首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spinal and bulbar muscular atrophy (SBMA) is an adult-onset motor neuron disease, caused by the expansion of a trinucleotide repeat (TNR) in exon 1 of the androgen receptor (AR) gene. This disorder is characterized by degeneration of motor and sensory neurons, proximal muscular atrophy, and endocrine abnormalities, such as gynecomastia and reduced fertility. We describe the development of a transgenic model of SBMA expressing a full-length human AR (hAR) cDNA carrying 65 (AR(65)) or 120 CAG repeats (AR(120)), with widespread expression driven by the cytomegalovirus promoter. Mice carrying the AR(120) transgene displayed behavioral and motor dysfunction, while mice carrying 65 CAG repeats showed a mild phenotype. Progressive muscle weakness and atrophy was observed in AR(120) mice and was associated with the loss of alpha-motor neurons in the spinal cord. There was no evidence of neurodegeneration in other brain structures. Motor dysfunction was observed in both male and female animals, showing that in SBMA the polyglutamine repeat expansion causes a dominant gain-of-function mutation in the AR. The male mice displayed a progressive reduction in sperm production consistent with testis defects reported in human patients. These mice represent the first model to reproduce the key features of SBMA, making them a useful resource for characterizing disease progression, and for testing therapeutic strategies for both polyglutamine and motor neuron diseases.  相似文献   

2.
Spinal and bulbar muscular atrophy (SBMA) is one of a growing number of neurodegenerative diseases caused by a polyglutamine-encoding CAG trinucleotide repeat expansion, and is caused by an expansion within exon 1 of the androgen receptor (AR) gene. The family of polyglutamine diseases is characterized by the presence of ubiquitinated, intranuclear inclusions associated with molecular chaperones and 26S proteasome components, although the role of these inclusions in the pathogenesis of polyglutamine diseases remains unclear. The over-expression of molecular chaperones of the Hsp70 and Hsp40 families has been shown to modulate inclusion frequency and cellular toxicity. We developed a cell culture system which enables the quantitative analysis of the effects of molecular chaperones on the biochemical properties of an expanded repeat AR. Using this approach, we demonstrate that Hsp70 and its co-chaperone Hsp40 not only increase expanded repeat AR solubility, but function to enhance the degradation of expanded repeat AR through the proteasome. Furthermore, our studies indicate that these molecular chaperones significantly decrease the half-life of an expanded repeat AR. Molecular chaperone enhancement of protein degradation points to the modulation of molecular chaperones as a potential therapeutic target for polyglutamine diseases.  相似文献   

3.
X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a polyglutamine (polyQ) disease in which the affected males suffer progressive motor neuron degeneration accompanied by signs of androgen insensitivity, such as gynecomastia and reduced fertility. SBMA is caused by CAG repeat expansions in the androgen receptor (AR) gene resulting in the production of AR protein with an extended glutamine tract. SBMA is one of nine polyQ diseases in which polyQ expansion is believed to impart a toxic gain-of-function effect upon the mutant protein, and initiate a cascade of events that culminate in neurodegeneration. However, whether loss of a disease protein's normal function concomitantly contributes to the neurodegeneration remains unanswered. To address this, we examined the role of normal AR function in SBMA by crossing a highly representative AR YAC transgenic mouse model with 100 glutamines (AR100) and a corresponding control (AR20) onto an AR null (testicular feminization; Tfm) background. Absence of endogenous AR protein in AR100Tfm mice had profound effects upon neuromuscular and endocrine-reproductive features of this SBMA mouse model, as AR100Tfm mice displayed accelerated neurodegeneration and severe androgen insensitivity in comparison to AR100 littermates. Reduction in size and number of androgen-sensitive motor neurons in the spinal cord of AR100Tfm mice underscored the importance of AR action for neuronal health and survival. Promoter-reporter assays confirmed that AR transactivation competence diminishes in a polyQ length-dependent fashion. Our studies indicate that SBMA disease pathogenesis, both in the nervous system and the periphery, involves two simultaneous pathways: gain-of-function misfolded protein toxicity and loss of normal protein function.  相似文献   

4.
5.
6.
7.
Spinal and bulbar muscular atrophy (SBMA) is associated with an abnormal expansion of the (CAG)(n)repeat in the androgen receptor (AR) gene. Similar mutations have been reported in other proteins that cause neurodegenerative disorders. The CAG-coded elongated polyglutamine (polyGln) tracts induce the formation of neuronal intracellular aggregates. We have produced a model to study the effects of potentially 'neurotoxic' aggregates in SBMA using immortalized motoneuronal cells (NSC34) transfected with AR containing polyGln repeats of different sizes [(AR.Q(n = 0, 23 or 46)]. Using chimeras of AR.Q(n) and the green fluorescent protein (GFP), we have shown that aggregate formation occurs when the polyGln tract is elongated and AR is activated by androgens. In NSC34 cells co-expressing the AR with the polyGln of pathological length (AR.Q46) and the GFP we have noted the presence of several dystrophic neurites. Cell viability analyses have shown a reduced growth/survival rate in NSC34 expressing the AR.Q46, whereas testosterone treatment partially counteracted both cell death and the formation of dystrophic neurites. These observations indicate the lack of correlation between aggregate formation and cell survival, and suggest that neuronal degeneration in SBMA might be secondary to axonal/dendritic insults.  相似文献   

