首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The in vitro metabolism of chlorotriazines, simazine (SIZ), atrazine (ATZ) and propazine (PRZ) in liver microsomes from rat, mouse and guinea pig and the oestrogenic activity of chlorotriazines and their main metabolites have been studied. 2. The formation rates of products in chlorotriazine metabolism were determined by HPLC. The principal reactions catalysed by the cytochrome P450 (P450) system were N- monodealkylation and isopropylhydroxylation in all liver microsomes. As a result, 2- chloro-4-ethylamino-6-amino-1,3,5-triazine (M1) (SIZ-M1 for SIZ and ATZ-M1 for ATZ) and 2-chloro-4-amino-6-isopropylamino-1,3,5-triazine (M2) (ATZ-M2 for ATZ and PRZ-M2 for PRZ), and 2-chloro-4-ethylamino-6-(1-hydroxyisopropylamino)-1,3,5- triazine (M3)(ATZ-M3for ATZ) and 2-chloro-4-isopropylamino-6-(1-hydroxyisopropylamino)-1,3,5-triazine (M4) (PRZ-M4 for PRZ) were detected as the metabolites. N- bidealkylation was not found in this system. 3. The formation rates of N-deethylated metabolites (SIZ-M1 and ATZ-M2) were generally higher in mouse than in rat and guinea pig. The formation rates of N- deisopropylated metabolites (ATZ-M1 and PRZ-M2) in guinea pig were the lowest among the three animal species. The formation rates of isopropylhydroxylated metabolites (ATZM3 and PRZ-M4) were remarkably low in mouse compared with rat and guinea pig. 4. The enzyme kinetics of chlorotriazine metabolism were examined by Eadie-Hofstee analyses. Some species differences in Michaelis-Menten parameters for each metabolite were observed, and the ranking orders were varied among the metabolites. 5. The binding affinity of chlorotriazines (SIZ, ATZ and PRZ) and their metabolites (M1-4) for recombinant human oestrogen receptor-alpha was assayed using the fluorescence polarization method. The binding a nity of M2 was significantly higher than those of parent compounds and other metabolites, although the oestrogenic activity was remarkably low compared with that of 17 beta-oestradiol (E2). 6. These results suggest that the pattern of metabolism of SIZ, ATZ and PRZ by the P450 system differs extensively among rat, mouse and guinea pig, and that M2 may be an activated metabolite of chlorotriazines.  相似文献   

2.
The in vitro metabolism of chlorotriazines, simazine (SIZ), atrazine (ATZ), and propazine (PRZ) was studied using control, 3-methylcholanthrene-, phenobarbital-, pyridine-, dexamethasone-, and clofibrate-treated rat liver microsomes. The metabolites were determined by HPLC. The principal reactions by cytochrome P450 (P450) system were N-monodealkylation and isopropylhydroxylation in all rat liver microsomes. As a result, 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (M1) (SIZ-M1 for SIZ and ATZ-M1 for ATZ) and 2-chloro-4-amino-6-isopropylamino-1,3, 5-triazine (M2) (ATZ-M2 for ATZ and PRZ-M2 for PRZ), 2-chloro-4-ethylamino-6-(1-hydroxyisopropylamino)-1,3,5-triazine (M3) (ATZ-M3 for ATZ), and 2-chloro-4-isopropylamino-6-(1-hydroxyisopropylamino)-1,3,5-triazi ne (M4) (PRZ-M4 for PRZ) were detected as the metabolites. N-bidealkylation and 2-hydroxylation were not found in this system. The formation rates of SIZ-M1, ATZ-M1, ATZ-M2, and PRZ-M2 were markedly induced by 3-methylcholanthrene, phenobarbital, and pyridine. On the other hand, the formation rates of ATZ-M3 and PRZ-M4 were significantly induced by phenobarbital, pyridine, and/or clofibrate, but not by 3-methylcholanthrene. The enzyme kinetics of chlorotriazine metabolism were examined by mean of Eadie-Hofstee analyses. Although there was no remarkable difference of Km for the products in chlorotriazine metabolism among the microsomes tested, the Vmax and Clint (Vmax/Km) for the products in chlorotriazine metabolism are affected by P450 inducers, except for dexamethasone. The formation rates of SIZ-M1, ATZ-M1, ATZ-M2, and PRZ-M2 were significantly correlated with 7-ethoxyresorufin O-deethylase, acetanilide 4-hydroxylase, 7-ethoxycoumarin O-deethylase, 4-nitrophenol 2-hydroxylase, and testosterone 7alpha-hydroxylase activities and CYP1A1/2 level, whereas the formation rates of ATZ-M3 and PRZ-M4 were significantly correlated with testosterone 16beta-hydroxylase, bufuralol 1'-hydroxylase, and 4-nitrophenol 2-hydroxylase activities and CYP2B1/2 level. These results suggest that the inducibility in metabolism of SIZ, ATZ, and PRZ is different between N-monodealkylation and isopropylhydroxylation and that the N-monodealkylation and isopropylhydroxylation are induced by CYP1A1/2, CYP2B1/2, and CYP2B1/2, respectively.  相似文献   

