首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

At present, there is no published data examining the effect of relative humidity on the electrostatic charges of dry powder inhaler aerosols. The charging behaviour of two commercial products, Pulmicort® and Bricanyl® Turbuhalers®, were investigated using an electrical low pressure impactor (ELPI).

Methods

ELPI was successfully modified to disperse the aerosols at 60 l/min. Four doses from each new inhaler were sampled at 15, 40, 65, and 90% RH. Particles deposited on the impactor stages according to their aerodynamic diameters and their charges were measured simultaneously by the electrometers. The drug in each size fraction was quantified using HPLC.

Results

Both products generated bipolar charges. The charging behaviour of the two types of inhaler showed different humidity dependence although the mass output was not significantly affected. The absolute specific charge of budesonide fine particles from Pulmicort® was the lowest at 40% RH but increased at lower and higher RHs. In contrast, the terbutaline sulfate fine particles from Bricanyl® followed the expected trend of charge reduction with increasing RH.

Conclusions

The distinct trends of charging of aerosols from Pulmicort® and Bricanyl® Turbuhalers® was explained by differences in hygroscopicity and other physicochemical factors between the two drugs.  相似文献   

2.
The objective of this study was to assess the performance of SCF-engineered budesonide and albuterol sulfate powder blends in passive dry powder inhalers (DPI) relative to micronized drug blends. A number of lactose grades for inhalation were screened and the appropriate carrier and drug-to-lactose blending ratio were selected based on drug content and emitted dose uniformity. Aerosol performance was characterized by Andersen cascade impaction. Blend formulations of SEDS (solution enhanced dispersion by supercritical fluids) budesonide and albuterol exhibited a significant drug content uniformity (7-9% RSD) improvement over micronized drug blends (16-20% RSD). Further, the SEDS formulations demonstrated higher emitted dose and reduced emitted dose variability (10-12% RSD) compared to micronized powders (21-25% RSD) in the Turbospin, albeit without significant enhancement of the fine particle fraction. In contrast, SEDS powders exhibited increased fine particle fractions over micronized blends in the Clickhaler; improvements were more pronounced with albuterol sulfate. The performance enhancements observed with the SEDS powders are attributed to their increased surface smoothness and reduced surface energy that are presumed to minimize irreversible drug-carrier particle interactions, thus resulting in more efficient drug detachment from the carrier particle surface during aerosolization. As demonstrated for budesonide and albuterol, SEDS may enhance performance of lactose blends and thus provide an attractive particle engineering option for the development of blend formulations for inhalation delivery.  相似文献   

3.

Purpose

To investigate, for the first time, the performance of a dry powder inhaler (DPI, Aerolizer®) in the case of a model drug (i.e. albuterol sulphate) formulated with spray dried mannitol carrier particles with homogeneous shape and solid–state form but different sizes.

Methods

Spray dried mannitol (SDM) particles were characterized in terms of size, surface area, morphology, water content, solid–state, density and electrostatic charge by a novel approach. DPI formulations composed of SDM and albuterol sulphate (AS) were prepared and evaluated in terms of drug content homogeneity and in vitro aerosolization performance.

Results

All SDM particles generated similar fine particle fractions of AS. Formulations consisting of larger SDM particles demonstrated better drug content homogeneity, reduced amounts of drug loss and reduced oropharyngeal deposition. Comparing different SDM products demonstrated that SDM powders with relatively poorer flowability, wider size distributions and higher charge density generated DPI formulations with poorer drug content homogeneity and deposited higher amount of drug on the inhaler, mouthpiece adaptor and throat. DPI formulation total desirability increased linearly with the mean diameter of SDM.

