首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nitric oxide (NO) inhibits the mitochondrial respiratory chain, resulting in inhibition of ATP production, increased oxidant production and increased susceptibility to cell death. NO reversibly binds to the oxygen binding site of cytochrome oxidase, reacting either with the oxidised copper to give inhibitory nitrite, or with the reduced haem, resulting in reversible inhibition in competition with oxygen. Because of this competition, NO may sensitise tissues to hypoxia. NO, or derivative N(2)O(3) or S-nitrosothiols, may inactivate complex I by S-nitrosation. Peroxynitrite (ONOO(-)) inhibits mitochondrial respiration at multiple sites, and also causes mitochondrial permeability transition. Inhibition of mitochondrial respiration by NO and its derivatives stimulates production of reactive oxygen and nitrogen species by mitochondria, which have signalling roles in the heart, but may also contribute to cell death. In the heart, NO is produced by endothelial NO synthase (eNOS) in endothelium and caveolae of cardiomyocytes, by neuronal NO synthase (nNOS) in sarcoplasmic reticulum and possibly mitochondria, and under pathological situations by inducible NO synthase (iNOS) in the sarcoplasm. Haemoglobin and myoglobin may have multiple roles in determining oxygen and NO gradients within the heart, which may remove NO at high oxygen, but possibly supply it at low oxygen. Stimulating or inhibiting NOS in the heart has been found to cause small changes in heart oxygen consumption in vivo; however, it is still unclear whether these changes are due to direct NO inhibition of mitochondrial respiration or indirect actions of NO. NO inhibition of mitochondrial respiration is likely to be more important in the heart during hypoxia and/or pathologies where iNOS is expressed.  相似文献   

3.
Nitric oxide and efficiency of the right heart   总被引:2,自引:0,他引:2  
  相似文献   

4.
INTRODUCTION: The present study evaluated the contribution of 20-hydroxyeicosatetraenoic acid (20-HETE) and its interaction with nitric oxide (NO) in cyclosporin A-induced nephrotoxicity and hypertension. METHODS AND RESULTS: The treatment of rats with cyclosporin A (25 mg/kg) for 7 days increased the renal microsomal conversion of arachidonic acid (AA) to 20-HETE (93 +/- 6%, P < 0.05), increased systolic blood pressure (SBP), reduced the urinary excretion of nitrite (53 +/- 8%, P < 0.05), induced renal damage as indicated by a marked increase in protein excretion (163 +/- 14%, P < 0.05), increased renal vasoconstrictor responses to AA (82 +/- 5%, P < 0.05) but not endothelin-1 or phenylephrine, and decreased vasodilator responses to bradykinin (42 +/- 10%, P < 0.05) and sodium nitroprusside (SNP; 56 +/- 13%, P < 0.05) in the renal preglomerular vessel treated with indomethacin and NO synthase inhibitor. The pretreatment of rats with HET0016 (10 mg/kg) or 1-aminobenzotriazole (50 mg/kg), inhibitors of cytochrome P450 (CYP450) activity, attenuated or prevented cyclosporin A-induced increases in 20-HETE production, SBP, and protein excretion, as did L-arginine (4 g/l), a substrate for NO synthase. L-Arginine but not HET0016 or 1-aminobenzotriazole blunted the cyclosporin A-induced decrease in nitrite excretion. Similarly, L-arginine blunted the enhanced vasoconstriction by AA as did HET0016 or 1-aminobenzotriazole. However, cyclosporin A-blunted dilator responses to bradykinin and SNP were not affected by L-arginine, HET0016, or 1-aminobenzotriazole. CONCLUSIONS: These data suggest that cyclosporin A-induced nephrotoxicity can be accounted for by reduced NO production and a consequent increase in 20-HETE. The cyclosporin A-induced nephrotoxicity is thus an ideal model for evaluating NO/CYP450 interactions.  相似文献   