3.
This study estimated the kinetic constants for oxidative metabolism of atrazine (ATRA) and its chlorotriazine (Cl-TRI) metabolites, 2-chloro-4-ethylamino-6-amino-1,3,5-triazine (ETHYL), 2-chloro-4-amino-6-isopropylamino-1,3,5-triazine (ISO), and diaminochlorotriazine (DACT), using freshly isolated rat hepatocytes. Hepatocytes were incubated with 1.74, 44, 98, and 266 microM ATRA. Disappearance of ATRA and formation of the Cl-TRI metabolites were quantified over 90 min. At all incubation concentrations, ATRA was preferentially metabolized to ETHYL, producing ETHYL concentrations approximately 6 times higher than those of ISO. DACT concentrations peaked at 44 microM ATRA and decreased with increasing incubation concentrations, indicating non-linear metabolic behavior of ATRA with respect to DACT formation. A series of kinetic models were developed from these data to describe the dose and time-dependent oxidative metabolism of ATRA and the Cl-TRI metabolites. An integrated model for all the chloro-triazines included multi-substrate competitive inhibition of metabolism to describe the non-linear behavior of DACT production in relation to ATRA while simultaneously simulating the time-course behavior of the Cl-TRIs at all four ATRA concentrations. The maximal metabolic rate (V(max)) of ATRA metabolism and the Michaelis-Menten constant (K(M)) for the reaction were 1.6 microM/min and 30 microM, respectively. V(max) and K(M) values for ETHYL and ISO metabolism to DACT were also estimated using this modeling approach.  相似文献   

4.
Assays for dominant lethal mutations, sex-linked recessive lethal mutations, and chromosomal breakage, nondisjunction and loss were performed on Drosophila melanogaster males treated by injection or by larval feeding of the herbicides atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), cyanazine [2-chloro-4-(1-cyano-1-methylethylamino)-6-ethylamino-1,3,5-triazine], or simazine [2-chloro-4,6-bis-(ethylamino)-1,3,5-triazine]. The three herbicides significantly increased the rate of apparent dominant lethals, but this reduction in egg hatch was probably due to physiologic toxicity to sperm. Atrazine significantly increased X-linked recessive lethals and X or Y loss after treatment by larval feeding. Injection of simazine elevated X-linked lethals, whereas treatment by larval feeding did not. None of these herbicides significantly increased partial loss of the Y chromosome nor sex chromosome nondisjunction. Much larger experiments are needed to determine with confidence the mutagenic potential of these herbicides.  相似文献   