Conclusion

Particle shape and solid–state form of mannitol could dominate over carrier size, bulk density, flowability and charge in terms of determining the aerosolization behaviour of AS formulated with mannitol carrier, at least within the experimental protocols applied in the present study.  相似文献   

4.
Dry powder aerosol performance of albuterol and albuterol sulfate from a model dry powder inhaler (DPI) was studied under varying environmental conditions using a twin stage impinger (TSI). Pure micronized drug was metered into the DPI and the loaded inhaler inserted into the inlet of the TSI housed in a pre-equilibrated environmental chamber. After 3 min, the drug was aerosolized at 60 1/min for 20 s. Washings from the DPI and TSI were analyzed by UV spectroscopy. Temperature and relative humidity (RH) were varied (20, 30 and 45°C; 30–95% RH). Drug collected in stage 2 of the TSI was expressed as fine particle dose or fine particle percent of either the loaded dose or the amount emitted from the mouthpiece of the DPI. These values decreased with increasing relative humidity for both albuterol and albuterol sulfate at any given temperature with differences being more marked at higher temperatures. For example, at 30°C, the mean(experimental range) fine particle percent of the emitted dose of albuterol sulfate was 59.4(3.1) and 35.8(5.7)% at 43 and 85% RH, respectively, n = 3 (p < 0.05). Increasing temperature also resulted in diminished aerosol performance. These differences were more marked for albuterol sulfate. The fine particle percent of the emitted dose of albuterol base was always greater than that of albuterol sulfate under similar environmental conditions. The reverse was true when fine particle percents of the loaded dose were considered because only 32 +- 6.6% of the loaded albuterol was emitted from the inhaler as compared to 58.5 +- 6.3% of albuterol sulfate mean +- SD, n = 27). There is a need, in some circumstances, to define specific ranges of temperature and humidity for the testing of dry powder aerosols.  相似文献   

5.
Purpose. To study the effect of particle size, air flow and inhaler type on the dispersion of spray dried mannitol powders into aerosols. Methods. Mannitol powders were prepared by spray drying. The solid state properties of the powders were determined by laser diffraction, X-ray powder diffraction, scanning electron microscopy, freeze fracture, Karl Fischer titration and gas pycnometry. The powders were dispersed using Rotahaler® and Dinkihaler®, connected to a multistage liquid impinger at different air flows. Results. Three crystalline mannitol powders with primary particle size (MMD) 2.7, 5.0, 7.3 m and a similar polydispersity were obtained. The particles were spherical with a density of 1.5 g/cm3 and a moisture content of 0.4 wt.%. At an air flow of 30 L/min all the powders were poorly dispersed by both inhalers. With the Rotahaler® increasing the flow (60–120 L/min) increased the fine particle fraction (FPF) in the aerosols for the 2.7 m powder, and decreased the FPF for the 7.3 m powder; whereas the FPF for 5.0 m powder was unaffected. With the Dinkihaler®, all the powders were near complete dispersion at 60 L/min. Conclusions. The FPF in the mannitol powder aerosols was determined by an interplay of the particle size, air flow and inhaler design.  相似文献   