5.
The debilitating consequences of age-related brain deterioration are widespread and extremely costly in terms of quality of life and longevity. Free radical induced damage is thought to be responsible, at least in part, for the degenerative effects of aging. This may be largely due to high-energy requirements, high oxygen consumption, high tissue concentration of iron and low of antioxidant enzymes in brain. Therefore, supplementing an external source of free radical scavenger would greatly benefit in ameliorating the free radical damage which may thus be beneficial in aging. In the present study, an important nootropic agent Centrophenoxine, which has an easy access to brain, has been administered to aged animals (16 months old). Rats aged 6 months (young group) and 16 months old (old group) were chosen for the study. Both groups were administered Centrophenoxine (dissolved in physiological saline) intraperitoneally once a day for 6 weeks. Our study indicates an increased activity of Catalase, Superoxide Dismutase, Glutathione reductase, as well as an increase in the reduced, oxidized, and total glutathione content thus resulting in an altered redox state. A substantial increase in the malondialdehyde content was also reported as a result of aging. Whereas, following Centrophenoxine administration (100 mg/kg body weight/day, injected i.p) alterations in the activities of Superoxide dismutase, Glutathione reductase as well as in the reduced and oxidized glutathione content was reported in aged rat brain. Lipid peroxidation was also reported to be significantly decreased in aged animals after Centrophenoxine supplementation for 6 weeks. The use of an extraneous antioxidant substance may prove beneficial in combating the conditions of oxidative stress in ageing brain.  相似文献   

6.
Cardiac myocytes express both constitutive and cytokine-inducible nitric oxide syntheses (NOS). NO and its congeners have been implicated in the regulation of cardiac contractile function. To determine whether NO could affect myocardial energetics, 31P NMR spectroscopy was used to evaluate high-energy phosphate metabolism in isolated rat hearts perfused with the NO donor S-nitrosoacetylcysteine (SNAC). All hearts were exposed to an initial high Ca2+ (3.5 mM) challenge followed by a recovery period, and then, either in the presence or absence of SNAC, to a second high Ca2+ challenge. This protocol allowed us to monitor simultaneously the effect of SNAC infusion on both contractile reserve (i.e., baseline versus high workload contractile function) and high-energy phosphate metabolism. The initial high Ca2+ challenge caused the rate-pressure product to increase by 74 +/- 5% in all hearts. As expected, ATP was maintained as phosphocreatine (PCr) content briefly dropped and then returned to baseline during the subsequent recovery period. Control hearts responded similarLy to the second high Ca2+ challenge, but SNAC-treated hearts did not demonstrate the expected increase in rate-pressure product. In these hearts, ATP declined significantly during the second high Ca2+ challenge, whereas phosphocreatine did not differ from controls, suggesting that phosphoryl transfer by creatine kinase (CK) was inhibited. CK activity, measured biochemically, was decreased by 61 +/- 13% in SNAC-treated hearts compared to controls. Purified CK in solution was also inhibited by SNAC, and reversal could be accomplished with DTT, a sulfhydryl reducing agent. Thus, NO can regulate contractile reserve, possibly by reversible nitrosothiol modification of CK.  相似文献   

7.
Summary Many vasoactive substances are involved in the regulation of vasomotor tone and some of them, like nitric oxide (NO), are derived from the endothelium. Nitric oxide is able to relax preconstricted coronary resistance vessels almost completely. However, it is not clear what the contribution of NO is to vasomotor tone in the intact blood perfused heart. The aim of the present study was to evaluate the contribution of NO to coronary pressure-flow relations. We used isovolumically beating, donor supported, blood perfused isolated rat hearts. We measured pressure-flow relations under control conditions, after blocking endothelial NO production with NG-nitro-L-Arginine (LNNA) and after administration of L-Arginine (L-Arg) in order to overrule the blocking effect. Administration of LNNA at a perfusion pressure of 105 mm Hg resulted, after about 40 min, in a significant (Wilcoxon's signed-rank test, (n=8) p<0.05) reduction of coronary flow to 47±5% (mean ± SEM) of control and a reduction of developed isovolumic left-ventricular pressure to 62±4% of control. L-Arg returned flow to 60±7% of control which is a significant increase with respect to LNNA (p<0.05). L-Arg did not increase the left-ventricular pressure. The entire perfusion pressure-flow relation (pressure range 65–125 mm Hg) was significantly shifted downwards after LNNA with respect to control. Pressure-flow relations after L-Arg were in between those during control and after block of NO production. L-Arg alone was found to have no effect on flow and left-ventricular pressure (n=2) and both LNNA and L-Arg were found to have no effect on contractility of isolated trabeculae (n=6), thus, coronary blood flow reduction after LNNA administration is mainly the result of inhibition of endothelial NO production. At a perfusion pressure of 105 mm Hg reactive hyperemia is still present after LNNA and subsequent L-Arg administration, indicating that endothelial NO is not the only factor involved in flow regulation. We conclude that endothelium-derived NO is involved in the control of coronary flow in the blood perfused rat heart.  相似文献   

