首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent postmortem brain and imaging studies provide evidence for disturbances of structural and synaptic plasticity in patients with mood disorders. Several lines of evidence suggest that the cell adhesion molecules (CAMs), neural cell adhesion molecules (NCAM) and L1, play important roles in both structural and synaptic plasticity. Although postmortem brain studies have indicated altered expression levels of NCAM and L1, it is still unclear whether these changes are state- or trait-dependent. In this study, the mRNA levels for various CAMs, including NCAM and L1, were measured using quantitative real-time PCR in peripheral blood cells of major depressive disorder patients, bipolar disorder patients and normal healthy subjects. Reduced expression levels of NCAM-140 mRNA were observed in bipolar disorder patients in a current depressive state. In contrast, L1 mRNA levels were increased in bipolar disorder patients in a current depressive state. NCAM-140 and L1 mRNA levels were not changed in bipolar disorder patients in a remissive state, or in major depressive disorder patients. In addition, there were no significant changes in the expression levels of intercellular adhesion molecule -1, vascular cell adhesion molecule -1, E-cadherin, or integrin alphaD among healthy controls, major depressive or bipolar disorder patients. Our results suggest that the reciprocal alteration in the expression of NCAM-140 and L1 mRNAs could be state-dependent and associated with the pathophysiology of bipolar disorder.  相似文献   

2.
Overexpression of receptor-interacting protein 140 (RIP140) promotes neuronal differentiation of N2a cells via extracellular regulated kinase 1/2 (ERK1/2) signaling. However, involvement of RIP140 in human neural differentiation remains unclear. We found both RIP140 and ERK1/2 expression increased during neural differentiation of H1 human embryonic stem cells. Moreover, RIP140 negatively correlat-ed with stem cell markers Oct4 and Sox2 during early stages of neural differentiation, and positively correlated with the neural stem cell marker Nestin during later stages. hTus, ERK1/2 signaling may provide the molecular mechanism by which RIP140 takes part in neural differentiation to eventually affect the number of neurons produced.  相似文献   

3.
Glial cell line-derived neurotrophic factor (GDNF) has an essential role in the survival and maturation of the dopaminergic (DA) neurons in the substantia nigra (SN) of mammalian embryonic brain. In addition to Ret, cell adhesion molecules (CAMs) were also proposed to function as transmembrane signaling receptors of GDNF. The present study was to investigate whether these transmembrane receptors of GDNF were correlated with the tyrosine hydroxylase (TH) expression of SN DA neurons during early developmental stage. RT-PCR and Western blot were performed to detect TH expression in SN of perinatal rats at mRNA and protein level respectively; meanwhile, Western blot was performed to detect the expressions of the transmembrane proteins including Ret, neural cell adhesion molecule-140 (NCAM-140), integrin β1 and N-cadherin. The results showed that TH mRNA expression was positively correlated with both Ret and N-cadherin protein, while there was no correlation with NCAM-140 and integrin β1; TH protein expression was correlated with all of these transmembrane molecules. These data suggested that the expression of either TH mRNA or TH protein was subject to the mediation of different transmembrane receptor combinations of GDNF.  相似文献   

4.
It is known that activity modulates neuronal differentiation in the adult brain but the signalling mechanisms underlying this process remain to be identified. We show here that activity requires soluble amyloid precursor protein (sAPP) to enhance neurite outgrowth of young neurons differentiating from neural stem cells. Inhibition of sAPP secretion and anti-APP antibodies both abolished the effect of depolarization on neurite outgrowth, whereas exogenous sAPPα, similar to depolarization, induced neurite elongation. Depolarization and sAPPα both required active N -methyl- d -aspartic acid receptor (NMDAR) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) recruitment to induce neurite outgrowth. However, depolarization and sAPPα played different roles in modulating this signalling cascade. Depolarization induced ERK phosphorylation with fast kinetics via activation of NMDAR. By contrast, acute application of sAPPα did not lead to ERK activation. However, continuous generation of sAPPα was necessary for depolarization-induced ERK phosphorylation, indicating that sAPPα promotes MAPK/ERK recruitment by an indirect mechanism. In addition, we found that blockade of NMDAR down-regulated APP expression, whereas depolarization increased sAPPα, suggesting that activity may also act upstream of sAPP signalling by regulating the amount of cellular APP and extracellular sAPPα. Finally, we show that soluble amyloid precursor-like protein 2 (sAPLP2), but not sAPLP1, is functionally redundant to sAPP in promoting neurite outgrowth and that soluble members of the APP family require membrane-bound APP to enhance neurite outgrowth. In summary, these experiments indicate a novel role of APP family members in activity-dependent neuronal differentiation.  相似文献   