8.
Spinal and bulbar muscular atrophy (SBMA) is a late-onset motor neuron disease characterized by proximal muscle atrophy, weakness, contraction fasciculations, and bulbar involvement. SBMA exclusively affects males, while females are usually asymptomatic. The molecular basis of SBMA is the expansion of a trinucleotide CAG repeat, which encodes the polyglutamine (polyQ) tract in the first exon of the androgen receptor (AR) gene. The histopathological hallmark is the presence of nuclear inclusions containing mutant truncated ARs with expanded polyQ tracts in the residual motor neurons in the brainstem and spinal cord, as well as in some other visceral organs. The AR ligand, testosterone, accelerates AR dissociation from heat shock proteins and thus its nuclear translocation. Ligand-dependent nuclear accumulation of mutant ARs has been implicated in the pathogenesis of SBMA. Transgenic mice carrying the full-length human AR gene with an expanded polyQ tract demonstrate neuromuscular phenotypes, which are profound in males. Their SBMA-like phenotypes are rescued by castration, and aggravated by testosterone administration. Leuprorelin, an LHRH agonist that reduces testosterone release from the testis, inhibits nuclear accumulation of mutant ARs, resulting in the rescue of motor dysfunction in the male transgenic mice. However, flutamide, an androgen antagonist promoting nuclear translocation of the AR, yielded no therapeutic effect. The degradation and cleavage of the AR protein are also influenced by the ligand, contributing to the pathogenesis. Testosterone thus appears to be the key molecule in the pathogenesis of SBMA, as well as main therapeutic target of this disease.  相似文献   

9.
Spinal and bulbar muscular atrophy (SBMA) is a heritable neurodegenerative disease caused by the expansion of a polyglutamine [poly(Q)] repeat within the androgen receptor (AR) protein. We studied SBMA in Drosophila using an N-terminal fragment of the human AR protein. Expression of a pathogenic AR protein with an expanded poly(Q) repeat in Drosophila results in nuclear and cytoplasmic inclusion formation, and cellular degeneration, preferentially in neuronal tissues. We have studied the influence of ubiquitin-dependent modification and the proteasome pathway on neural degeneration and AR protein fragment solubility. Compromising the ubiquitin/proteasome pathway enhances degeneration and decreases poly(Q) protein solubility. Our data further suggest that Hsp70 and the proteasome act in an additive manner to modulate neurodegeneration. Through the over-expression of a mutant of the SUMO-1 activating enzyme Uba2, we further show that poly(Q)-induced degeneration is intensified when the cellular SUMO-1 protein conjugation pathway is altered. These data suggest that post-translational protein modification, including the ubiquitin/proteasome and the SUMO-1 pathways, modulate poly(Q) pathogenesis.  相似文献   

10.
Expansion of the CAG trinucleotide repeat encoding glutamine in the androgen receptor gene leads to spinobulbar muscular atrophy (SBMA), a neurodegenerative disorder in a family of polyglutamine diseases with enigmatic pathogenic mechanisms. One established property of glutamine residues is their ability to act as an amine accepter in a transglutaminase-catalyzed reaction, resulting in a proteolytically resistant glutamyl-lysine cross-link. To examine underlying disease mechanisms we investigated the relationship between polyglutamine-expanded androgen receptor and transglutaminase. We found androgen receptor N-terminal fragments are a substrate for transglutaminase. Western blots of the proteins following incubation with transglutaminase show that several different epitopes of the AR appear to be lost. We propose that this is due to the transglutaminase cross-linking of the AR, which interferes with antibody recognition. Furthermore, HEK GFP(u)-1 cells expressing polyglutamine-expanded androgen receptor and transglutaminase exhibit ligand-dependent proteasome dysfunction; this effect was not observed in the presence of cystamine, a transglutaminase inhibitor. In addition, transglutaminase-mediated isopeptide bonds were detected in brains of SBMA transgenic mice, but not in controls, suggesting involvement of transglutaminase-catalyzed reactions in polyglutamine disease pathogenesis. Our hypothesis is that cross-linked AR cannot to be degraded by the proteasome and obstructs the proteasome pore, preventing normal function. Because of the central role the ubiquitin-proteasome degradation system plays in fundamental cellular processes, any alteration in its function could cause cell death, ultimately contributing to SBMA pathogenesis.  相似文献   

