首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 μg 10B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague–Dawley (SD) rats were studied by administrating 25 mg 10B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4–6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.  相似文献   

2.
We have already synthesized a boron-containing polymeric micellar drug delivery system for boron neutron capture therapy (BNCT). The synthesized diblock copolymer, boron-terminated copolymers (Bpin-PLA-PEOz), consisted of biodegradable poly(D,l-lactide) (PLA) block and water-soluble polyelectrolyte poly(2-ethyl-2-oxazoline) (PEOz) block, and a cap of pinacol boronate ester (Bpin). In this study, we have demonstrated that synthesized Bpin-PLA-PEOz micelle has great potential to be boron drug delivery system with preliminary evaluation of biocompatibility and boron content.  相似文献   

3.
4.
目的 设计用于硼中子俘获治疗(BNCT)的超热中子束理论方案。方法 基于清华大学试验核反应堆,以其1号孔道为材料布放孔道,设计了由慢化材料、热中子吸收材料、γ屏蔽材料组成,但材料布放位置具有差异的5种理论方案;利用蒙特卡罗(MC)模拟方法,分别计算5种方案束出口处的中子注量率、剂量率及γ剂量率值,通过与BNCT技术指标对比,从5种方案中选择一种合适的方案。结果 得到了一个符合BNCT各项技术指标的超热中子束理论方案,其慢化材料厚度为53.5 cm、热中子吸收材料厚度为2 mm、γ屏蔽材料厚度为9 cm。结论 本研究给出的超热中子束理论方案为基于反应堆实现BNCT提供一定的理论参考。  相似文献   

5.
硼中子俘获治疗(BNCT)利用中子与肿瘤细胞中富集的硼发生特异性俘获反应, 可以定向杀死癌细胞。为了验证中子放疗计划的准确性, 保障患者的治疗效果, 需要在治疗前进行剂量验证, 即对比分析实验照射剂量与计划剂量。目前, BNCT剂量测量方法主要包括电离室法、热释光法、活化法等点剂量测量方法, 基于胶片的二维剂量测量方法, 以及基于凝胶剂量仪的三维剂量测量方法。本文总结了国际上BNCT剂量验证方法的进展, 讨论了这些方法的发展前景。  相似文献   

6.
A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.  相似文献   

7.
A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the 7Li(p,n)7Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91–2.5 MeV, 2–4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the 7Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.  相似文献   

8.
Tolerance of normal human brain to boron neutron capture therapy.   总被引:2,自引:0,他引:2  
Data from the Harvard-MIT and the BNL Phase I and Phase I/II clinical trials, conducted between 1994 and 1999, have been analyzed and combined, providing the most complete data set yet available on the tolerance of the normal human brain to BPA-mediated boron neutron capture therapy. Both peak (1cm(3)) dose and average whole-brain dose show a steep dose-response relationship using somnolence syndrome as the clinical endpoint. Probit analysis indicates that the doses associated with a 50% incidence for somnolence (ED(50)+/-SE) were 6.2+/-1.0 Gy(w) for average whole-brain dose and 14.1+/-1.8 Gy(w) for peak brain dose.  相似文献   

9.
This paper discusses the use of a General Electric PETtrace cyclotron as a neutron source for boron neutron capture therapy. In particular, the standard PETtrace (18)O target is considered. The resulting dose from the neutrons emitted from the target is evaluated using the Monte Carlo radiation transport code MCNP at different depths in a brain phantom. MCNP-simulated results are presented at 1, 2, 3, 4, 5, 6, 7, and 8 cm depth inside this brain phantom. Results showed that using a PETtrace cyclotron in the current configuration allows treating tumors at a depth of up to 4 cm with reasonable treatment times. Further increase of a beam current should significantly improve the treatment time and allow treating tumors at greater depths.  相似文献   

10.
Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a (7)Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.  相似文献   

11.
12.
The effect of boron neutron capture therapy (BNCT) is correlated with the density of boron in the tumour. BNCT using intra-arterial administration of boron compounds was performed for recurrent head and neck cancer. Of the five patients treated, one achieved a complete response and four achieved a partial response. There was one case of transient headache but no severe adverse effects were observed. The advantages of using an intra-arterial administration route for BNCT, which causes the selective killing of tumour cells, might offer a new option in the treatment of recurrent head and neck malignancies. These promising results require further verification and optimization of the BNCT schedule; however, dose escalation would appear to be justified because the toxicity appears to be very low.  相似文献   