5.
The possible role of neural cell adhesion molecule (NCAM) in myelination was studied in the dysmyelinating mouse mutants jimpy and shiverer, by characterizing the expression of the different molecular forms of brain NCAM as a function of age. In jimpy, the expression of NCAM-120 (120,000-Da NCAM) was low and in shiverer both NCAM-120 and NCAM-180 (180,000-Da NCAM) were reduced when compared to controls. In both jimpy and shiverer there was no significant change in the phospholipase C-sensitive NCAM-120. These data further support the possibility that NCAM may be involved in myelination.  相似文献   

6.
One of the consequences of increased intracellular calcium in response to a variety of physiological stimuli is the calcium activation of cytosolic proteases. Unlike lysosomal proteases with broad specificity, these calcium-activated neutral proteases show limited proteolysis of a restricted set of substrate proteins suggesting they may play a regulatory role in cellular physiology. In this study we show that the neural cell adhesion molecules NCAM-180 and N-cadherin are substrates for such endogenous calcium-activated neutral proteases. In contrast, a third neural cell adhesion molecule G4/L1 was not susceptible to calcium-activated proteolysis. The threshold for activation of NCAM and N-cadherin proteolysis is in the micromolar range of calcium suggesting that NCAM and N-cadherin are substrates for a mu-type calpain (calpain I). The site recognized by this protease is within intracellular domains of NCAM-180 and N-cadherin which are important for their interaction with cytoskeletal components. These results suggest that calcium-activated proteolysis at these sites in vivo could disrupt the linkage between extracellular ligand binding to these adhesion molecules and the normal intracellular effectors of such extracellular binding events.  相似文献   

7.
The neural cell adhesion molecule (NCAM) is involved in development of the nervous system, in brain plasticity associated with learning and memory, and in neuronal regeneration. NCAM regulates these processes by influencing cell adhesion, cell migration, and neurite outgrowth. NCAM activates intracellular signaling upon homophilic NCAM binding, and this is a prerequisite for NCAM-stimulated neurite outgrowth. NCAM is synthesized in three main membrane-bound isoforms, NCAM-120, NCAM-140, and NCAM-180. Soluble forms of NCAM in blood and cerebrospinal fluid have also been found, although the functional significance of these forms remains unclear. In this report, we demonstrate that NCAM can be released from primary hippocampal neurons in culture. The release was enhanced by application of ATP and inhibited by the metalloproteinase inhibitor BB-3103. ATP also induced metalloproteinase-dependent release of all three major NCAM isoforms from NCAM-transfected fibroblastoid L-cells. In this model system, the extracellular ATP-binding site of NCAM was shown not to be necessary for ATP-induced NCAM release. Furthermore, inhibition of serine, cysteine, and aspartic proteinases could not prevent ATP-induced down-regulation of NCAM in L-cells, suggesting that NCAM is cleaved directly by a metalloproteinase. Aggregation of hippocampal neurons in culture was increased in the presence of the metalloproteinase inhibitor GM 6001, consistent with a metalloproteinase-dependent shedding of NCAM occurring in these cells. Moreover, NCAM-dependent neurite outgrowth was significantly reduced by application of GM 6001. Taken together, these results suggest that membrane-bound NCAM can be cleaved extracellularly by a metalloproteinase and that metalloproteinase-dependent shedding of NCAM regulates NCAM-mediated neurite outgrowth.  相似文献   

8.
The precise signaling pathways which contribute to amyloid precursor protein (APP) gene expression remain incompletely characterized. We evaluated the role of protein kinases, calcium and phospholipase C (PLC) in modulating APP mRNA levels. There was a rapid 35-40% reduction in the steady state level of APP mRNA upon stimulation of peripheral blood mononuclear cells (PBMC) with phorbol 12-myristate 13-acetate (PMA), A23187 or ionomycin. However the protein kinase C (PKC), protein kinase A (PKA) or PLC pathways did not mediate these changes in APP mRNA levels. Rather, PMA or ionophore caused a rapid activation of extracellular-regulated kinase (ERK). This effect was independent of PKC and sensitive to U0126. After 4 h of PMA treatment, the remaining APP mRNA became indefinitely stable. We propose a model for the biphasic decay of APP mRNA in which ERK activation by PMA causes sequential upregulation of two APP mRNA binding proteins, nucleolin and hnRNP C. We attribute the initial rapid loss of APP mRNA to the helicase activity associated with nucleolin and later stabilization to hnRNP C binding to the 29 base instability element in the 3'-UTR of APP mRNA.  相似文献   