11.
The androgen receptor (AR) gene, located on the X-chromosome at Xq11-12, contains in exon 1 a polymorphic CAG repeat which codes for a polyglutamine tract. Contractions of the CAG repeat are said to be related to prostate cancer. In contrast, sizeable expansion of the CAG repeat can cause spinal and bulbar muscular atrophy (SBMA). In infertile patients of Chinese origin and in a Melbourne multinational population impaired sperm production has been postulated to be related to moderate expansions of the polyglutamine tract. In a study of a Swedish population of infertile patients these findings could not be corroborated. The aim of our investigation was to examine the correlation between the length of the CAG repeat and impaired sperm production in an infertile Caucasoid patient sample of German ethnic origin. We found no statistically significant relationship between the size of the CAG repeat or polyglutamine tract and idiopathic impaired sperm production in the population studied. The variability of the results by various investigators may be attributed to different ethnic origins and hence different genetic modifiers of the populations studied and/or to the high probability that these infertile males may represent a heterogeneous group with respect to the causes of defective spermatogenesis.  相似文献   

12.
Spinal and bulbar muscular atrophy (SBMA) impairs motor function in men and is linked to a CAG repeat mutation in the androgen receptor (AR) gene. Defects in motoneuronal retrograde axonal transport may critically mediate motor dysfunction in SBMA, but the site(s) where AR disrupts transport is unknown. We find deficits in retrograde labeling of spinal motoneurons in both a knock-in (KI) and a myogenic transgenic (TG) mouse model of SBMA. Likewise, live imaging of endosomal trafficking in sciatic nerve axons reveals disease-induced deficits in the flux and run length of retrogradely transported endosomes in both KI and TG males, demonstrating that disease triggered in muscle can impair retrograde transport of cargo in motoneuron axons, possibly via defective retrograde signaling. Supporting the idea of impaired retrograde signaling, we find that vascular endothelial growth factor treatment of diseased muscles reverses the transport/trafficking deficit. Transport velocity is also affected in KI males, suggesting a neurogenic component. These results demonstrate that androgens could act via both cell autonomous and non-cell autonomous mechanisms to disrupt axonal transport in motoneurons affected by SBMA.  相似文献   

13.
Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease caused by an abnormal expansion of a tandem CAG repeat in exon 1 of the androgen receptor (AR) gene that results in an abnormally long polyglutamine tract (polyQ) in the AR protein. As a result, the mutant AR (ARpolyQ) misfolds, forming cytoplasmic and nuclear aggregates in the affected neurons. Neurotoxicity only appears to be associated with the formation of nuclear aggregates. Thus, improved ARpolyQ cytoplasmic clearance, which indirectly decreases ARpolyQ nuclear accumulation, has beneficial effects on affected motoneurons. In addition, increased ARpolyQ clearance contributes to maintenance of motoneuron proteostasis and viability, preventing the blockage of the proteasome and autophagy pathways that might play a role in the neuropathy in SBMA. The expression of heat shock protein B8 (HspB8), a member of the small heat shock protein family, is highly induced in surviving motoneurons of patients affected by motoneuron diseases, where it seems to participate in the stress response aimed at cell protection. We report here that HspB8 facilitates the autophagic removal of misfolded aggregating species of ARpolyQ. In addition, though HspB8 does not influence p62 and LC3 (two key autophagic molecules) expression, it does prevent p62 bodies formation, and restores the normal autophagic flux in these cells. Interestingly, trehalose, a well-known autophagy stimulator, induces HspB8 expression, suggesting that HspB8 might act as one of the molecular mediators of the proautophagic activity of trehalose. Collectively, these data support the hypothesis that treatments aimed at restoring a normal autophagic flux that result in the more efficient clearance of mutant ARpolyQ might produce beneficial effects in SBMA patients.  相似文献   

14.
SBMA (spinal and bulbar muscular atrophy), also called Kennedy disease, is an X-chromosomal recessive adult-onset neurodegenerative disorder caused by death of the spinal and bulbar motor neurones and dorsal root ganglia. Patients may also show signs of partial androgen insensitivity. SBMA is caused by a CAG repeat expansion in the first exon of the androgen receptor (AR) gene on the X-chromosome. Our previous study suggested that all the Nordic patients with SBMA originated from an ancient Nordic founder mutation, but the new intragenic SNP marker ARd12 revealed that the Danish patients derive their disease chromosome from another ancestor. In search of relationships between patients from different countries, we haplotyped altogether 123 SBMA families from different parts of the world for two intragenic markers and 16 microsatellites spanning 25 cM around the AR gene. The fact that different SBMA founder haplotypes were found in patients from around the world implies that the CAG repeat expansion mutation has not been a unique event. No expansion-prone haplotype could be detected. Trinucleotide diseases often show correlation between the repeat length and the severity and earlier onset of the disease. The longer the repeat, the more severe the symptoms are and the onset of the disease is earlier. A negative correlation between the CAG repeat length and the age of onset was found in the 95 SBMA patients with defined ages at onset.  相似文献   