6.
Aerosols formed by three salts and the free base of albuterol were compared following their formation from similarly micronized crystalline powders held in a model dry powder inhaler (DPI) under varying environmental conditions. Aqueous solubility at 22°C was the greatest for albuterol adipate diethanolate (353 mg/ml), followed by albuterol sulfate (250 mg/ml), albuterol free base (15.7 mg/ml) and albuterol stearate (0.6 mg/ml). Temperature and relative humidity (RH) of the air drawn through the inhaler was systematically varied in the range 20–45°C and 30–95% RH. Several inhaler performance outcomes were compared statistically between physical forms and across the applied environmental conditions. Significant differences (P < 0.05) existed between powder forms with respect to emptying of the metering disk, inhaler emptying, powder deaggregation, fine particle dose (mass < 6.4 μm aerodynamic diameter), and each compound's susceptibility to temperature and relative humidity. The free base emptied poorly from the inhaler compared to all salt forms. Inhaler emptying for all four compounds was unaffected by temperature and humidity over most environments tested (P > 0.05) although only albuterol adipate diethanolate and albuterol sulfate were insensitive at 94% RH and 45°C. At 20°C and 50% RH, the fine particle percent of the emitted doses [mean (experimental range)] were 77.7 (7.3)%, 63.6 (4.2)%, 9.0 (1.8)% and 55.7 (3.4)% for the free base, sulfate, adipate diethanolate and stearate salts of albuterol, respectively. Fine particle doses and percents of albuterol and albuterol sulfate decreased progressively with increasing relative humidity and temperature while albuterol adipate diethanolate and albuterol stearate aerosol performance remained largely unaffected; these latter salts showed changes in fine particle percents only at 45°C and 95% RH although the adipate diethanolate deaggregated very poorly under all conditions. Overall, albuterol stearate, the most hydrophobic salt, emptied and aerosolized best from the inhaler and showed least sensitivity to temperature and humidity. Neither solubility nor moisture sorption correlated directly with inhaler performance in high humidity environments, showing that the multiplicity of factors controlling the quality of the emitted aerosol from DPIs prevents straightforward prediction of optimal physical forms and mandates their experimental review. Nevertheless, salt selection is an important area to screen as new compounds are developed for inhalation and DPI device performance continues to improve.  相似文献   

7.

Purpose

This work investigated the effect of relative humidity (RH) on bipolar electrostatic charge profiles of dry powder inhaler aerosols using the Bipolar Charge Analyzer (BOLAR).

Methods

Two commercial products, Pulmicort® (400 μg, budesonide) and Bricanyl® (500 μg, terbutaline sulfate) Turbuhaler®, were used as model dry powder inhalers (DPIs) in this study. Three individual doses from each Turbuhaler® were sampled at 15, 40, 65 and 90% RH. Subsequently, charge and mass profiles were determined for each dispersion.

Results

The aerosols from these two Turbuhaler® DPI were bipolarly charged, with larger particles carrying negative charge and smaller particles positive charge. Particles changed polarity around 2.60–4.17 μm and 0.95–2.60 μm for Pulmicort® and Bricanyl®, respectively. The effect of RH on particles differed between DPIs even though the mass output was not significantly affected. The net charge profiles of Pulmicort® were relatively independent of RH, whereas those of Bricanyl® showed a reduction in the charge magnitude with increasing RH. Both positive and negative charge profiles followed a similar trend with the change in RH and individually they had higher magnitudes than the measured net charge.

Conclusions

This study showed drug-specific bipolar charging of the Turbuhaler® DPI aerosols at varied RHs. Bricanyl® was more susceptible to RH and showed decreased bipolar and net charge levels with increasing RH, in comparison to Pulmicort®.
  相似文献   

8.
Hollow Porous Particles in Metered Dose Inhalers   总被引:5,自引:0,他引:5  
Purpose. To assess the physical stability and aerosol characteristicsof suspensions of hollow porous microspheres (PulmoSpheres) inHFA-134a. Methods. Cromolyn sodium, albuterol sulfate, and formoterol fumaratemicrospheres were prepared by a spray-drying method. Particle sizeand morphology were determined via electron microscopy. Particleaggregation and suspension creaming times were assessed visually,and aerosol performance was determined via Andersen cascadeimpaction and dose uniformity studies. Results. The hollow porous particle morphology allows the propellantto permeate freely within the particles creating a novel form ofsuspension termed a homodispersion, wherein the dispersed and continuousphases are identical, separated by an insoluble interfacial layer of drugand excipient. Homodispersion formation improves suspension stabilityby minimizing the difference in density between the particles andthe medium, and by reducing attractive forces between particles. Theimproved physical stability leads to excellent dose uniformity. Excellentaerosolization efficiencies are also observed with PulmoSpheresformulations, with fine particle fractions of about 70%. Conclusions. The formation of hollow porous particles provides anew formulation technology for stabilizing suspensions of drugs inhydrofluoroalkane propellants with improved physical stability, contentuniformity, and aerosolization efficiency.  相似文献   