9.
The NMDA class of glutamate receptors plays a critical role in CNS, such as synaptic plasticity, axonal sprouting, growth, and migration. NMDA receptor stimulation has been shown to regulate polysialylated neural cell adhesion molecule (PSA-NCAM) expression in glial cell cultures and in hippocampal slice cultures. There is also growing evidence that molecular chaperons and ROS are related to the synaptic plasticity phenomena. We have examined the neuroprotective effect of subtoxic dose of NMDA in retinoic acid differentiated SH-SY5Y neuroblastoma cells. SH-SY5Y cell line differentiated with retinoic acid (10 muM) was exposed to NMDA (100 microM) or to antagonist MK-801 (200 nM) + NMDA and cells harvested after 24 h of treatment for PSA-NCAM, NCAM, and HSP70 expression study and for biochemical analysis. A significant increase was observed in PSA-NCAM, NCAM-180, NCAM-140, and HSP70 expression as seen by Western blotting and immunocytofluorescent studies in NMDA-treated cultures. Biochemical analysis revealed a significant increase in the activities of glutathione peroxidase (GPx) and copper zinc-superoxide dismutase (CuZnSOD) upon exposure to NMDA. No significant change was observed in the level of lipid peroxidation. All the changes observed reverted back to the control values upon pretreatment of cultures with MK-801, a non-competitive NMDA receptor antagonist, prior to NMDA exposure indicating the involvement of NMDA receptor in these changes. These results illustrate the neuroprotective role of subtoxic dose of NMDA in SH-SY5Y neuroblastoma cells.  相似文献   

10.
Although chronic stress has been reported to induce deleterious effects on hippocampal structure and function, the possible existence of individual differences in the vulnerability to develop stress-induced cognitive alterations was hypothesized. This study was designed to evaluate (i) whether individual variability in behavioural reactivity to novelty could be related to a differential vulnerability to show spatial learning deficits after chronic stress in young adult rats, and (ii) to what extent, could individual differences in stress-induced cognitive alterations be related to alterations in specific neurobiological substrates. Four month-old Wistar male rats were classified according to their locomotor reactivity to a novel environment, as either low (LR) or highly (HR) reactive, and then either submitted to psychosocial stress for 21-days (consisting of the daily cohabitation of each young adult rat with a new middle-aged rat) or left undisturbed. The results showed that psychosocial stress induced a marked deficit in spatial learning in the water maze in HR, but not in LR, rats. Then, a second experiment investigated the possible differential expression of corticosteroid receptors (MR and GR) and cell adhesion molecules (NCAM and L1) in the hippocampus of HR and LR rats, both under basal conditions and after exposure to chronic social stress. Although chronic stress induced a reduction on the hippocampal expression of MRs and the NCAM-140 isoform, the levels of these molecules did not differ between stressed rats with and without spatial learning impairments; i.e., between HR- and LR-stressed rats, respectively. Nevertheless, it should be noted that the reduction of the hippocampal expression of NCAM-140 induced by psychosocial stress was particularly marked in HR stressed rats. However, the expression of GRs, NCAM-120 and NCAM-180 isoforms, and L1, was not affected by stress, regardless of the reactivity of the animals. Therefore, although we failed to find a neurobiological substrate that specifically correlated with the differential cognitive vulnerability to chronic stress shown by animals with a different novelty reactivity, this study confirms the hypothesis that rats differ in their susceptibility to display stress-induced impairments in hippocampus-dependent spatial learning tasks. In addition, it provides a model to further search for the neurobiological substrate(s) involved in the differential susceptibility to develop stress-induced cognitive impairments.  相似文献   