8.
9.
10.
Nitric oxide (NO) functions at all levels of the autonomic nervous system to influence sympathetic and parasympathetic control of cardiovascular function. It modulates the excitability of peripheral sensory and motor neurons of cardiovascular reflexes and the central neurons that integrate their function. Its effects within this system are diverse and site specific and are (at many levels) not well defined. However, most evidence suggests that the neuromodulator’s influence acts to restrain sympathetic outflow and facilitate parasympathetic outflow. In chronic heart failure, these functional effects of NO are impaired or downregulated and contribute to the state of sympathetic overactivation and parasympathetic deactivation characterized by the disease. The cellular and molecular mechanisms regulating NO production and signaling in the autonomic nervous system in the normal and chronic heart failure state are summarized and discussed in light of their therapeutic implications. This review also emphasizes questions of regulation of NO function in the autonomic nervous system that remain unresolved.  相似文献   

11.
Abstract. Recent publications shown mitochondrial localization of the enzyme nitric oxide synthase (NOS) in a number of tissues. However, conflicting results about mitochondrial NOS (mtNOS) immunoreactivity and enzymatic activity are available to date in the literature. In this study we purified mitochondria from rat hearts and analysed these preparations for NOS immunoreactivity and activity, showing the presence of either a constitutive (the endothelial isoform) and an inducible NOS immunoreactivity. A basal NOS activity (64.2 ± 5.1 pmol/mg protein/30 min) was detectable. 1 mM NG-Monomethyl-L-arginine (L-NMMA), a competitive inhibitor of all NOS isoforms, caused a drop in NOS activity to 33.8 ± 1.9 pmol/mg protein/30 min. Simultaneous administration of 10 µM (S)-2-amino-(1-iminoethylamino)-5- thiopentanoic acid (GW274150), a specific NOS2 inhibitor, together with removal of Ca2+ and calmodulin (CaM) from the assay buffers, known to interfere with the activity of constitutive NOS isoforms, caused a reduction in NOS activity (17.4 ± 1.2 pmol/mg protein/30 min). 10 µM GW274150 reduced NOS activity to 41.6 ± 4 pmol/mg protein/30 min, while Ca2+/CaM withdrawal reduced basal NOS activity to 45.8 ± 5 pmol/mg protein/30 min. This dual mtNOS machinery is suggested to be involved in modulating cardiac O2 consumption in different (patho)physiological conditions.  相似文献   

12.
Participation of nitric oxide (NO) in the autonomic innervation of rat and guinea pig hearts was investigated by applying the NADPH diaphorase technique and immunohistochemistry with NO synthase antiserum. We present evidence that NO synthase is localized in cardiac ganglion cells and nerve fibers innervating the sinuatrial and atrioventricular nodes, the myocardium, local neurons, coronary arteries, and pulmonary vessels, suggesting an involvement of NO in neurogenic heart rate regulation, myocardial cell function, neuronal transmission in cardiac ganglia, and coronary as well as pulmonary vasodilation.  相似文献   

13.
Nitric oxide (NO) is a controversial molecule. It is either beneficial or deleterious. As with NO donors, one reason for this duality is related to the dose. Small doses are highly beneficial, maintaining blood flow in vessels and blood pressure, and protecting against foreign invaders. In high doses, it results in hypotension, forms peroxynitrite which is cytotoxic, and contributes to heart failure.  相似文献   

14.
15.
16.
The three isoforms of nitric oxide synthase (NOS), spatially confined in specific intracellular compartments in cardiac cells, have distinct roles in the regulation of contractility in pathophysiological situations. Recently, evidence has emerged that implicates NOS in modulating myocardial remodelling during cardiac stress, including after ischaemic insults. As long as they remain in a coupled state the NOS mostly attenuate hypertrophic remodelling through both cGMP-dependent and independent mechanisms. We review the evidence provided from the phenotype of genetic mouse models as well as from in vitro cell experiments dissecting the signalling effectors involved in the NOS-mediated regulation that justify new therapeutic interventions on the NOS-cGMP axis to attenuate the development of heart failure.  相似文献   

17.
Nitric oxide (NO) is recognized as one of the most important cardiovascular signaling molecules, with multiple regulatory effects on myocardial and vascular tissue as well as on other tissues and organ systems. With the growth in understanding of the range and mechanisms of NO effects on the cardiovascular system, it is now possible to consider pharmaceutical interventions that directly target NO or key steps in NO effector pathways. This article reviews aspects of the cardiovascular effects of NO, abnormalities in NO regulation in heart failure, and clinical trials of drugs that target specific aspects of NO signaling pathways.  相似文献   