9.
Purpose. This study describes the production of a budesonide nanosuspension by high-pressure homogenization for pulmonary delivery from 40 mL up to 300 mL. The aim was to obtain a nanosuspension that can be nebulized and is also long-term stable. Methods. The nanosuspension was produced by high-pressure homogenization. Particle size analysis was performed by laser diffraction and photon correlation spectroscopy. For further particle characterization, zeta potential was determined. To investigate the aerosolization properties, the nanosuspension was nebulized and afterward analyzed on particle size. Results. It was possible to obtain a long-term stable budesonide nanosuspension. Mean particle size of this nanosuspension was about 500-600nm, analyzed by photon correlation spectroscopy. Analysis by laser diffraction showed that the diameters 95% and 99% were below 3 m. Budesonide nanosuspension showed a long-term stability; no aggregates and particle growth occurred over the examined period of 1 year. The PCS diameter before and after aerosolization did not change, and the LD diameters increased negligibly, showing the suitability for pulmonary delivery. The scale-up from 40 mL up to 300 mL was performed successfully. Conclusions. High-pressure homogenization is a production method to obtain nanosuspensions with budesonide for pulmonary application.  相似文献   

10.
Purpose. To evaluate micronized powder retention and detachment from inhaler surfaces following reproducible deposition by impaction, coupled with centrifugal particle detachment (CPD). Methods. Micronized albuterol sulfate (AS) and beclomethasone dipropionate (BDP) were aerosolized as dry powders and deposited by cascade impaction onto different contact surfaces. Drug detachment from the surfaces was characterized using CPD, coupled with HPLC assay and scanning electron microscopy. Results. Drugs which accumulated as aggregates on model surfaces detached with distinctive profiles for % remaining vs. applied centrifugal force; each profile showed reproducible values for the minimum force required to initiate drug detachment, Fyield. While differences occurred in the observed detachment profiles for different drugs and contact surfaces (polyacetal vs. aluminum), the deposited drug particle size had the most significant effect on these profiles, e.g., Fyield for AS (2.1-3.3 m) was 383 12.7 N compared with 18 13.8 N for AS (4.7-5.8 m). Conclusions. A technique was developed which enabled the experimental review, and subsequent data analysis, of the adhesive properties between different DPI construction materials and drug substances deposited from aerosol clouds. The technique appears to be of greater relevance to inhaler design decisions than earlier studies in the literature claiming to show differences in the adhesion of single drug particles to surfaces.  相似文献   

11.
Dry powder formulations are often composed of fine drug particles and coarser carrier particles, typically alpha-lactose monohydrate. However, the performance of a powder formulation may be highly dependent on the lactose quality and source. This study investigated the characteristics of lactose that influence the drug-to-carrier interaction and the performance of lactose-based dry powder inhaler formulations. The selected lactoses differed in the preparation processes and the content of fine lactose particles. Efficiency testing was done using fluticasone propionate and terbutaline sulphate as model drugs. Inverse gas chromatography was used to determine the surface heterogeneity distribution of different energy sites of the lactose and to understand the mechanism by which the fine carrier particles can improve the performance of dry powder inhalers. To assess the adhesion of respirable-sized drug to carrier particles, a simple method was developed based on aspiration and considering the whole blend as it is used in dry powder inhalers. When the percentage of fine lactose is high, a lower quantity of drug adheres to the lactose and/or the adhesion force is also lower. This was confirmed by the aerosolization assays done in the TSI (twin stage impinger). A correlation was observed between adhesion characteristics and inertial impaction. For both drugs, the fine particle fractions were highest in blends that present a greater proportion of lactose fine particles. A fairly good correlation between the fine particle fractions of both drugs and the peak max value and the AUC (area under curve) were found by inverse gas chromatography. With higher fine particle fraction values, which correspond to higher content of fines, the peak maxima determined by inverse gas chromatography were shifted to higher adsorption potentials, which supports the agglomeration hypothesis.  相似文献   

12.
Introduction: Early dry powder inhalers (DPIs) were designed for low drug doses in asthma and COPD therapy. Nearly all concepts contained carrier-based formulations and lacked efficient dispersion principles. Therefore, particle engineering and powder processing are increasingly applied to achieve acceptable lung deposition with these poorly designed inhalers.