11.
Glial cell line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for the substantia nigra (SN) dopamine (DA) neurons. The transmembrane signaling of GDNF is mediated by a unique receptor system, including the ligand binding receptor GDNF family receptor alpha (GFRalpha) and the transmembrane signaling receptor Ret or neural cell adhesion molecule-140 (NCAM-140). Here, we found that another transmembrane cell adhesion molecule, integrin, a heterodimer consisting of alpha and beta subunits, also mediates the transmembrane signaling of GDNF. The results showed that the level of phosphorylated Src homology 2 domain containing (Shc), which was associated with the cytoplasmic domain of integrin beta1, increased after GDNF administration. Coimmunoprecipitation analysis demonstrated that integrin beta1 could form a complex with GFRalphal. The simulation of molecular modeling showed that four H-bonds were formed between integrin beta1 and GFRalpha. These data indicate that integrin beta1 is involved in the transmembrane signaling of GDNF and suggest that integrin beta1 may be an alternative signaling receptor for GDNF.  相似文献   

12.
Hu Q  Fu H  Song H  Ren T  Li L  Ye L  Liu T  Dong S 《Neurotoxicology》2011,32(2):255-260
Toxic lead (Pb) exposure poses serious risks to human health, especially to children at developmental stages, even at low exposure levels. Neural cell adhesion molecule (NCAM) is considered to be a potential early target in the neurotoxicity of Pb due to its role in cell adhesion, neuronal migration, synaptic plasticity, and learning and memory. However, the effect of low-level Pb exposure on the specific expression of NCAM isoforms has not been reported. In the present study, we found that Pb could concentration-dependently (1-100 nM) inhibit the expression of three major NCAM isoforms (NCAM-180, -140, and -120) in primary cultured hippocampal neurons. Furthermore, it was verified that levels of all three major isoforms of NCAM were reduced by Pb exposure in human embryonic kidney (HEK)-293 cells transiently transfected with NCAM-120, -140, or -180 isoform cDNA constructs. In addition, low-level Pb exposure delayed the neurite outgrowth and reduced the survival rate of cultured hippocampal neurons at different time-points. Together, our results demonstrate that developmental low-level Pb exposure can attenuate the expression of all three major NCAM isoforms, which may contribute to the observed Pb-mediated neurotoxicity.  相似文献   

13.
We previously reported that primary neuronal cells treated with apolipoprotein E (apoE) or an apoE-derived peptide (EP) increased ERK activation and decreased JNK activation via apoE receptors. Here, we examined if the effects observed in vitro were observed in vivo. Similar to our observations in primary neurons, in vivo we found that injections of 2muM EP into the rat hippocampus increased the levels of ERK activation and decreased JNK activation. However, the time course of these effects was slower in vivo. Immunohistochemical analysis of the tissue showed prominently increased ERK phosphorylation and decreased JNK phosphorylation in neuronal cells throughout the hippocampus, particularly in the CA3 regions. To determine if apoE was endocytosed by neurons, we conjugated fluorescent microspheres with the EP and injected them into the rat hippocampus. After 7 days, the microspheres were present in neurons. We also examined the in vivo effects of apoE on ApoEr2 and APP processing. EP and full-length apoE3 and apoE4 increased C-terminal fragments of ApoEr2 and APP after a single injection, multiple injections, and chronic infusion paradigms. ApoE3 produced higher levels of ApoEr2 and APP C-terminal fragments than apoE4. These results demonstrate that apoE alters ApoEr2 and APP processing in vivo. The increase in ERK activation is consistent with a role for apoE in a neuronal response to stress, and the decrease in JNK activation suggests that apoE may have anti-apoptotic effects, over several days.  相似文献   

14.
Antibodies specific to the neural cell adhesion molecule (NCAM-total), the 180 × 103 My component of NCAM (NCAM-180) and polysialic acid (PSA) were used in immunohistochemistry and Western blots to detect the spatiotemporal dynamics of these molecules in development and regeneration of the retinotectal system of Pleurodeles waltl. NCAM-total and NCAM-180 are continuously expressed in the retina, optic nerve, and tectum of the developing and adult salamander. This is also found for the 140 × 103 My component of NCAM in Western blots of the retina. In the larval retina, PSA is present in the inner plexiform layer (IPL) and a few cells in all nuclear layers. At metamorphosis, PSA expression in the retina strongly increases in the layer of cone photoreceptor somata. Several cells in the inner nuclear layer and Muller cell processes also begin to express PSA. This pattern persists into adulthood. The optic nerve and the tectum are strongly PSA-immunoreactive throughout development. In the adult optic nerve and optic fiber pathway in the brain, PSA expression is selectively downregulated. In the crush-lesioned adult optic nerve, regenerating fibers are NCAM-180-positive but PSA-negative. This demonstrates a molecular difference between growing nerve fibers of Pleurodeles in development and in regeneration. PSA regulation is closely correlated with metamorphosis, thus suggesting that PSA expression may be under hormonal control. Some aspects of PSA and NCAM isoform expression patterns in the retinotectal system of salamanders differ considerably from that of other vertebrates. The substained expression of NCAM isoforms in adult salamanders might be due to secondary simplification (paedomorphosis). © 1993 Wiley-Liss, Inc.  相似文献   

