首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
Model for regulation of Escherichia coli DNA repair functions.   总被引:34,自引:5,他引:29       下载免费PDF全文
A feedback loop for the regulation of the rec/lex-mediated DNA repair system is proposed. This model was formulated from experiments on the genetic and metabolic regulation of the rate of synthesis of protein X performed in this laboratory, and from genetic data obtained in other laboratories. Protein X is proposed to prevent DNA degradation by the recBC-coded exonuclease. The model states tht: (1) The lex (or exrA in E. coli B) gene codes for a repressor. (2) This repressor binds to an operator region of DNA consisting of the tif-zab region at 51 minutes on the E. coli chromosome. (3) The operator region controls the production of several proteins involved in DNA repair, including protein X. (4) The recA gene product is required to remove the lex-coded repressor from the operator. Thre recA gene could code for an antirepressor (inducer protein or a protease) or a modifer of recBC nuclease action; (5) Low molecular weight products of DNA degradation are effectors that activate the system. (6) Protein X limits recBC nuclease action by binding to single-stranded DNA.  相似文献   

8.
9.
The combined structural and biochemical studies on Lac repressor bound to operator DNA have demonstrated the central role of the hinge helices in operator bending and the induction mechanism. We have constructed a covalently linked dimeric Lac-headpiece that binds DNA with four orders of magnitude higher affinity as compared with the monomeric form. This enabled a detailed biochemical and structural study of Lac binding to its cognate wild-type and selected DNA operators. The results indicate a profound contribution of hinge helices to the stability of the protein-DNA complex and highlight their central role in operator recognition. Furthermore, protein-DNA interactions in the minor groove appear to modulate hinge helix stability, thus accounting for affinity differences and protein-induced DNA bending among the various operator sites. Interestingly, the in vitro DNA-binding affinity of the reported dimeric Lac construct can de readily modulated by simple adjustment of redox conditions, thus rendering it a potential artificial gene regulator.  相似文献   

10.
11.
The affinity of the Escherichia coli phage 434 operator for phage 434 repressor is affected by changes in the sequence of the noncontacted base pairs near the operator's center. The results presented here show that base composition near the center of the operator affects the operator's affinity for repressor by altering the ease with which the operator can be overtwisted into the proper configuration for complex formation. We show that both DNA flexibility and repressor flexibility influence the strength of the repressor-operator interaction: an operator with a single-strand nick at its center has a higher affinity for repressor than does the intact operator: and a repressor bearing a mutation that results in a relaxed dimer interaction is less sensitive than is wild type to changes in the flexibility of the operator. We show that the effect of noncontacted base pairs on operator affinity is independent of the slight overall bend of the operator seen in the repressor-operator complex. Central sequence effects on affinity for repressor are independent of the identity of adjacent base pairs, suggesting that the structure of the individual base pairs, not interactions between them, are responsible for the different torsional rigidities of different operators.  相似文献   

12.
Genetic and DNA base sequence analyses of cis-dominant mutations that derepress the gal operon of Escherichia coli suggested the existence of two operator loci needed for gal repression. One (OE) is located immediately upstream to the two overlapping gal promoters and the other (OI) is inside the first structural gene. We have investigated the ability of wild-type and mutant OE and OI DNA sequences to bind to gal repressor. The repressor has been purified from cells containing a multicopy plasmid in which the repressor gene is brought under the control of phage lambda PL promoter. The DNA-repressor interactions are detected by the change in electrophoretic mobility of labeled DNA that accompanies its complex formation with repressor protein. The purified repressor shows concentration-dependent binding to both O+E and O+I but not to OEc and OIc sequences. These results authenticate the proposed operator role of the two homologous gal DNA control elements and thereby establish that the negative control of the gal operon requires repressor binding at both OE and OI, which are separated by greater than 90 base pairs.  相似文献   

13.
Prokaryotic repressor-operator systems provide exemplars for the sequence-specific interactions between DNA and protein. The crucial atomic contacts of the two macromolecules are attained in a compact, geometrically defined structure of the DNA-protein complex. The pitch of the DNA interface seems an especially sensitive part of this architecture because changes in its length introduce new spacing and rotational relations in one step. We discovered a natural system that may serve as a model for investigating this problem: the repressor of the 16-3 phage of Rhizobium meliloti (helix-turn-helix class protein) possesses inherent ability to accommodate to various DNA twistings. It binds the cognate operators, which are 5'-ACAA-4 bp-TTGT-3' (O(L)) and 5'-ACAA-6 bp-TTGT-3' (O(R)) and thus differ 2 bp in length, and consequently the two half-sites will be rotated with respect to each other by 72 degrees in the idealized B-DNA (64 degrees by dinucleotide steps calculations). Furthermore, a synthetic intermediate (DNA sequence) 5'-ACAA-5 bp-TTGT-3' (O5) also binds specifically the repressor. The natural operators and bound repressors can form higher order DNA-protein complexes and perform efficient repression, whereas the synthetic operator-repressor complex cannot do either. The natural operators are bent when complexed with the repressor, whereas the O5 operator does not show bending in electrophoretic mobility assay. Possible structures of the complexes are discussed.  相似文献   