Areas covered: The consequences of the choices made for early DPI development with respect of efficacy, production costs and safety and the tremendous amount of energy put into understanding and controlling the dispersion performance of adhesive mixtures are discussed. Also newly developed particle manufacturing and powder formulation processes are presented as well as the challenges, objectives, and new tools available for future DPI design.

Expert opinion: Improved inhaler design is desired to make DPIs for future applications cost-effective and safe. With an increasing interest in high dose drug delivery, vaccination and systemic delivery via the lungs, innovative formulation technologies alone may not be sufficient. Safety is served by increasing patient adherence to the therapy, minimizing the use of unnecessary excipients and designing simple and self-intuitive inhalers, which give good feedback to the patient about the inhalation maneuver. For some applications, like vaccination and delivery of hygroscopic formulations, disposable inhalers may be preferred.  相似文献   


13.
Both the dose delivered from the device and the particle size of the medication are important parameters for inhalation products because they influence the amount of drug that is delivered to the patient's lung. The inspiratory flow rate may vary from dose to dose in a given patient and between patients. The Marple-Miller Cascade Impactor, a new multistage inertial impactor that operates at two flow rates (30 and 60 liters/min) with comparable particle size cut-offs, provides a means to study the effect of inhalation flow rate on the particle size distributions of inhalation products. The medication delivery, mass median aerodynamic diameter (MMAD), and fine particle mass were determined, in a randomized fashion, for albuterol, beclomethasone, budesonide, and terbutaline in both metered dose inhaler (MDI) and dry powder inhaler (DPI) products as a function of flow rate. In all cases, independent of drug or device used, the MDI products had a more reproducible respirable dose than the breath-actuated DPI products tested as a function of inhalation flow rate.  相似文献   

14.

Purpose

This study aimed to characterize inherent charge generated by micron-sized drug-only formulations of amorphous and crystalline salbutamol sulfate (SS).

Methods

Amorphous SS was produced by spray-drying whilst crystalline SS was produced by conditioning spray-dried SS with supercritical CO2 and menthol. Electrostatic charge of the powders was characterized in two ways. Firstly, the charge profile of the aerosols dispersed from an Aerolizer® was measured using a modified Electrostatic Low Pressure Impactor (ELPI?). Secondly, the net charge of the bulk powders generated from tumbling in containers composed of different materials (polyethylene, polyvinyl chloride, Teflon, nylon and stainless steel) was measured by a Faraday pail.

Results

Following aerosolization, crystalline SS appeared to show more consistent charging and mass deposition than amorphous SS. In the tumbling experiment crystalline SS had a significant correlation between net charge and work function, which was absent in amorphous SS. This may be due to the long-range crystal packing which was reflected as more predictable charging. In addition, the polarity of charging was attributed to the arrangement of SS molecules in the crystal lattice.

Conclusions

The effect of crystallinity on the electrostatic charge behavior of inhalable micron-sized spherical drug particles with well-defined particle size distribution was investigated for the first time. The knowledge gained may assist in the development of optimized inhaled pharmaceutical products.  相似文献   

15.
Background: The hygroscopicity of raffinose carrier for dry powder inhaler (DPI) was the main obstacle for its further application. Hygroscopicity-induced agglomeration would cause deterioration of aerosolization performance of raffinose, undermining the delivery efficiency.