15.
We hypothesized that the physical interaction between the amyloid precursor protein (APP) and Notch 1 (N1) may be mediating the reported cross-talk between the respective signaling pathways. Immunoprecipitation of mouse N1 (mN1) or extracellular domain truncated mN1 (mN1-TM, mimics TACE-produced membrane-bound C-terminal fragment) specifically coprecipitated APP(751). Conversely, immunoprecipitation of APP(751) specifically coprecipitated mN1, furin-generated membrane-bound mN1 C-terminal fragment (f.mN1-TM), or mN1-TM. The London mutation of APP did not affect the APP(751)/mN1 interaction. Coexpression of APP(751) and mN1 did not affect APP processing or production of mN1 intracellular domain (mNICD). The APP(751)/mN1 interaction was Numb-independent, insofar as it was observed in HEK293 cells that lack detectable levels of Numb and was unaffected by the expression of exogenous Numb or deletion of the APP cytoplasmic domain, including the Numb-binding YENPTY sequence. This interaction was unaffected even when the N-terminal 647 amino acids of APP were replaced by a sequence of secreted alkaline phosphatase. These data combined with data showing interaction between mN1-TM and APP(751) suggest that their transmebrane domains and short sequences around them are sufficient for the interaction and that APP(751) and mN1 interact in cis. Our results imply novel functions of APP and/or N1 that derive from their interaction.  相似文献   

16.
The amyloid precursor protein (βAPP) undergoes several proteolytic cleavages. While β- and γ-secretases are responsible for the production of the 40-43 amino-acid long amyloid β peptide (Aβ), the α-secretase cut performed by the disintegrins ADAM10 and ADAM17, occurs in the middle of the Aβ sequence, thereby preventing its formation and leading to the secretion of the large sAPPα neuroprotective fragment. Here we showed that a series of M1 muscarinic receptor agonists dose-dependently stimulated sAPPα secretion without interfering with βAPP subcellular distribution. Carbachol- and PDBu-induced sAPPα secretions were blocked by the general PKC inhibitor GF109203X. We established that HEK293 and rhabdhomyosarcoma cells overexpressing constitutively active (CA) PKCα or PKCε secrete increased amounts of sAPPα while those expressing PKCδ were unable to modify sAPPα recovery. Conversely, the overexpression of PKCα or PKCε dominant negative (DN) constructs abolished PDBU-stimulated sAPPα secretion, whereas DN-PKCδ remained inert. In agreement, PKCα knockout lowered sAPPα recovery in primary cultured fibroblasts. We also demonstrated that the regulated α-secretase processing of βAPP is not controlled by the Extracellular-Regulated Kinase-1/MAP-ERK Kinase (ERK1/MEK) cascade and likely does not require ADAM17 phosphorylation on its threonine735 residue. Because the muscarinic-dependent α-secretase-like processing of PrP(c) is fully dependent on ADAM17 phosphorylation on its threonine735 residue by ERK1, these results indicate that a single extracellular signal triggers ADAM17-dependent regulated cleavages of βAPP and PrP(c) through distinct signalling cascades. This opens new potential therapeutic strategies aimed, in the context of Alzheimer's disease, at selectively activating ADAM17 towards βAPP without affecting the cleavages of its numerous other substrates.  相似文献   