5.
Chlorotriazine herbicides disrupt luteinizing hormone (LH) release in female rats following in vivo exposure. Although the mechanism of action is unknown, significant evidence suggests that inhibition of LH release by chlorotriazines may be mediated by effects in the central nervous system. GABA(A) receptors are important for neuronal regulation of gonadotropin releasing hormone and LH release. The ability of chlorotriazine herbicides to interact with GABA(A) receptors was examined by measuring their effects on [3H]muscimol, [3H]Ro15-4513 and [35S]tert-butylbicyclophosphorothionate (TBPS) binding to rat cortical membranes. Cyanazine (1-400 microM) inhibited [3H]Ro15-4513 binding with an IC50 of approximately 105 microM (n=4). Atrazine (1-400 microM) also inhibited [3H]Ro15-4513 binding, but was less potent than cyanazine (IC50 = 305 microM). However, the chlorotriazine metabolites diaminochlorotriazine, 2-amino-4-chloro-6-ethylamino-s-triazine and 2-amino-4-chloro-6-isopropylamino-s-triazine were without significant effect on [3H]Ro15-4513 binding. Cyanazine and the other chlorotriazines were without effect on [3H]muscimol or [35S]TBPS binding. To examine whether cyanazine altered GABA(A) receptor function, GABA-stimulated 36Cl- flux into synaptoneurosomes was examined. Cyanazine (50-100 microM) alone did not significantly decrease GABA-stimulated 36Cl- flux. Diazepam (10 microM) and pentobarbital (100 microM) potentiated GABA-stimulated 36Cl- flux to 126 and 166% of control, respectively. At concentrations of 50 and 100 microM, cyanazine decreased potentiation by diazepam to 112 and 97% of control, respectively, and decreased potentiation by pentobarbital to 158 and 137% of control (n = 6). Interestingly, at lower concentrations (5 microM), cyanazine shifted the EC50 for GABA-stimulated 36Cl- flux into synaptoneurosomes from 28.9 to 19.4 microM, respectively (n = 5). These results suggest that cyanazine modulates benzodiazepine, but not the muscimol (GABA receptor site) or TBPS (Cl- channel), binding sites on GABA(A) receptors. Furthermore, at low concentrations, cyanazine may slightly enhance function of GABA(A) receptors, but at higher concentrations, cyanazine antagonizes GABA(A) receptor function and in particular antagonizes the positive modulatory effects of diazepam and pentobarbital.  相似文献   

6.
A series of 2-[[(dialkylamino)alkyl]amino]-4,6-bis(trichloromethyl)-1,3,5-triazines (III) and N-(4-chlorophenyl)-N'-[4-[[(dialkylamino)alkyl]amino]-6- (trichloromethyl)-1,3,5-triazin-2-yl]guanidines (IV) were prepared from 2,4,6-tris(trichloromethyl)-1,3,5-triazine and 2-chloro-4,6-bis(trichloromethyl)-1,3,5-triazine. Compounds of type III showed modest antimalarial activity while XIa with the camoquin side chain was more potent. Analogues of type IV broadly exhibited modest antimalarial activity.  相似文献   

7.
Synthesis and Biochemical Properties of Substituted Phenoxy- and Anilino-1,3,5-triazines The nucleophilic substitution of one chlorine atom in 2,4-dichloro-6-diethylamino-1,3,5-triazine (1) by reaction with the hydroxyacetophenones 2a–c leads to the 2-acetylphenoxy-4-chloro-6-diethylamino-1,3,5-triazines 3a–c. Analogously, reaction of 1 with 4-fluoroaniline (4a) yields the monoanilino derivative 5a. However, under the same conditions, the dianilino derivative 5b is formed from 1 and 2-fluoroaniline (4b). Compounds of type 3 exhibit activity against fungi and protozoa, while 5 has herbicidal activity.  相似文献   