Methods: Cyclodextrin-raffinose binary carriers (CRBCs) were produced by spray-drying so as to surmount the above issue. Physicochemical attributes and formation mechanism of CRBCs were explored in detail. The flow property of CRBCs was examined by FT4 Powder Rheometer. Hygroscopicity of CRBCs was elucidated by dynamic vapor sorption study. Aerosolization performance was evaluated by in vitro deposition profile and in vivo pharmacokinetic profile of CRBC based DPI formulations.

Results: The optimal formulation of CRBC (R4) was proven to possess anti-hygroscopicity and aerosolization performance enhancement properties. Concisely, the moisture uptake of R4 was c.a. 5% which was far lower than spray-dried raffinose (R0, c.a. 65%). R4 exhibited a high fine particle fraction value of 70.56 ± 0.61% and it was 3.75-fold against R0. The pulmonary and plasmatic bioavailability of R4 were significantly higher than R0 (p < 0.05).

Conclusion: CRBC with anti-hygroscopicity and aerosolization performance enhancement properties was a promising approach for pulmonary drug delivery, which could provide new possibilities to the application of hygroscopic carriers for DPI.  相似文献   


16.
Purpose. The purpose of this study is to investigate the effect of drug load, the coating of impactor stages, and the design of cascade impactors on albuterol MDIs particle size distribution measurements. The results of the investigation will be used to explain the 'loading effect' recently reported. Methods. Particle size distribution parameters of a commercial albuterol MDI were measured using both Andersen (AI) and Marple-Miller (MMI) Cascade Impactors, where plates were either left uncoated or coated with silicone or glycerin. A previously validated HPLC-EC method was used for the assay of albuterol collected by the impactor and in single spray content determinations. Results. Coating impactor collection plates had an impact on measured MM AD and GSD values for single puff measurements but very little or no effect for the multi puff measurements. Due to particle bounce, the percent of albuterol fine particles deposited in the filter and impactor finer stages (<1.10 m in AI and <1.25 m in MMI) in uncoated single puff experiments was much higher in comparison to either coated single puff or multi-puff (coated and uncoated) measurements. Conclusions. Evaluation of drug load and plate coating are necessary to determine whether observed particle size distributions are representative of the generated aerosol or are the result of particle bounce and reentrainment. In order to minimize particle bounce, especially for single puff determinations, it may be useful to apply a thin layer of a sticky coating agent to the surfaces of impactor plates.  相似文献   

17.
Metered dose inhalers (MDIs) are complex drug-device combination products widely used to treat pulmonary disorders. The efficacy, driven by aerosol performance of the products, depends on a multitude of factors including, but not limited to, the physicochemical properties of drug and nature and amount of excipient(s). Under the quality by design (QbD) paradigm, systematic investigations are necessary to understand how changes in critical quality attributes (CQAs) of formulation, device, and manufacturing process influence key product performance parameters, such as delivered dose (DD) and fine particle dose (FPD). The purpose of this work is to provide a better understanding of the effects of different levels of excipients and drug particle size distribution on the aerosol performance of MDI products, while using two fundamentally different MDI products as relevant model systems, Proventil® HFA (albuterol sulfate suspension) and Qvar® (beclomethasone dipropionate solution). These MDI products, as model systems, provided mid-points around which a design of experiments (DOE), consisting of 22 suspension and 9 solution MDI formulations, were defined and manufactured. The DOE included formulations factors with varying ethanol (2 to 20% w/w and 7 to 9% w/w for the suspension and solution, respectively) and oleic acid concentrations (0.005 to 0.25% w/w and 0 to 2% w/w for the suspension and solution, respectively) and drug volumetric median particle size distribution (PSD D50, 1.4 to 2.5 μm for the suspension). The MDI formulations were analyzed using compendial methods to elucidate the effect of these formulation variables (ethanol, oleic acid, and PSD D50) on DD and FPD. The outcomes of this study allowed defining design spaces for the formulation factors, such that DD and FPD would remain within specific pre-defined requirements. The systematic approach utilized in this work can contribute as a QbD tool to evaluate the extent to which the formulation factors govern the aerosol performance of MDI drug products, helping to design MDI formulations with desired product performance parameters.  相似文献   