17.
18.
Mutations in presenilin 1 and presenilin 2 (PS1 and PS2, respectively) genes cause the large majority of familial forms of early-onset Alzheimer's disease. The physical interaction between presenilins and APP has been recently described using coimmunoprecipitation. With a similar technique, we confirmed this interaction and have mapped the interaction domains on both PS2 and APP. Using several carboxy-terminal truncated forms of PS2, we demonstrated that the hydrophilic amino terminus of PS2 (residues 1 to 87, PS2NT) was sufficient for interaction with APP. Interestingly, only a construct with a leader peptide for secretion (SecPS2NT) and not its cytosolic counterpart was shown to interact with APP. For APP, we could demonstrate interaction of PS2 with the last 100 but not the last 45 amino acids of APP, including therefore the A beta region. Accordingly, SecPS2NT is capable of binding to A beta-immunoreactive species in conditioned medium. In addition, a second region in the extracellular domain of APP also interacted with PS2. Comparable results with PS1 indicate that the two presenilins share similar determinants of binding to APP. Confirming these results, SecPS2NT is able to inhibit PS1/APP interaction. Such a competition makes it unlikely that the PS/APP interaction results from nonspecific aggregation of PS in transfected cells. The physical interaction of presenilins with a region encompassing the A beta sequence of APP could be causally related to the misprocessing of APP and the production of A beta1-42.  相似文献   

19.
A morphologically differentiated strain of rat pheochromocytoma (PC-12H) metabolically labeled with [35S]methionine and incubated with a phorbol ester displayed reduced 140-kDa and increased 15 kDa bands relative to cells incubated without phorbol ester after immunoprecipitation with antisera elicited by the C-terminal peptide of the Alzheimer amyloid precursor protein (APP). These bands correspond to glycosylated full length APP and a C-terminal fragment previously reported by Anderson et al. (Neurosci. Lett. 120:126-128, 1991) to result from a cleavage within the amyloidotic A4 region of APP, which releases a 120 kDa extracellular fragment. The 15 kDa fragment, not immunoprecipitated with an antisera elicited by the N-terminal portion of A4 amyloid, is nonamyloidogenic. Incubation of these cells with p-nitrophenylxyloside, known to inhibit proteoglycan formation, also increased this nonamyloidogenic cleavage of APP. In contrast to these results, an undifferentiated low passage PC-12-L strain constitutively displayed rapid nonamyloidogenic APP cleavage. Incubation of PC-12-L with phorbol ester did not affect the relative abundance of 140 or 15 kDa bands. Growth of PC-12-L with 7 S NGF or dibutyryl cAMP resulted in increased morphological differentiation and decreased APP cleavage which was now phorbol-inducible. Similar analyses of dividing and senescent human astrocytes and normal and F-AD fibroblasts indicate 5-fold lower rates of mid-A4 APP cleavage. Phorbol esters decreased the 140 kDa APP band without affecting the intensity of the 15 kDa band in these cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We have demonstrated that aged animals show significant improvements in cognitive function and neurogenesis after brain transplantation of human neural stem cells or of human adult mesenchymal stem cells that have been dedifferentiated by transfection of the embryonic stem cell gene. We have also demonstrated that peripheral administration of a pyrimidine derivative increased cognition, endogenous brain stem cell proliferation and neurogenesis. These results indicate a bright future for stem cell therapies in Alzheimer's disease (AD). Before this is realized, however, we need to consider the affect of AD pathology on stem cell biology to establish an effective stem cell therapy for this disease. Although amyloid-beta (Abeta) deposition is a hallmark of AD, an absence of a phenotype in the beta-amyloid precursor protein (APP) knockout mouse, might lead one to underestimate the potential physiological functions of APP and suggest that it is unessential or can be compensated for. We have found, however, that APP is needed for differentiation of neural stem cells (NSCs) in vitro, and that NSCs transplanted into a APP-knockout mouse did not migrate or differentiate -- indicating that APP plays an important role in differentiation or migration process of NSCs in the brain. Then again, treatment with high a concentration of APP or its over-expression increased glial differentiation of NSCs. Human NSCs transplanted into APP-transgenic mouse brain exhibited less neurogenesis and active gliosis around the plaque like formations. Treatment of such animals with the compound, (+)-phenserine, that is known to reduce APP protein levels, increased neurogenesis and suppressed gliosis. These results suggest APP levels can regulate NSC biology in the adult brain, that altered APP metabolism in Down syndrome or AD may have implications for the pathophysiology of these diseases, and that a combination of stem cell therapy and regulation of APP levels could provide a treatment strategy for these disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号