首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.  相似文献   

2.
Previous studies have demonstrated paralemmin-3 (PALM3) participates in Toll-like receptor (TLR) signaling. This study investigated the effect of PALM3 knockdown on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and its underlying mechanisms. We constructed a recombinant adenoviral vector containing short hairpin RNA for PALM3 to knockdown PALM3 expression. A transgene-free adenoviral vector was used as a negative control. The ALI rat model was established by LPS peritoneal injection at 48-h post-transfection. Results showed that downregulation of PALM3 improved the survival rate, attenuated lung pathological changes, alleviated pulmonary edema, lung vascular leakage and neutrophil infiltration, inhibited the production of proinflammatory cytokines and activation of nuclear factor κB and interferon β regulatory factor 3, and promoted the secretion of anti-inflammatory cytokine interleukin-10 and expression of suppressor of cytokine signaling-3 in the ALI rat model. However, PALM3 knockdown had no effect on TLR4, myeloid differentiation factor 88 (MyD88), and Toll-interleukin-1 receptor domain-containing adaptor inducing interferon β (TRIF) expression. Moreover, PALM3 knockdown reduced the interaction of TLR4 with MyD88 or TRIF induced by LPS in rat lungs. Therefore, the downregulation of PALM3 protected rats from LPS-induced ALI and its mechanisms were partially associated with the modulation of inflammatory responses and inhibition of TLR4/MyD88 and TLR4/TRIF complex formation.  相似文献   

3.
Bacterial products (such as endotoxins and flagellin) trigger innate immune responses through TLRs. Flagellin‐induced signalling involves TLR5 and MyD88 and, according to some reports, TLR4. Whereas epithelial and dendritic cells are stimulated by flagellin in vitro, the cell contribution to the in vivo response is still unclear. Here, we studied the respective roles of radioresistant and radiosensitive cells in flagellin‐induced airway inflammation in mice. We found that i.n. delivery of flagellin elicits a transient change in respiratory function and an acute, pro‐inflammatory response in the lungs, characterized by TLR5‐ and MyD88‐dependent chemokine secretion and neutrophil recruitment. In contrast, TLR4, CD14 and TRIF were not essential for flagellin‐mediated responses, indicating that TLR4 does not cooperate with TLR5 in the lungs. Respiratory function, chemokine secretion and airway infiltration by neutrophils were dependent on radioresistant, TLR5‐expressing cells. Furthermore, lung haematopoietic cells also responded to flagellin by activating TNF‐α production. We suggest that the radioresistant lung epithelial cells are essential for initiating early, TLR5‐dependent signalling in response to flagellin and thus triggering the lung's innate immune responses.  相似文献   

4.
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll-interleukin 1 receptor (TIR) domain-containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain-containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-beta production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.  相似文献   

5.
6.
TLR signaling pathways   总被引:34,自引:0,他引:34  
Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing specific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling.  相似文献   

7.
Innate immune responses against microorganisms may be mediated by Toll-like receptors (TLRs). Intestinal ischemia–reperfusion (i-I/R) leads to the translocation of bacteria and/or bacterial products such as endotoxin, which activate TLRs leading to acute intestinal and lung injury and inflammation observed upon gut trauma. Here, we investigated the role of TLR activation by using mice deficient for the common TLR adaptor protein myeloid differentiation factor 88 (MyD88) on local and remote inflammation following intestinal ischemia. Balb/c and MyD88?/? mice were subjected to occlusion of the superior mesenteric artery (45 min) followed by intestinal reperfusion (4 h). Acute neutrophil recruitment into the intestinal wall and the lung was significantly diminished in MyD88?/? after i-I/R, which was confirmed microscopically. Diminished neutrophil recruitment was accompanied with reduced concentration of TNF-α and IL-1β level. Furthermore, diminished microvascular leak and bacteremia were associated with enhanced survival of MyD88?/? mice. However, neither TNF-α nor IL-1β neutralization prevented neutrophil recruitment into the lung but attenuated intestinal inflammation upon i-I/R. In conclusion, our data demonstrate that disruption of the TLR/MyD88 pathway in mice attenuates acute intestinal and lung injury, inflammation, and endothelial damage allowing enhanced survival.  相似文献   