13.
Monte-Carlo computer codes have been used to estimate the distribution of doses to borated and unborated tissues in head-sized phantoms when exposed to beams of 2 keV and 24 keV neutrons. For the application of such beams to boron neutron capture therapy (BNCT) these calculations show the superiority of 2 keV neutrons over 24 keV neutrons and the importance of using large-area beams. A 24 keV neutron beam has been used to irradiate HeLa cell cultures in vitro, with and without the addition of 10B, at various depths within a narrow polyethylene phantom. Survival data obtained from these experiments have been used to estimate depth-damage profiles for normal (unboronated) and tumour (boronated) brain tissues when exposed to 24 keV neutrons. A good differential between damage to normal and tumorous tissue is obtained under suitable irradiation conditions. Although lower-energy neutrons are probably preferable, these results demonstrate the possibility of using beams of 24 keV neutrons for the BNCT of brain tumours.  相似文献   

14.
The purpose of this study was to compare the radiation dose between long-survivors and non-long-survivors in patients with glioblatoma (GBM) treated with boron neutron capture therapy (BNCT). Among 23 GBM patients treated with BNCT, there were five patients who survived more than three years after diagnosis. The physical and weighted dose of the minimum gross tumor volume (GTV) of long-survivors was much higher than that of non-long survivors with significant statistical differences.  相似文献   

15.
Recent achievements in design and synthesis of boronated acids, amino acids, glycerols as well as conjugates of polyhedral boron hydrides (ortho-carborane, closo-dodecaborate and cobalt bis(dicarbollide)) with natural porphyrins, carbohydrates and nucleosides are described.  相似文献   

16.
Clinical results of boron neutron capture therapy (BNCT) for glioblastoma   总被引:1,自引:0,他引:1  
The purpose of this study was to evaluate the clinical outcome of BSH-based intra-operative BNCT (IO-BNCT) and BSH and BPA-based non-operative BNCT (NO-BNCT). We have treated 23 glioblastoma patients with BNCT without any additional chemotherapy since 1998. The median survival time (MST) of BNCT was 19.5 months, and 2-year, 3-year and 5-year survival rates were 26.1%, 17.4% and 5.8%, respectively. This clinical result of BNCT in patients with GBM is superior to that of single treatment of conventional radiotherapy compared with historical data of conventional treatment.  相似文献   

17.
18.
Boron neutron capture therapy (BNCT) is an experimental cancer treatment modality requiring the targeting of (10)B-enriched compounds to the tumor, which is then irradiated by low-energy neutrons. One of the boron-containing compounds used for this purpose is the mercaptoborane Na(2)B(12)H(11)SH (BSH). The first in vivo MR images of (10)B-enriched BSH are presented here. BSH, injected into the tail vein of mice with implanted M2R melanoma xenografts, was imaged using 3D gradient echo (10)B MRI. (10)B NMR spectroscopy, localized mainly to the tumor by virtue of the use of a small surface coil, was applied to measure the T(1) (2.9 +/- 0.3 ms) and T(2) (1.75 +/- 0.25 ms) values of the (10)B signal. The MRI experiments detected levels of about 20 ppm (microg boron / g tissue) at 6 x 6 x 6 mm spatial resolution in a total scan time of 16 min. Magn Reson Med 46:13-17, 2001.  相似文献   

19.
The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n = 8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n = 4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n = 6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4+/-4.2 Gy, 15.7+/-1.2 and 13.9+/-3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8+/-1.3 Gy in positive and was 12.6+/-4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8+/-3.8 Gy in positive and was 13.6+/-4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor exists in speech center.  相似文献   

20.
Gel dosimetry has been studied mainly for medical applications. The radiation induced ferric ions concentration can be measured by different techniques to be related with the absorbed dose. Aiming to assess gamma/thermal neutrons dose from research reactors, Fricke gel and alanine gel solutions produced at IPEN using 300 bloom gelatin were mixed with Na2B4O7 salt, and the mixtures were irradiated at the beam hole #3 of the IEA-R1 research reactor, (BH#3) adapted to BNCT studies, and the dose-response was evaluated using spectrophotometry technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号