8.
The effects of four major chlorotriazine metabolites on the constitutive synthesis of the catecholamines dopamine (DA) and norepinephrine (NE) were examined, using undifferentiated PC12 cells. NE release and intracellular DA and NE concentrations were quantified, for up to 24 h after initiation of treatment with different concentrations, ranging from 0 to 400 microM, of the metabolites hydroxyatrazine (HA), 2-amino-4-chloro-6-isopropylamino-s-triazine (deethylchlorotriazine), 2-amino-4-chloro-6-ethylamino-s-triazine (deisopropylchlorotriazine), and diaminochlorotriazine (DACT). Hydroxyatrazine significantly decreased intracellular DA and NE concentrations in a dose- and time-dependent manner. This metabolite also caused a significant inhibition of NE release from the cells. In contrast, deethylchlorotriazine and deisopropylchlorotriazine significantly increased intracellular DA concentration following exposure to 50-200 microM from 12 to 24 h. Intracellular NE was significantly reduced at these same concentrations of deethylchlorotriazine at 24 h while the concentration of NE in PC12 cells exposed to deisopropylchlorotriazine was not altered at any dosage or time point measured. NE release was decreased at 18 (200 microM) and 24 h (100 and 200 microM) following exposure to deethylchlorotriazine and at 24 h (100 and 200 microM) following deisopropylchlorotriazine. DACT, at the highest concentration (160 microM), significantly increased intracellular DA and NE concentrations at 18 and 24 h. NE release was also increased at 40-160 microM at 24 h. The viability of the PC12 cells was tested using the trypan blue exclusion method. Following 18 to 24 h of treatments with HA, cell viability was reduced 10-12% at the two higher concentrations (200 and 400 microM), but, with other metabolites, the viability was reduced by only 2 to 5% at the highest concentrations. These data indicate that HA affects catecholamine synthesis and release in PC12 cells in a manner that is similar to synthesis of atrazine and simazine. On the other hand, deethylchlorotriazine and deisopropylchlorotriazine altered catecholamine synthesis in a manner similar to that observed in the rat brain following in vivo exposure (i.e., increased DA and decreased NE concentration), whereas DACT appeared to produce an increase in NE release as well as in the intracellular DA and NE concentrations. Overall, these findings suggest that the catecholamine neurons may be a target for the chlorotriazines and/or their metabolites, that the metabolites produce a unique pattern of catecholamine response, and that all of the changes were seen within the same range of doses.  相似文献   

9.
The metabolism of bromobenzene was studied in the rat and guinea pig with respect to three considerations: the dose and species dependence of 3-bromophenol excretion; the formation of methylthio analogs of dihydrodiols and catechols; and the identification of acidic bivalent sulfur metabolites. In the guinea pig, 3-bromophenol was the major monohydric phenolic metabolite under conditions of both relatively low and relatively high dosage. In the rat, 3-bromophenol and 4-bromophenol were formed in approximately equal amounts. 2-Bromophenol was a minor metabolite in both species. Methylthio analogs of dihydrodiols were found as guinea pig, but not rat, metabolites. Two di(methylthio)dihydroxytetrahydrobromobenzene metabolites were excreted by the rat but not by the guinea pig. These methylthio compounds have not been reported in earlier studies of bromobenzene metabolism. In the guinea pig, the acidic urinary metabolites were a mercaptoacetate, a mercaptolactate, and a mercapturate. In the rat, the acidic metabolites were a mercapturic acid and premercapturic acids. This species difference in urinary acids indicates a difference in acetylation/deacetylation processes for cysteine conjugates.  相似文献   