8.
《Immunology》2017,152(1):138-149
The Toll‐like receptor (TLR) adaptor proteins myeloid differentiating factor 88 (MyD88) and Toll, interleukin‐1 receptor and resistance protein (TIR) domain‐containing adaptor inducing interferon‐β (TRIF) comprise the two principal limbs of the TLR signalling network. We studied the role of these adaptors in the TLR4‐dependent inhibition of allergic airway disease and induction of CD4+ ICOS+ T cells by nasal application of Protollin™, a mucosal adjuvant composed of TLR2 and TLR4 agonists. Wild‐type (WT), Trif−/− or Myd88−/− mice were sensitized to birch pollen extract (BPEx), then received intranasal Protollin followed by consecutive BPEx challenges. Protollin's protection against allergic airway disease was TRIF‐dependent and MyD88‐independent. TRIF deficiency diminished the CD4+ ICOS+ T‐cell subsets in the lymph nodes draining the nasal mucosa, as well as their recruitment to the lungs. Overall, TRIF deficiency reduced the proportion of cervical lymph node and lung CD4+ ICOS+ Foxp3 cells, in particular. Adoptive transfer of cervical lymph node cells supported a role for Protollin‐induced CD4+ ICOS+ cells in the TRIF‐dependent inhibition of airway hyper‐responsiveness. Hence, our data demonstrate that stimulation of the TLR4‐TRIF pathway can protect against the development of allergic airway disease and that a TRIF‐dependent adjuvant effect on CD4+ ICOS+ T‐cell responses may be a contributing mechanism.  相似文献   

9.
The mucosal host defence discriminates pathogens from commensals, and prevents infection while allowing the normal flora to persist. Paradoxically, Toll-like receptors (TLR) control the mucosal defence against pathogens, even though the TLR recognise conserved molecules like LPS, which are shared between pathogens and commensals. This study proposes a mechanism of pathogen-specific mucosal TLR4 activation, involving adhesive ligands and their host cell receptors. TLR4 signalling was activated in CD14-negative, LPS-unresponsive epithelial cells by P fimbriated, uropathogenic Escherichia coli but not by a mutant lacking fimbriae. Epithelial TLR4 signalling in vivo involved the glycosphingolipid receptors for P fimbriae and the adaptor proteins Toll/IL-1R (TIR) domain-containing adaptor inducing IFN-beta (TRIF)/TRIF-related adaptor molecule (TRAM), but myeloid differentiation protein 88 (MyD88)/TIR domain-containing adaptor protein were not required for the epithelial response. Substituting the P fimbriae with type 1 fimbriae changed TLR4 signalling from the TRIF to the MyD88 adaptor pathway. In addition, the adaptor proteins and the fimbrial type were found to influence bacterial clearance. Trif(-/-) and Tram(-/-) mice remained infected with P fimbriated E. coli but cleared the type 1 fimbriated strain, while Myd88(-/-) mice became carriers of both the P and the type 1 fimbriated bacteria. Thus, TLR4 may be engaged specifically by pathogens, when the proper cell surface receptors are engaged by virulence ligands.  相似文献   

10.
The protective effects of high-density lipoprotein (HDL) under lipopolysaccharide (LPS) conditions have been well documented. Here, we investigated whether an effect of HDL on Toll-like receptor 4 (TLR4) expression and signalling may contribute to its endothelial-protective effects and to improved survival in a mouse model of LPS-induced inflammation and lethality. HDL cholesterol increased 1.7-fold (p<0.005) and lung endothelial TLR4 expression decreased 8.4-fold (p<0.005) 2 weeks after apolipoprotein (apo) A-I gene transfer. Following LPS administration in apo A-I gene transfer mice, lung TLR4 and lung MyD88 mRNA expression, reflecting TLR4 signalling, were 3.0-fold (p<0.05) and 2.1-fold (p<0.05) lower, respectively, than in LPS control mice. Concomitantly, LPS-induced lung neutrophil infiltration, lung oedema and mortality were significantly attenuated following apo A-I transfer. In vitro, supplementation of HDL or apo A-I to human microvascular endothelial cells-1 24 h before LPS administration reduced TLR4 expression, as assessed by fluorescent-activated cell sorting, and decreased the LPS-induced MyD88 mRNA expression and NF-κB activity, independently of LPS binding. In conclusion, HDL reduces TLR4 expression and signalling in endothelial cells, which may contribute significantly to the protective effects of HDL in LPS-induced inflammation and lethality.  相似文献   

11.
The Toll-IL-1 receptor adaptor family grows to five members   总被引:19,自引:0,他引:19  
Toll-like receptor (TLR) signal transduction is mediated by an adaptor protein termed MyD88. In the case of TLR2 and TLR4, another adaptor related to MyD88 called Mal also participates in signalling. Two recent papers have added a third adaptor to the family, called Toll-interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta (IFN-beta) (TRIF) or TIR-containing adaptor molecule-1 (TICAM-1), which is particularly important for IFN regulatory factor-3 (IRF-3) activation by antiviral TLR3. Two additional adaptors are present in humans, termed Trif-related adaptor molecule (TRAM) and sterile alpha and HEAT-Armadillo motifs (SARM). It is probable that differential use of adaptors will help explain the distinct pathways activated by TLRs during host defence.  相似文献   