18.
Purpose. To correlate the surface energy of active and carrier components in an aerosol powder to in vitro performance of a passive dry powder inhaler. Methods. Inverse gas chromatography (IGC) was used to assess the surface energy of active (albuterol and ipratropium bromide) and carrier (lactose monohydrate, trehalose dihydrate and mannitol) components of a dry powder inhaler formulation. Blends (1%w/w) of drug and carrier were prepared and evaluated for dry powder inhaler performance by cascade impaction. The formulations were tested with either of two passive dry powder inhalers, Rotahaler® (GlaxoSmithKline) or Handihaler® (Boehringer Ingelheim). Results. In vitro performance of the powder blends was strongly correlated to surface energy interaction between active and carrier components. Plotting fine particle fraction vs. surface energy interaction yielded an R2 value of 0.9283. Increasing surface energy interaction between drug and carrier resulted in greater fine particle fraction of drug. Conclusions. A convincing relationship, potentially useful for rapid formulation design and screening, was found between the surface energy and area parameters derived from IGC and dry powder inhaler performance.  相似文献   

19.

Background

The aim of this work was to develop dry powder inhaler (DPI) formulations of salbutamol sulfate (SS) by the aid of solid lipid microparticles (SLmPs), composed of biocompatible phospholipids or cholesterol.

Methods

The SLmPs were prepared by using two different solvent systems (ethanol and water-ethanol) and lipid carriers (dipalmitoylphosphatidylcholine (DPPC) and cholesterol) with/without L-leucine in the spray drying process. The spray-dried microparticles were physically-mixed with coarse lactose monohydrate in order to make our final DPI formulations and were investigated in terms of physical characteristics as well as in vitro drug release profile and aerosolization behavior.

Results

We observed significant differences in the sizes, morphologies, and in vitro pulmonary depositions between the formulations. In particular, the SS-containing SLmPs prepared with water-ethanol (30:70 v/v) solution of DPPC and L-leucine which had then been blended with coarse lactose (1:9 w/w) exhibited the highest emitted dose (87.9%) and fine particle fraction (42.7%) among the formulations. In vitro drug release study indicated that despite of having a significant initial burst release for both cholesterol and DPPC-based microparticles, the remained drug released more slowly than the pure drug.

Conclusion

This study demonstrated the potential of using lipid carriers as well as L-leucine in DPI formulations of SS to improve its aerosolization behavior and retard the release profile of the drug.  相似文献   

20.
Introduction: Gene therapy is a potential alternative to treat a number of diseases. Different hurdles are associated with aerosol gene delivery due to the susceptibility of plasmid DNA (pDNA) structure to be degraded during the aerosolization process. Different strategies have been investigated in order to protect and efficiently deliver pDNA to the lungs using non-viral vectors. To date, no successful therapy involving non-viral vectors has been marketed, highlighting the need for further investigation in this field.

Areas covered: This review is focused on the formulation and delivery of DNA to the lungs, using non-viral vectors. Aerosol gene formulations are divided according to the current delivery systems for the lung: nebulizers, dry powder inhalers and pressurized metered dose inhalers; highlighting its benefits, challenges and potential application.

Expert opinion: Successful aerosol delivery is achieved when the supercoiled DNA structure is protected during aerosolization. A formulation strategy or compounds that can protect, stabilize and efficiently transfect DNA into the cells is desired in order to produce an effective, low-cost and safe formulation. Nebulizers and dry powder inhalers are the most promising approaches to be used for aerosol delivery, due to the lower shear forces involved. In this context it is also important to highlight the importance of considering the ‘pDNA-formulation-device system’ as an integral part of the formulation development for a successful nucleic acid delivery.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号