15.
Huntingtin-associated protein 1 (HAP1), an interactor of huntingtin, has been known as an essential component of the stigmoid body (STB) and recently reported to play a protective role against neurodegeneration in Huntington's disease (HD). In the present study, subcellular association between HAP1 and androgen receptor (AR) with a long polyglutamine tract (polyQ) derived from spinal-and-bulbar-muscular-atrophy (SBMA) was examined using HEp-2 cells cotransfected with HAP1 and/or normal ARQ25, SBMA-mutant ARQ65 or deletion-mutant AR cDNAs. The results provided the first clear evidence that HAP1 interacts with AR through its ligand-binding domain in a polyQ-length-dependent manner and forms prominent inclusions sequestering polyQ-AR, and that addition of dihydrotestosterone reduces the association strength of HAP1 with ARQ25 more dramatically than that with ARQ65. Furthermore, SBMA-mutant-ARQ65-induced apoptosis was suppressed by cotransfection with HAP1. Our findings strongly suggest that HAP1/STB is relevant to polyQ-length-dependent modification on subcellular AR functions and critically involved in pathogenesis of not only HD but also SBMA as an important intrinsic neuroprotectant determining the threshold for cellular vulnerability to apoptosis. Taking together with previous reports that HAP1/STB is selectively expressed in the brain regions spared from degenerative targets in HD and SBMA, the current study might explain the region-specific occurrence of neurodegeneration in both diseases, shedding light on common aspects of their molecular pathological mechanism and yet-to-be-uncovered diagnostic or therapeutic applications for HD and SBMA patients.  相似文献   

16.
17.
18.
19.
The androgen receptor (AR) gene is located on the X chromosome and contains a polymorphic CAG tract. CAG repeat expansions in the AR have been associated with male infertility and the neuromuscular disease, spinal bulbar muscular atrophy (SBMA). Based on Mendelian inheritance patterns, moderate CAG expansions in infertile men treated by intracytoplasmic sperm injection (ICSI) would be vertically transmitted to female offspring. Should further elongation of the repeat region occur in the male germline, it is conceivable that longer expansions could also be transmitted by ICSI and may lead to an increased incidence of male infertility and SBMA in succeeding generations. To determine the degree of stability of the paternal AR CAG tract following ICSI, we compared the CAG repeat number in the AR alleles of 92 men presenting for ICSI and their 99 ICSI-conceived daughters. CAG repeat lengths in the AR alleles were determined by fluorescent polymerase chain reaction and Genescan analysis of amplification products separated on DNA sequencing gels. In the vast majority of cases (95 out of 99), we found that the AR CAG tracts ranging in size from 15-28 repeats exhibited stable inheritance in female offspring. However, in the remaining father-daughter pairs, there was a discordance in the expected inheritance pattern with evidence for both CAG expansion (20-->24; 22-->23) and contraction (26-->18 or 22) of the paternal AR allele. The detection of a low frequency of CAG mutation in paternal AR alleles following ICSI would be consistent with gonadal mosaicism originating from meiotic DNA replication errors. These findings in a typical group of infertile men undergoing ICSI for a variety of indications tend to alleviate concerns that ICSI may promote the transmission of AR alleles with expanded CAG tracts and suggest that the risk of SBMA in second generation sons would be extremely low.  相似文献   

20.
Expansion of the polyglutamine (polyQ) stretch in the androgen receptor (AR) protein leads to spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease characterized by lower motor neuron degeneration. The pathogenic mechanisms underlying SBMA remain unknown, but recent experiments show that inhibition of fast axonal transport (FAT) by polyQ-expanded proteins, including polyQ-AR, represents a new cytoplasmic pathogenic lesion. Using pharmacological, biochemical and cell biological experiments, we found a new pathogenic pathway that is affected in SBMA and results in compromised FAT. PolyQ-AR inhibits FAT in a human cell line and in squid axoplasm through a pathway that involves activation of cJun N-terminal kinase (JNK) activity. Active JNK phosphorylated kinesin-1 heavy chains and inhibited kinesin-1 microtubule-binding activity. JNK inhibitors prevented polyQ-AR-mediated inhibition of FAT and reversed suppression of neurite formation by polyQ-AR. We propose that JNK represents a promising target for therapeutic interventions in SBMA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号