12.
The role of MyD88 and TLR4 in the LPS-mimetic activity of Taxol   总被引:11,自引:0,他引:11  
Taxol can mimic bacterial lipopolysaccharide (LPS) by activating mouse macrophages in a cell cycle-independent, LPS antagonist-inhibitable manner. Macrophages from C3H/HeJ mice, which have a spontaneous mutation in Toll-like receptor 4 (TLR4), are hyporesponsive to both LPS and Taxol, suggesting that LPS and Taxol may share a signaling pathway involving TLR4. To determine whether TLR4 and its interacting adaptor molecule MyD88 are necessary for Taxol's LPS mimetic actions, we examined Taxol responses of primary macrophages from genetically defective mice lacking either TLR4 (C57BL/10ScNCr) or MyD88 (MyD88 knockout). When stimulated with Taxol, macrophages from wild-type mice responded robustly by secreting both TNF and NO, while macrophages from either TLR4-deficient C57BL/10ScNCr mice or MyD88 knockout mice produced only minimal amounts of TNF and NO. Taxol-induced NF-kappa B-driven luciferase activity was reduced after transfection of RAW 264.7 macrophages with a dominant negative version of mouse MyD88. Taxol-induced microtubule-associated protein kinase (MAPK) activation and NF-kappa B nuclear translocation were absent from TLR4-null macrophages, but were preserved in MyD88 knockout macrophages with a slight delay in kinetics. Neither Taxol-induced NF-kappa B activation, nor I kappa B degradation was affected by the presence of phosphatidylinositol 3-kinase inhibitors. These results suggest that Taxol and LPS not only share a TLR4/MyD88-dependent pathway in generating inflammatory mediators, but also share a TLR4-dependent/MyD88-independent pathway leading to activation of MAPK and NF-kappa B.  相似文献   

13.
Background Epidemiological and experimental data suggest that bacterial lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll‐like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro‐Type 1 T helper cells (Th1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER‐803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS‐induced molecular pathways, we used TLR4‐, MyD88‐, TRIF‐, or IL‐12/IFN‐γ‐deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co‐adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co‐adsorbed onto alum impaired in dose‐dependent manner OVA‐induced Th2‐mediated allergic responses such as airway eosinophilia, type‐2 cytokines secretion, airway hyper‐reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1‐affiliated isotype increased, investigation into the lung‐specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL‐12/IFN‐γ axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll‐like receptor 4 agonists co‐adsorbed with allergen onto alum down‐modulate allergic lung disease and prevent the development of polarized T cell‐mediated airway inflammation.  相似文献   

14.
Acute and chronic airway inflammations caused by environmental agents including endotoxin represent an increasing health problem. Local TNF production may contribute to lung dysfunction and inflammation, although pulmonary neutrophil recruitment occurs in the absence of TNF. First, we demonstrate that membrane-bound TNF is sufficient to mediate the inflammatory responses to lipopolysaccharide (LPS). Secondly, using cell type-specific TNF-deficient mice we show that TNF derived from either macrophage/neutrophil (M/N) or T lymphocytes have differential effects on LPS-induced respiratory dysfunction (enhanced respiratory pause, Penh) and pulmonary neutrophil recruitment. While Penh, vascular leak, neutrophil recruitment, TNF, and thymus- and activation-regulated chemokine/CCL17 (TARC) expression in the lung were reduced in M/N-deficient mice, T cell-specific TNF-deficient mice displayed augmented Penh, vascular leak, neutrophil influx, increased CD11c+ cells and expression of TNF, TARC and murine CXC chemokines KC/CXCL1 in the lung. In conclusion, inactivation of TNF in either M/N or T cells has differential effects on LPS-induced lung disease, suggesting that selective deletion of TNF in T cells may aggravate airway pathology.  相似文献   