10.
1,3,5-Substituted indoles and indazoles have been studied as receptor antagonists of the peptidoleukotrienes. The best of these compounds generally had a methyl group at the N1 position, a [(cyclopentyloxy)carbonyl]amino or 2-cyclopentylacetamido or N'-cyclopentylureido group at the C-5 position, and an arylsulfonyl amide group as part of the acidic chain at the C-3 position of the ring. Such compounds had in vitro dissociation constants (KB) in the range 10(-9) - 10(-11) M on guinea pig trachea against LTE4 as agonist and inhibition constants (Ki) less than or equal to 10(-9) M on guinea pig parenchymal membranes against [3H]LTD4. A number of compounds were orally effective at doses less than or equal to 1 mg/kg in blocking LTD4-induced "dyspnea" in guinea pigs. Compound 45 [N-[4-[[5-[[(cyclopentyloxy)carbonyl]-amino]-1-methylindol-3- yl]methyl]-3-methoxybenzoyl]-2-methylbenzenesulfonamide, ICI 204,219; pKB = 9.67 +/- 0.13, Ki = 0.3 +/- 0.03 nM, po ED50 = 0.3 mg/kg] is currently under clinical investigation for asthma. In the indole series, certain alkylsulfonyl amides possessing a 3-cyanobenzyl substituent at the N-1 position (60, 61) were produced that had KB less than or equal to 10(-9) M on guinea pig trachea.  相似文献   

11.
1. The absorption, distribution, metabolism and excretion of 6-chloro-2- pyridylmethyl nitrate, a new anti-anginal compound, were investigated in rats and dogs after intravenous and peroral administration of the 14C-labelled or unlabelled drug. 2. The half-lives of plasma levels for the alpha and beta phase and systemic availability were 6 min, 42 min and 26-50% respectively in rats, and 8 min, 66 min and 5% respectively in dogs. 3. Radioactivity was rapidly distributed in the tissues of rats, and recovered mainly in the 0-24 h urine (95% of dose within 24 h) with no excretion in the expired air. 4. Several metabolites were detected on t.l.c. of rat and dog urine, and four were identified as N-(chloro-2-pyridylcarbonyl)-glycine (M1, 56%), N-acetyl-S-(6- chloro-2-pyridylmethyl)-L-cysteine (M2, 29%), 6-chloro-2-pyridinecarboxylic acid (M3, 5%) and 6-chloro-2-pyridylmethyl. beta-D-glucuronate (M4, 7%). No unchanged drug was excreted.  相似文献   

12.
Synthesis and Trichomonacidal Activity of Di(isopropylamino)-1,3,5-triazines Reactions of 2-chloro-4,6-di(isopropylamino)-1,3,5-triazine (1) with aniline (2a) and its fluoro derivatives 2b-d yield the di(isopropylamino)-1,3,5-triazines 3a-d. Among the drug activities of compounds of type 3 trichomonacidal activity is most pronounced. Particularly marked activity is shown by 3a towards trichomonas vaginalis.  相似文献   

13.
Pharmacodynamic effects of ethyl 7-chloro-2,3-dihydro-5-(2-fluorophenyl)-2-oxo-1H-1,4- benzodiazepine-3-carboxylate (CM6912), a new benzodiazepine derivative, and its main metabolites (CM6913 = M1, CM7116 = M2) on the peripheral systems were investigated in several species of animals. In pentobarbital-anesthetized rabbits, CM6912 and M2 (1 or 5 mg/kg, i.v.) had little effect on blood pressure, heart rate and ECG, but it slightly reduced the respiration rate. M1 decreased the heart rate without affecting respiration, blood pressure and ECG. In conscious rabbits, CM6912 and M2 (1 mg/kg, i.v.) did not affect respiration, blood pressure, heart rate and ECG, but M1 (1 mg/kg, i.v.) increased the heart rate. CM6912 (5 or 30 mg/kg), when administered orally, also increased heart rate. In pentobarbital-anesthetized dogs, CM6912 and its metabolites (5 mg/kg, i.v.) decreased respiration and heart rate without affecting blood pressure and ECG. CM 6912 (5 mg/kg, i.v.) did not affect cardiovascular responses to the carotid occlusion, vagus stimulation, and pre- and post-ganglionic stimulation of cardiac ganglion in anesthetized dogs. CM6912 and its metabolites affected neither the spontaneous contraction nor the heart rate of isolated rabbit atria. These compounds also had no action on isolated aortic strips from rabbits. CM6912 and its metabolites did not affect the muscle tone of isolated guinea pig intestine, and it had no effects on the contractile responses to acetylcholine, histamine, serotonin and barium chloride. In isolated rabbit intestine, CM6912 and M2 slightly reduced the amplitude of contraction, while M1 had no effect. CM6912 and its metabolites did not affect the spontaneous motility of isolated non-pregnant and pregnant rat uteri as well as in situ non-pregnant rat uterus and isolated guinea pig vas deferens, including the contractile response to adrenaline. CM6912 and M2 relaxed isolated guinea pig trachea strips only at high concentrations. CM6912 and its metabolites did not affect the contractile responses of isolated rat diaphragm to electrical stimulation of the phrenic nerve. CM6912 (2 or 10 mg/kg, p.o.) did not affect the rat renal and hepatic functions. CM6912 influenced neither blood coagulation in rabbits nor blood hemolysis in rats. CM6912 and its metabolites did not affect the pupil size and its light reflex, and they did not produce a local anesthesia and edema. The present results suggest that CM6912 and its main metabolites exert only slight effects on the peripheral systems in animals.  相似文献   