18.
Endothelial-derived nitric oxide (NO) diffuses abluminally to regulate blood flow by activating soluble guanylate cyclase in medial smooth muscle. However, a significant fraction of NO diffuses luminally, where the extremely high reaction rate with red blood cell hemoglobin (Hb) effectively reduces luminal concentration to zero. The erythrocytosis of cyanotic congenital heart disease has potentially opposing effects, namely, a reduction in medial smooth muscle NO bioavailability because of the increase in luminal consumption of the molecule and, conversely, an increase in the elaboration of NO in response to the high endothelial shear stress of the erythrocytotic perfusate. NO metabolism in cyanotic congenital heart disease is unknown. Accordingly, this study aimed to establish the metabolic fate of NO and to determine the degree to which its levels are altered. Blood samples from 25 nonfasting patients with cyanotic congenital heart disease and 25 nonfasting normal controls were collected in Vacutainer tubes containing citrate dextrose and in separate Vacutainer tubes containing a solution that specifically preserves S-nitrosated Hb. Total NO species, plasma S-nitrosated proteins, iron nitrosyl Hb, and S-nitrosated Hb were quantified using chemiluminescence. In conclusion, a significant increase in plasma concentrations of NO metabolites and a modest increase in iron nitrosyl Hb levels were found, suggesting increased luminal consumption caused by erythrocytosis and further suggesting that hypoxemia might activate nonoxidative NO metabolic pathways and enhance tissue oxygen delivery.  相似文献   

19.
PURPOSE OF REVIEW: The role played by nitric oxide (NO) in cardiovascular physiology remains highly controversial. Following the discovery that NO is the prototypic endothelium-derived relaxing factor, this signaling molecule was implicated as possessing many other biological actions within the cardiovascular system, including effects on cardiac contraction, relaxation, and energetics. Here, we discuss new concepts regarding NO signaling, its effector pathways, and interactions between NO and the redox milieu within a framework of cardiac physiology and pathophysiology. RECENT FINDINGS: Major recent insights that have advanced understanding of the mechanisms of NO bioactivity include the following. (1) NO acts in subcellular signaling compartments or modules. (2) S-nitrosylation (covalent modification of cysteine thiol moieties) of proteins represents a prototypic second messenger signaling mode in biologic systems. (3) Reactive oxygen and nitrogen species work together to facilitate signaling. (4) Disruption of physiologic signaling can occur by either increased formation of reactive oxygen species or decreased production of reactive nitrogen species, a situation of nitroso-redox imbalance. SUMMARY: These insights, which challenge classically held views that NO acts as a freely diffusible molecule regulated primarily by concentration and exerting signaling primarily through cyclic GMP production, offer a new perspective on the pathophysiology and treatment of congestive heart failure.  相似文献   

20.
Acetylcholine evokes the simultaneous release of endothelium-derived relaxing and contracting factors in aortas from spontaneously hypertensive rats. Only relaxing factors are released in aortas from normotensive controls. Experiments were designed to determine whether inhibitors of endothelium-dependent relaxations modify endothelium-dependent contractions. Rings of thoracic aortas of normotensive and spontaneously hypertensive rats, with and without endothelium, were suspended in organ chambers for isometric tension recording. Oxyhemoglobin (a scavenger of endothelium-derived relaxing factor) and NG-monomethyl L-arginine (an inhibitor of nitric oxide formation) augmented the contractions to acetylcholine. Methylene blue (an inhibitor of soluble guanylate cyclase) and superoxide dismutase (a scavenger of superoxide anions) did not modify these contractions. The contractions in the presence of oxyhemoglobin or NG-monomethyl L-arginine, like those in untreated rings, were endothelium-dependent; they only occurred in aortas from spontaneously hypertensive rats and were abolished by indomethacin. The contractions to acetylcholine in the presence of oxyhemoglobin were not affected by superoxide dismutase or deferoxamine. These data suggest that endothelium-derived relaxing factor inhibits endothelium-dependent contractions to acetylcholine in the spontaneously hypertensive rat aorta, probably by chemical inactivation of the endothelium-derived contracting factor rather than by stimulation of guanylate cyclase or scavenging of oxygen-derived free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号