested a role in migration or proliferation. Second, dispersal of OlP-1–positive cells throughout the developing brain did not correlate with the location of myelination which, observed days later, progressed in a caudal to rostral manner. These data supported the concept that the final steps of maturation and myelin gene expression may be dependent upon extrinsic factors located predominantly within white matter tracts. J. Neurosci. Res. 50:591–604, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
12.
Myelination is regulated by extracellular proteins, which control interactions between oligodendrocytes and axons. Semaphorins are repulsive axon guidance molecules, which control the migration of oligodendrocyte precursors during normal development and possibly in demyelinating diseases. We show here that the transmembrane semaphorin 6A (Sema6A) is highly expressed by myelinating oligodendrocytes in the postnatal mouse brain. In adult mice, Sema6A expression is upregulated in demyelinating lesions in cuprizone‐treated mice. The analysis of the optic nerve and anterior commissure of Sema6A‐deficient mice revealed a marked delay of oligodendrocyte differentiation. Accordingly, the development of the nodes of Ranvier is also transiently delayed. We also observed an arrest in the in vitro differentiation of purified oligodendrocytes lacking Sema6A, with a reduction of the expression level of Myelin Basic Protein. Their morphology is also abnormal, with less complex and ramified processes than wild‐type oligodendrocytes. In myelinating co‐cultures of dorsal root ganglion neurons and purified oligodendrocytes we found that myelination is perturbed in absence of Sema6A. These results suggest that Sema6A might have a role in myelination by controlling oligodendrocyte differentiation. © 2012 Wiley Periodicals, Inc  相似文献   

13.
14.
Role for the oligodendrocyte cytoskeleton in myelination   总被引:9,自引:0,他引:9  
Enriched cultures of rat brain oligodendrocytes were extracted with a buffer that separated the cells into a Triton X-100-soluble fraction and an insoluble cytoskeleton (CSK) residue. The buffer was optimised so that intact microtubules were preserved in the CSK residue. The partition of four myelin proteins between the soluble and the CSK fractions was determined by immunoblotting and immunofluorescence. Immunoblotting showed that two integral membrane proteins of myelin, the proteolipid protein (PLP) and the DM-20 protein, were completely extracted under these conditions. By contrast, a substantial amount of myelin basic protein (MBP) and to a lesser extent 2,3-cyclic nucleotide-3-phosphohydrolase (CNP) remained associated with the CSK residue. The association of these proteins with the CSK was confirmed by immunofluorescence. A remarkable difference in the distribution of microfilaments and microtubules was observed in oligodendrocytes. Immature cells possessed many fine processes that were rich in microfilaments. The cell body of these oligodendrocytes was devoid of microfilaments but did contain microtubules. Furthermore, a close association between CNP and microfilaments and between MBP and microtubules was revealed after detergent lysis. The strong interaction between CNP and filamentous actin was underlined by their concomitant disappearance from the extremities of the cell at a later stage of development when extensive membrane sheets had formed. Mature cells had fewer, thicker processes than younger cells and their processes contained microtubules, not microfilaments. MBP was present throughout the thick processes and the membrane sheets. These observations suggest roles for CNP and MBP at distinct stages of myelin process formation and support a directive role for the oligodendrocyte's CSK in the formation of myelin.  相似文献   

15.
During development or after brain injury, oligodendrocyte precursor cells (OPCs) differentiate into oligodendrocytes to supplement the number of oligodendrocytes. Although mechanisms of OPC differentiation have been extensively examined, the role of epigenetic regulators, such as histone deacetylases (HDACs) and DNA methyltransferase enzymes (DNMTs), in this process is still mostly unknown. Here, we report the differential roles of epigenetic regulators in OPC differentiation. We prepared primary OPC cultures from neonatal rat cortex. Our cultured OPCs expressed substantial amounts of mRNA for HDAC1, HDAC2, DNMT1, and DNMT3a. mRNA levels of HDAC1 and HDAC2 were both decreased by the time OPCs differentiated into myelin-basic-protein expressing oligodendrocytes. However, DNMT1 or DNMT3a mRNA level gradually decreased or increased during the differentiation step, respectively. We then knocked down those regulators in cultured OPCs with siRNA technique before starting OPC differentiation. While HDAC1 knockdown suppressed OPC differentiation, HDAC2 knockdown promoted OPC differentiation. DNMT1 knockdown also suppressed OPC differentiation, but unlike HDAC1/2, DNMT1-deficient cells showed cell damage during the later phase of OPC differentiation. On the other hand, when OPCs were transfected with siRNA for DNMT3a, the number of OPCs was decreased, indicating that DNMT3a may participate in OPC survival/proliferation. Taken together, these data demonstrate that each epigenetic regulator has different phase-specific roles in OPC survival and differentiation.  相似文献   