14.
1. The in vitro and in vivo metabolism of 2,4,5,2′,4′,5′-hexachlorobiphenyl (PCB153) in guinea pig has been studied. 2. Seven metabolites were detected in the faeces of PCB153-treated animals and three were identical to those produced by dog liver microsomes. The detection of a metabolite where a chlorine atom was shifted from the 2- to 3-position strongly suggested the involvement of 2,3-arene oxide intermediate, and evidence for the concomitant formation of a 3,4-arene oxide intermediate was provided by identifying other two minor metabolites which were dechlorinated at the 4-position. 3. In vitro studies using liver microsomes from guinea pigs revealed that the 2,3-arene oxide and 3-hydroxylation pathways are the predominant metabolic routes compared with the 3,4-arene oxide pathway. Although the guinea pig is an another species that can metabolize PCB153 mainly to the 2,3-arene oxide intermediate, the rate of formation was only about one-tenth of the dog. 4. These results indicate that the ability to form this unusual 2,3-arene oxide intermediate may not be responsible for high excretion rate of this congener. Our data also suggest that the cytochrome P450-catalysed metabolism of PCB153 in the guinea pig and dog are similar, whereas for post-cytochrome P450 metabolism, the guinea pig resembles the rabbit.  相似文献   

15.
1. Metabolic patterns and the extents of metabolism of four drugs, namely [14C]lonazolac (LON), [14C]bromerguride)BRO), [14C]lisuride (LIS) and [3H]terguride (TER) have been studied in three experimental models, namely hepatocyte suspensions of rat, guinea pig, beagle dog and cynomolgus monkey, isolated perfused liver of rat and guinea pig and intact animals (rat, guinea pig, dog and monkey). 2. Selection of compounds was based on differences in phase I metabolic pathways. LON is exclusively hydroxylated in the N-substituting aromatic ring, BRO is mainly N-deethylated in the urea moiety, and LIS and TER are both degraded into numerous metabolites. 3. The decrease in unchanged drug levels in hepatocyte suspensions was characterized by half-lives, with LON as the most stable and LIS as the least stable compound. Marked interspecies differences were found. De-ethylation and aromatic hydroxylation were much slower in rat hepatocytes than in the liver cells of other species; BRO was slowly biodegraded in dog hepatocytes while LIS was broken down extremely quickly. 4. Liver perfusion experiments and studies in vivo were evaluated for the extents of metabolism of each drug. 5. Metabolism studies in hepatocytes did not show any quantitative correlation to those of metabolism in vivo. The suitability of evaluating parameters for in vitro studies is discussed.  相似文献   