14.
The nitrocellulose filter assay was used to study the interactions of wild-type (SQ) and tight-binding (QX86) lac repressors with synthetic lac operators 21 and 26 base pairs long. The repressor binding properties of both operators were very similar, indicating that both contain the same specific repressor recognition sites. The repressor-operator association rate constants (k(a)) were more sensitive than dissociation rate constants (k(d)) to changes in ionic strength. The responses of both k(a) and k(d) to ionic strength were relatively small compared to the effects previously observed with lambdah80dlac as operator DNA. These results suggest that under natural conditions there are electrostatic interactions between lac repressor and DNA regions outside of the 26 base pair operator sequence. Association rate constants for SQ repressor with either operator are higher than have been predicted for diffusion-limited reactions. We postulate that long-range electrostatic attractions between repressor and operator accelerate the association reaction. The presence of nonoperator DNA decreased association rate constants, the effect being more noticeable at an ionic strength of 0.05 M than at 0.20 M. Nonoperator DNA reduced k(a) values for associations involving QX86 repressor to a greater extent than for those with SQ repressor. The two types of repressors also had different rate constants for interactions with synthetic operators. The values for k(a) and k(d) were both higher with SQ repressor than with QX86 repressor. However, the rate constants were more sensitive to ionic strength when the repressor used was QX86.  相似文献   

15.
A repressor heterodimer binds to a chimeric operator.   总被引:7,自引:1,他引:6       下载免费PDF全文
Replacement of the solvent-exposed residues of the DNA recognition helix of the 434 repressor with the corresponding residues of the P22 repressor generates a hybrid protein, 434R[alpha 3(P22R)], which binds specifically to P22 operators. We show here that a new DNA-binding specificity is generated by combining 434 and 434R[alpha 3(P22R)] repressor monomers to form a heterodimer. The heterodimer specifically recognizes a chimeric P22/434 operator that lacks two-fold rotational symmetry.  相似文献   

16.
Rapid recognition of DNA target sites involves facilitated diffusion through which alternative sites are searched on genomic DNA. A key mechanism facilitating the localization of the target by a DNA-binding protein (DBP) is one-dimensional diffusion (sliding) in which electrostatic forces attract the protein to the DNA. As the protein reaches its target DNA site, it switches from purely electrostatic binding to a specific set of interactions with the DNA bases that also involves hydrogen bonding and van der Waals forces. High overlap between the DBP patches used for nonspecific and specific interactions with DNA may enable an immediate transition between the two binding modes following target site localization. By contrast, an imperfect overlap may result in greater frustration between the two potentially competing binding modes and consequently slower switching between them. A structural analysis of 125 DBPs indicates frustration between the two binding modes that results in a large difference between the orientations of the protein to the DNA when it slides compared to when it specifically interacts with DNA. Coarse-grained molecular dynamics simulations of in silico designed peptides comprising the full range of frustrations between the two interfaces show slower transition from nonspecific to specific DNA binding as the overlap between the patches involved in the two binding modes decreases. The complex search kinetics may regulate the search by eliminating trapping of the protein in semispecific sites while sliding.  相似文献   

17.
18.
The affinity and stoichiometry of DNA binding by Escherichia coli trp repressor were studied by electrophoresis in nondenaturing gels. The ability of trp repressor to retard the electrophoretic mobility of an operator DNA fragment depends on the pH of the gel system. Above the pI of the protein, little retardation of DNA is observed, although complex formation can be detected by other assays. As the pH of the gel is lowered, retardation is enhanced. The apparent dissociation constant for the interaction between trp repressor and trpEDCBA operator fragments is 0.5 nM under the conditions used here. Nonspecific binding occurs with only about 200-fold weaker affinity. The stoichiometries of specific and nonspecific complexes were determined directly by using trp repressor labeled in vivo. High-affinity operator binding requires a single dimer of trp repressor. DNase I-protection analysis ("footprinting") was used to confirm the dissociation constants and to locate the binding site.  相似文献   

19.
Experimental data from protein engineering studies and NMR spectroscopy have been used by theoreticians to develop algorithms for helix propensity and to benchmark computer simulations of folding pathways and energy landscapes. Molecular dynamic simulations of the unfolding of chymotrypsin inhibitor 2 (CI2) have provided detailed structural models of the transition state ensemble for unfolding/folding of the protein. We now have used the simulated transition state structures to design faster folding mutants of CI2. The models pinpoint a number of unfavorable local interactions at the carboxyl terminus of the single α-helix and in the protease-binding loop region of CI2. By removing these interactions or replacing them with stabilizing ones, we have increased the rate of folding of the protein up to 40-fold (τ = 0.4 ms). This correspondence, and other examples of agreement between experiment and theory in general, Φ-values and molecular dynamics simulations, in particular, suggest that significant progress has been made toward describing complete folding pathways at atomic resolution by combining experiment and simulation.  相似文献   

20.
The mechanisms by which regulatory proteins recognize specific DNA sequences are not fully understood. Here we examine the basis for the stability of a protein-DNA complex, using hydrostatic pressure and low temperature. Pressure converts the DNA-binding Arc repressor protein from a native state to a denatured, molten-globule state. Our data show that the folding and dimerization of Arc repressor in the temperature range 0-20 degrees C are favored by a large positive entropy value, so that the reaction proceeds in spite of an unfavorable positive enthalpy. On binding operator DNA, Arc repressor becomes extremely stable against denaturation. However, the Arc repressor-operator DNA complex is cold-denatured at subzero temperatures under pressure, demonstrating that the favorable entropy increases greatly when Arc repressor binds tightly to its operator sequence but not a nonspecific sequence. We show how an increase in entropy may operate to provide the protein with a mechanism to distinguish between a specific and a nonspecific DNA sequence. It is postulated that the formation of the Arc-operator DNA complex is followed by an increase in apolar interactions and release of solvent which would explain its entropy-driven character, whereas this solvent would not be displaced in nonspecific complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号