16.
In most mammals, retinal ganglion cell axons are unmyelinated in the retina. The same axons become myelinated in the optic nerve. Various studies suggest that retinal ganglion cell axons are also in principle, myelination competent intraretinally and that non-neuronal factors at the retinal end of the optic nerve prevent the migration of oligodendrocyte progenitor cells into the retina. To test this hypothesis directly, we injected oligodendrocyte progenitor cells into the retina of young postnatal rats. We observed massive myelination of ganglion cell axons in the retina 1 month after cell transplantation. Electron microscopic analysis revealed that intraretinal segments of ganglion cell axons were surrounded by central nervous system myelin sheaths with a normal morphology. Our results thus provide direct evidence for the myelination competence of the intraretinal part of rat retinal ganglion cell axons. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
Insulin-like growth factor I (IGF-I) and high concentrations of insulin have been shown to stimulate an increase in the number of oligodendrocytes that appear in developing monolayer cultures of rat brain cells (McMorris et al., Proc Natl Acad Sci USA 83: 822-826, 1986; McMorris et al., Ann NY Acad Sci 605:101-109, 1990; McMorris and Dubois-Dalcq, J Neurosci Res 21:199-209, 1988). In the present study, we investigated whether IGF-I or insulin treatment induces a corresponding increase in the synthesis and accumulation of myelin. Aggregate cultures, established from 16-day-old fetal rat brains, were treated with either 100 ng/ml IGF-I or 5,000 ng/ml insulin and analyzed for the number of oligodendrocytes, activity of 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNP), total amount of myelin, and synthesis rate of myelin proteins. Cultures treated with IGF-I beginning on day 2 after explantation contained 35-80% more oligodendrocytes and had 60-160% higher CNP activity than controls when tested on day 13, 20, or 27. By day 27, treated cultures had 35-90% more myelin than controls. Similar results were observed in response to 5,000 ng/ml insulin, a concentration at which insulin binds to IGF receptors and acts as an analogue of IGF-I. The synthesis rate of myelin proteins was measured in experiments using 5,000 ng/ml insulin. When treatment was begun at day 20 rather than day 2, cultures did not exhibit an increased number of oligodendrocytes over control during the following 4-6 days.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
Guardiola-Diaz HM  Ishii A  Bansal R 《Glia》2012,60(3):476-486
Myelination is the culmination of a complex process in which oligodendrocyte (OL) progenitors transition through defined stages in a well-coordinated differentiation program. The signaling mechanisms that regulate this progression are poorly understood. Here we investigate the role of extracellular signal-regulated-kinase-1,-2 (Erk1/2) and the mammalian target of rapamycin (mTOR), downstream effectors of the Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways, at specific stages of OL development in vitro. Using a panel of developmental stage-specific antigenic markers and pharmacological inhibitors, we provide evidence that Erk1/2 signaling regulates transition of early progenitors to the late progenitor stage and, as a consequence, to the immature OL stage, but not the transition of immature OL to the mature OL stage. In contrast, mTOR signaling is not required for early progenitor transition to late progenitor stage. Surprisingly, it is also not required for the transition of late progenitors to terminally differentiated immature OLs, as has been reported previously, but is required for the next sequential transition of immature OLs to the mature OL stage. Furthermore, mTOR signaling regulates OL cytoskeletal organization and major myelin protein expression. These in vitro findings correlate with our in vivo data showing that inhibition of mTOR by rapamycin injection attenuated the onset of myelination in the early postnatal brain. Thus, these studies demonstrate that Erk1/2 and mTOR signaling sequentially regulates distinct stages of OL progenitor differentiation and suggest that cells in the OL-lineage require distinct signaling mechanisms to transition through specific stages of their development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号