16.
We have studied the involvement of nitric oxide (NO) and prostacyclin (PGI2) as well as muscarinic m2 and m3 receptors in the coronary vasodilatation induced by acetylcholine in the isolated hearts of guinea pig and mouse perfused according to the Langendorff method. In the guinea pig heart, a coronary vasodilator response to acetylcholine was profoundly decreased by the NO-synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME, 10(-4) M), while in the mouse heart this response was blocked by the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M). In both cases, the muscarinic m3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 3 x 10(-8) M) blocked the acetylcholine-induced vasodilator response, while the muscarinic m2 antagonist methoctramine (3 x 10(-7) M) had no effect. It was concluded that the vasodilator effect of acetylcholine depends on NO in the coronary circulation of guinea pig and on PGI2 in the coronary circulation of mouse. In both cases, the coronary vasodilation induced by acetylcholine is mediated by muscarinic m3 receptors.  相似文献   

17.
The study reported herein examined the metabolism of 14C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) resulting from a single oral gavage of 5 ml/kg to male and female Yucatan miniature pigs (43 mg/kg, 56 microCi/kg in 0.5% carboxymethylcellulose in water). Blood, urine, and feces were collected at selected times of 1, 6, 12, and 24 h postdose. At 24 h postdose, liver samples were collected. Blood, plasma, liver, and excreta were analyzed for total RDX-derived radioactivity and metabolites were identified. Urine was the major route of elimination of 14C-RDX-derived radioactivity in both males and females. Relatively low levels of radioactivity were found in gastrointestinal contents and in feces, suggesting nearly complete absorption of 14C-RDX following an oral dose. Analysis of urine by liquid chromatography-mass spectrometry (LC/MS) identified quantifiable levels of two ring-cleavage metabolites, 4-nitro-2,4-diazabutanal and 4-nitro-2,4-diaza-butanamide, as well as parent RDX. The 4-nitro-2,4-diazabutanal, was seen in earlier studies of aerobic metabolism of RDX. The 4-nitro-2,4-diaza-butanamide, an amide, was not previously reported but was tentatively identified in this study. Analysis by a more sensitive method (LC/MS/MS) also showed trace amounts of the RDX metabolites 1-nitroso-3,5-dinitro-1,3,5-triazacyclohexane (MNX) (in both male and female urine) and 1-nitro-3,5-dinitroso-1,3,5-triazacyclohexane (DNX) (in male urine). Analysis of plasma by LC/MS/MS also revealed quantifiable levels of RDX and trace levels of MNX, DNX, and 1,3,5-trinitroso-1,3,5-triazacyclohexane (TNX). None of the liver extracts showed quantifiable levels of RDX or any identifiable metabolites. Most of the radioactivity was in the form of water-soluble high-molecular-weight compounds. RDX when given orally to pigs was rapidly metabolized by loss of two nitro groups followed by ring cleavage.  相似文献   

18.
1. Oestrone is rapidly taken up by isolated perfused rat liver (t 1/2 less than 2 min) to yield at least 10 metabolites excreted in the bile; peak concentration occurs after about 20 min. 2. Sulphated metabolites of oestrone appear in the perfusate, reaching peak concentration at about 10 min, and then slowly disappear. 3. Sulphated metabolites of oestrone accumulate in the liver during the first 10 min. They are partly converted to sulphoglucuronides (steroid 3-sulphates conjugated with glucuronic acid in the D ring) and partly hydrolysed to be reconjugated as glucuronides. 4. The major biliary metabolites of oestrone in isolated perfused rat liver are glucuronides and sulphoglucuronides, but free steroids, sulphates and polar metabolites are also so excreted. 5. The isolated perfused guinea pig liver also rapidly takes up oestrone (t 1/2 less than 2 min) but, in contrast to the rat, a single glucuronide is the only quantitatively important metabolite in the bile: it is also extensively secreted into the perfusate where it reaches peak concentration at about 10 min. 6. In perfused guinea pig liver, oestrone does not form sulphoglucuronides, and sulphates are only minor metabolites; this is not due to lack of the appropriate sulphotransferase because oestradiol 17 beta-(beta-D-glucuronide) is extensively sulphated in this system. 7. Oestradiol 17 beta-(beta-D-glucuronide) is not cholestatic in the isolated perfused guinea pig liver although it is in rat liver. 8. There is a similar species difference in the metabolism of dehydroepiandrosterone in the two species: the rat forms sulphoglucuronides, the guinea pig does not. 9. The perfused rat liver extensively hydroxylates, presumably on the D ring, 17-deoxyoestrone and 17-deoxydehydroepiandrosterone. 10. The inability of perfused guinea pig liver to form sulphoglucuronides from oestrone or dehydroepiandrosterone is probably due to its restricted ability to hydroxylate the D ring of steroids. 11. Both rat and guinea pig biles contain beta-glucuronidase, about 80 and 230 sigma units/ml, respectively.  相似文献   