15.
The effects of the administration of Escherichia coli endotoxin (lipopolysaccharide, LPS) into the airways of C57Bl/6 mice were studied. Neutrophil sequestration in the lungs and their enrichment, together with tumor necrosis factor (TNF)-alpha, in bronchoalveolar lavage fluid (BALF) were associated with bronchoconstriction and bronchopulmonary hyperreactivity (BHR) to methacholine and alveolocapillary dysfunction. Granulocyte depletion by the myelotoxic drug vinblastine failed to modify TNF-alpha production and prevented LPS-induced neutrophil recruitment to lungs and BALF, bronchoconstriction, and BHR. Neutrophils were again sequestered in the lungs when LPS was administered 4 to 5 d after vinblastine, whereas inhibition of their passage to BALF persisted. Under those conditions, bronchoconstriction and BHR by LPS also recovered, showing that these functional effects are independent from BALF neutrophil enrichment but require lung sequestration. Administration of granulocyte colony-stimulating factor after vinblastine counteracted its effects and allowed the recovery of lung neutrophil sequestration by LPS and a partial recovery of bronchoconstriction under conditions where neutrophils still failed to migrate to BALF. Dexamethasone (the phosphate salt and its free base) suppressed LPS-induced TNF-alpha generation in BALF and its neutrophil enrichment, whereas neutrophil lung sequestration, bronchoconstriction, BHR, and alveolocapillary dysfunction were marginally reduced and only so at low doses of dexamethasone, higher doses being inactive or aggravating. In situ neutrophil activation could account for LPS-induced bronchoconstriction and BHR, both of which are refractory to steroids and appear to be mediated by unrelated mechanisms, which may be relevant for acute respiratory distress syndrome, a condition for which LPS administration is used as a model.  相似文献   

16.
《Mucosal immunology》2019,12(5):1244-1255
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, especially in infants. Lung neutrophilia is a hallmark of RSV disease but the mechanism by which neutrophils are recruited and activated is unclear. Here, we investigate the innate immune signaling pathways underlying neutrophil recruitment and activation in RSV-infected mice. We show that MyD88/TRIF signaling is essential for lung neutrophil recruitment while MAVS signaling, leading to type I IFN production, is necessary for neutrophil activation. Consistent with that notion, administration of type I IFNs to the lungs of RSV-infected Mavs−/− mice partially activates lung neutrophils recruited via the MyD88/TRIF pathway. Conversely, lack of neutrophil recruitment to the lungs of RSV-infected Myd88/Trif−/− mice can be corrected by administration of chemoattractants and those neutrophils become fully activated. Interestingly, Myd88/Trif−/− mice did not have increased lung viral loads during RSV infection, suggesting that neutrophils are dispensable for viral control. Thus, two distinct pathogen sensing pathways collaborate for neutrophil recruitment and full activation during RSV infection.  相似文献   

17.
18.
Glucopyranosyl lipid adjuvant‐stable emulsion (GLA‐SE) is a synthetic adjuvant TLR4 agonist that promotes potent poly‐functional TH1 responses. Different TLR4 agonists may preferentially signal via MyD88 or TIR‐domain‐containing adapter inducing IFN‐beta (TRIF) to exert adjuvant effects; however, the contribution of MyD88 and TRIF signaling to the induction of polyclonal TH1 responses by TLR4 agonist adjuvants has not been studied in vivo. To determine whether GLA‐SE preferentially signals through MyD88 or TRIF, we evaluated the immune response against a candidate tuberculosis (TB) vaccine Ag following immunization of mice lacking either signaling adapter compared with that of wild‐type mice. We find that both MyD88 and TRIF are necessary for GLA‐SE to induce a poly‐functional TH1 immune response characterized by CD4+ T cells producing IFN‐γ, TNF, and IL‐2, as well as IgG2c class switching, when paired with the TB vaccine Ag ID93. Accordingly, the protective efficacy of ID93/GLA‐SE immunization against aerosolized Mycobacterium tuberculosis was lost when either signaling molecule was ablated. We demonstrate that MyD88 and TRIF must be expressed in the same cell for the in vivo TH1‐skewing adjuvant activity, indicating that these two signaling pathways cooperate on an intracellular level. Thus engagement of both the MyD88 and TRIF signaling pathways are essential for the effective adjuvant activity of this TLR4 agonist.  相似文献   

19.
20.
MyD88 is an important signaling adaptor for both TLR and IL-1R family members. Here, we evaluated the role of TLR2/MyD88 and IL-1R/MyD88 signaling in host defense against S. aureus by using a cutaneous infection model in conjunction with bioluminescent bacteria. We found that lesions of S. aureus-infected MyD88- and IL-1R-deficient mice were substantially larger with higher bacterial counts compared with wild-type mice. In contrast, TLR2-deficient mice had lesions that were only moderately larger with minimally higher bacterial counts. In addition, MyD88- and IL-1R- but not TLR2-deficient mice had severely decreased recruitment of neutrophils to the site of infection. This neutrophil recruitment was not dependent upon IL-1R/MyD88 signaling by recruited bone marrow-derived cells, suggesting that resident skin cells utilize IL-1R/MyD88 signaling to promote neutrophil recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号