19.
The metabolism of 2,2',3,4',5,5',6-heptachlorobiphenyl (heptaCB) (CB187) was studied using liver microsomes of rats, hamsters and guinea pigs, and the effect of cytochrome P450 (CYP) inducers, phenobarbital (PB) and 3-methylcholanthrene (MC), was also investigated. In untreated animals, guinea pig liver microsomes formed three metabolites which were deduced to be 4'-hydroxy-2,2',3,5,5',6-hexachlorobiphenyl (M-1), 4'-hydroxy-2,2',3,3',5,5',6-heptaCB (M-2) and 4-OH-CB187 (M-3) from the comparison of GC/MS data with some synthetic authentic samples. The formation rate of M-1, M-2 and M-3 was 18.1, 36.6, 14.7 pmol h-1 mg protein-1, respectively. Liver microsomes of untreated rats and hamsters did not form CB187 metabolites. In guinea pigs, PB-treatment increased M-1 and M-2 significantly to 1.9- and 3.4-fold of untreated animals but did not affect the formation of M-3. In rats, PB-treatment resulted in the appearance of M-2 and M-3 with formation rates of 87.1 and 13.7 pmol h-1 mg protein-1, respectively, but M-1 was not observed. In hamsters, PB-treatment formed only M-2 at a rate of 29.4 pmol h-1 mg protein-1. On the other hand, MC-treatment of guinea pigs decreased the formation of M-1 and M-2 to less than 50% of untreated animals. MC-microsomes of rats and hamsters produced no metabolites. Preincubation of antiserum (300 microl) against guinea pig CYP2B18 with liver microsomes of PB-treated guinea pigs produced 80% inhibition of M-1 and the complete inhibition of M-2 and M-3. These results suggest that PB-inducible CYP forms, especially guinea pig CYP2B18, rat CYP2B1 and hamster CYP2B, are important in CB187 metabolism and that CB187 metabolism in guinea pigs may proceed via the formation of 3,4- or 3',4'-oxide and subsequent NIH-shift or dechlorination.  相似文献   

20.
The metabolic fate of 3-chloro-4-fluoroaniline was investigated in rat following intraperitoneal (i.p.) administration at 5 and 50 mg kg(-1) using a combination of HPLC-MS, HPLC-MS/MS, (19)F-NMR spectroscopy, HPLC-NMR spectroscopy and high-pressure liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) with (35)Cl and (34)S detection. The metabolism of 3-chloro-4-fluoroaniline at both doses was rapid and extensive, to a large number of metabolites, with little unchanged compound excreted via the urine. Dosing at 5 mg kg(-1) with [(14)C]-labelled compound enabled the comparison of standard radioassay analysis methods with (19)F-NMR spectroscopy. (19)F-NMR resonances were only readily detectable in the 0-12 h post-dose samples. Dosing at 50 mg kg(-1) allowed the facile and specific detection and quantification of metabolites by (19)F-NMR spectroscopy. Metabolite profiling was also possible at this dose level using HPLC-ICPMS with (35)Cl-specific detection. The principal metabolites of 3-chloro-4-fluoroaniline were identified as 2-amino-4-chloro-5-fluorophenyl sulfate and 2-acetamido-4-chloro-5-fluorophenyl glucuronide. N-acetylation and hydroxylation followed by O-sulfation were the major metabolic transformations observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号